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Abstract. In this article, we make use of convex analytic functions Ha(z) =
[1/(1 − a)] log[(1 − az)/(1 − z)], a ∈ R, |a| ≤ 1, a ̸= 1 and starlike analytic functions
Lb(z) = z/[(1 − bz)(1 − z)], b ∈ R, |b| ≤ 1, to construct univalent harmonic functions
by means of a transformation on some normalized univalent analytic functions. Besides
exploring mapping properties of harmonic functions so constructed, we establish sufficient
conditions for their harmonic convolutions or Hadamard products to be locally univalent
and sense preserving, univalent and convex in some direction.

1. Introduction

Let A(D) be the set of analytic functions f defined on the open unit disc D =
{z ∈ C : |z| < 1} such that f(0) = 0 and f ′(0) = 1 and denote by S ⊂ A(D) the usual
class of univalent functions in A(D). Obviously for f ∈ S, f ′(z) ̸= 0 for any z ∈ D.
Let K, S∗ and C be subclasses of S consisting of convex, starlike and close to convex
functions, respectively. Furthermore, denote by S2 the subclass of K consisting of all
those functions f for which zf ′ also belongs to K.

We consider two analytic functions

Ha(z) =
1

1− a
log

1− az

1− z
, a ∈ R, |a| ≤ 1, a ̸= 1 (1)

and Lb(z) =
z

(1− bz)(1− z)
, b ∈ R, |b| ≤ 1. (2)

It is known (see [2]) that Ha is a convex univalent function for |a| ≤ 1, a ̸= 1 and
obviously, the function H0(z) = − log(1 − z) belongs to the class S2. Furthermore,
Lb ∈ S∗ (see [8]), L1 is the well known Koebe function and L0 is the right half plane
mapping.
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2 Construction of univalent harmonic mappings

Our main motive in this article is the construction of locally univalent and sense-
preserving harmonic mappings using the properties of Ha and Lb. A complex-valued
function f = u + iv is said to be harmonic in D if u and v are real harmonic in D.
A harmonic function f can be represented as f = h + g where h and g are analytic
in D. Furthermore, a harmonic function f = h + g is locally univalent and sense
preserving in D, if and only if h′(z) ̸= 0 in D and the second complex dilatation (or
simply dilatation) of f , defined by w(z) := g′(z)/h′(z), in D has modulus less than
one. The “only if ”part of this condition is a result of Lewy [3] (see also Clunie and
Sheil-Small [1]). We denote by SH the class of univalent harmonic functions f = h+g
such that h(0) = g(0) = h′(0) − 1 = 0 and |g′(0)| < 1. If g′(0) = 0, we denote the
class of functions f = h+ g ∈ SH by S0

H .

A domain Ω ⊂ C is called convex in the direction α (0 ≤ α < π) if the intersection
of Ω with any line parallel to the line through 0 and the point eiα is either empty or
an interval. A function f ∈ SH is called convex in the direction of α if it maps D
onto the domain convex in the direction of α. For f ∈ SH , if f(D) is convex in the
direction of the imaginary axis (α = π/2), then f is said to be convex in the direction
of the imaginary axis. Similarly, f ∈ SH is said to be convex in the direction of the
real axis if f(D) is convex in the direction of the real axis (α = 0).

For two analytic functions f(z) =
∑∞

n=0 anz
n and F (z) =

∑∞
n=0Anz

n we denote
their convolution or Hadamard product by f ∗ g and define it as: (f ∗ F )(z) =∑∞

n=0 anAnz
n. The convolution (or harmonic convolution) of two harmonic functions

f = h+ g and F = H+G, is denoted by f ∗̃F and is defined as: f ∗̃F = h∗H+ g ∗G.
In 2012, Stacey Muir [4] defined a transformation Tλ[f ], λ > 0, of functions f ∈ S

given by Tλ[f ](z) = f(z)+λzf ′(z)
1+λ + f(z)−λzf ′(z)

1+λ , z ∈ D and proved that Tλ[f ] ∈ SH

and is convex in the direction of the imaginary axis if and only if f ∈ K. The present
authors in [9], generalized this transformation as

Cλ,h[f ](z) =
f(z) + λ(h ∗ f)(z)

1 + λ
+
f(z)− λ(h ∗ f)(z)

1 + λ
, z ∈ D, (3)

where f, h ∈ S and λ > 0; and established the following result:

Theorem 1.1. Let f, h ∈ S and for λ > 0, let Cλ,h[f ] be defined as in (3). Then
Cλ,h[f ] is locally univalent and sense preserving in D if and only if

Re

(
(h ∗ zf ′)(z)
zf ′(z)

)
> 0, z ∈ D.

For f ∈ K, they established the univalence of Cλ,hi
[f ], i = 1, 2, 3, 4, where h1, h2, h3, h4

are given by

h1(z) =

∞∑
n=1

nzn, h2(z) =

∞∑
n=1

n+ 1

2
zn, h3(z) =

∞∑
n=1

1

n
zn, h4(z) =

∞∑
n=1

2

n+ 1
zn.

As (h1 ∗ f)(z) = zf ′(z), so Cλ,h1 [f ](z) = Tλ[f ](z). Moreover, (h2 ∗ f)(z) = [f(z) +
zf ′(z)]/2, (h3 ∗ f)(z) =

∫ z

0
[f(ζ)/ζ]dζ and (h4 ∗ f)(z) = (2/z)

∫ z

0
f(ζ)dζ.
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In this paper, we explore the properties of harmonic functions

Cλ,Ha
[f ](z) =

f(z) + λ(Ha ∗ f)(z)
1 + λ

+
f − λ(Ha ∗ f)(z)

1 + λ
(4)

and Cλ,Lb
[f ](z) =

f(z) + λ(Lb ∗ f)(z)
1 + λ

+
f − λ(Lb ∗ f)(z)

1 + λ
, (5)

where λ > 0, f ∈ S and where Ha and Lb are given by (1) and (2), respectively.
We also find conditions on f and g such that harmonic convolutions of Cλ,Ha [f ] and
Cλ,Lb

[g] are locally univalent and sense preserving, univalent and convex in some
direction.

2. Main results

We shall need the following two lemmas to prove our main theorems.

Lemma 2.1 ([6]). Let ψ and G be analytic in D with ψ(0) = G(0) = 0. If ψ is convex
and G is starlike, then for each analytic function F satisfying ℜ(F (z)) > 0 in D, we
have

ℜ
{
(ψ ∗ FG)(z)
(ψ ∗G)(z)

}
> 0, z ∈ D.

Lemma 2.2 ([1]). Let a harmonic mapping f = h+ g be locally univalent in D. Then
f is univalent mapping of D onto a domain convex in the direction of α, 0 ≤ α < π,
if and only if h − e2iαg is a univalent analytic mapping of D onto a domain convex
in the direction of α.

Theorem 2.3. Let f ∈ S and Ha be as given in (1). If

ℜ
[
f(z)− f(az)

(1− a)zf ′(z)

]
> 0, z ∈ D, (6)

then Cλ,Ha
[f ] defined by (4) is locally univalent and sense preserving in D. If f ∈ K,

then Cλ,Ha
[f ] ∈ SH and is convex in the directions of both the real and the imaginary

axes.

Proof. From Theorem 1.1, Cλ,Ha
[f ] is locally univalent and sense preserving in D if

ℜ
[
(Ha∗f)′(z)

f ′(z)

]
> 0. Since z(Ha ∗ f)′(z) = zH ′

a(z) ∗ f(z) = 1
1−a

[
−az
1−az + z

1−z

]
∗ f(z) =[

f(z)−f(az)
1−a

]
, then ℜ

[
(Ha∗f)′(z)

f ′(z)

]
=

[
f(z)−f(az)
(1−a)zf ′(z)

]
> 0 in view of (6). Hence the first

part of theorem is proved.
Furthermore, it is known that if f ∈ K then (6) is satisfied. This is, in fact,

provided by [6, Lemma 4.2 (with h = k there)] (also see [5, (2.105) on p. 86]). Hence,
if f ∈ K, then Cλ,Ha

[f ] is locally univalent and sense preserving in D. Now, to

complete the proof, let Cλ,Ha
[f ](z) = f(z)+λ(Ha∗f)(z)

1+λ + f(z)−λ(Ha∗f)(z)
1+λ = H(z)+G(z).

Then H(z) − G(z) = 2λ
1+λ (Ha ∗ f)(z) and H(z) + G(z) = 2

1+λf(z). It is well known
that the class K is closed under convolution, so f ∈ K and Ha ∈ K imply that H−G



4 Construction of univalent harmonic mappings

and H + G are convex in the direction of the real axis and convex in the direction
of the imaginary axis, respectively. Therefore, from Lemma 2.2, we conclude that
Cλ,Ha

[f ] is convex in the directions of both the real and the imaginary axes. □

If we take a = −1, the condition (6) is equivalent to

ℜ
[

2zf ′(z)

f(z)− f(−z)

]
> 0, (7)

and such functions are known as starlike with respect to symmetric points. If S∗
S

denotes the class of all functions sarlike with respect to symmetric points, then it is
known that K ⊂ S∗

S ⊂ C (see [7] for more details). Also,

(H−1 ∗ f)(z) =
1

2

∫ z

0

f(ζ)− f(−ζ)
ζ

dζ

implies that H−1 ∗ f is convex as f(z)− f(−z) is starlike in D for f ∈ S∗
S . Therefore,

from Theorem 2.3 along with Lemma 2.2, we get the following result.

Theorem 2.4. Let f ∈ S∗
S and H−1(z) = 1

2 log
1+z
1−z . Then Cλ,H−1

[f ] ∈ SH and is
convex in the direction of the real axis.

We present the following example to illustrate our result.

Example 2.5. Take f(z) = f0(z) = z + z3/3 which is univalent as ℜf ′0(z) > 0 in D.
Also it is easy to verify that f0 satisfies inequality (7), i.e, f0 ∈ S∗

S . Thus by above
theorem Cλ,H−1

[f0] ∈ SH and is convex in the direction of the real axis. The image
of D under C3,H−1

[f0] is plotted in Figure 1.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Figure 1: Image of D under C3,H−1 [f0]

Furthermore, in the case a = 0, the condition (6) reduces to ℜ
[

f(z)
zf ′(z)

]
> 0, or

equivalently, ℜ
[
zf ′(z)
f(z)

]
> 0, which implies that f ∈ S∗. Moreover, (H0 ∗ f)(z) =∫ z

0
[f(ζ)/ζ] dζ shows that H0 ∗ f is convex in D for f ∈ S∗. Therefore, we get the

following result.
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Theorem 2.6. Let f ∈ S∗ and H0(z) = − log(1 − z). Then Cλ,H0 [f ] ∈ SH and is
convex in the direction of the real axis.

We invite the reader to compare Theorem 2.6 with the case i = 3 of [9, Theorem 3.3].

Example 2.7. Let F (z) = z/[(1 + z/4)(1 − z)] = L−1/4(z). Then F ∈ S∗ and so,
by Theorem 2.6, Cλ,H0

[F ] ∈ SH and is convex in the direction of the real axis. In
Figure 2 we have plotted the region on which D is mapped by the function

C0.5,H0
[F ](z) =

2

3

[
z

(1 + z/4)(1− z)
+

2

5
log

[
1 + z/4

1− z

]
+

z

(1 + z/4)(1− z)
− 2

5
log

[
1 + z/4

1− z

]]
.

-1.0 -0.5 0.0 0.5 1.0
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Figure 2: Image of D under C0.5,H0 [F ]

Theorem 2.8. Let f ∈ S and Lb be given as in (2). If

ℜ
[
f ′(z)− bf ′(bz)

(1− b)f ′(z)

]
> 0, b ̸= 1, (8)

then Cλ,Lb
[f ], defined by (5), is locally univalent and sense preserving in D. Further-

more, if f ∈ S2, then Cλ,Lb
[f ] ∈ SH and is convex in the directions of both the real

and the imaginary axes.

Proof. In view of Theorem 1.1, Cλ,Lb
[f ] is locally univalent and sense preserving in

D if ℜ
[
(Lb∗f)′(z)

f ′(z)

]
> 0. On the other hand, (Lb∗f)′(z)

f ′(z) = f ′(z)−bf ′(bz)
(1−b)f ′(z) . Hence, in view

of (8), Cλ,Lb
[f ] is locally univalent and sense preserving in D. Furthermore, we have

(Lb ∗ f)′(z)
f ′(z)

=

z
(1−bz)(1−z) ∗ zf

′(z)

zf ′(z)
=
zf ′(z) ∗

{(
1

1−bz

)(
z

1−z

)}
zf ′(z) ∗

(
z

1−z

) .
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Now ℜ (1/(1− bz)) > 0 for |b| ≤ 1, zf ′ ∈ K as f ∈ S2 and z/(1− z) ∈ K ⊂ S∗. Thus
by Lemma 2.1 we get that ℜ[(Lb ∗ f)′(z)/f ′(z)] > 0 for f ∈ S2, which in turn implies
that Cλ,Lb

[f ] is locally univalent and sense preserving in D. Furthermore, let

Cλ,Lb
[f ](z) =

f(z) + λ(Lb ∗ f)(z)
1 + λ

+
f(z)− λ(Lb ∗ f)(z)

1 + λ
= H(z) +G(z).

Then H(z)−G(z) = [2λ/(1+λ)](Lb ∗ f)(z) and H(z)+G(z) = [2/(1+λ)]f(z). Now
f ∈ S2 implies that zf ′ ∈ K and so z(Lb ∗ f)′ = Lb ∗ zf ′ ∈ S∗. Thus Lb ∗ f and f
both are in K and consequently H −G and H +G are convex in the direction of the
real axis and convex in the direction of the imaginary axis, respectively. Therefore,
from Lemma 2.2, we have Cλ,Lb

[f ] is convex in the directions of both the real and
the imaginary axes. □

Remark 2.9. Note that the above result does not hold true for f ∈ K and this can
be easily seen by considering the function

C1,z/(1−z2)[z/(1− z)](z) =
1

2

[
z

1− z
+

z

1− z2
+

z

1− z
− z

1− z2

]
.

It is evident from Figure 3 that this function is not even univalent in D.

-0.5 0.0 0.5

-0.5

0.0

0.5

Figure 3: Image of D under C1,z/(1−z2)[z/(1− z)]

Remark 2.10. If b approaches to 1−, then bz approaches to z. Therefore we get

ℜ
[
f ′(z)− bf ′(bz)

(1− b)f ′(z)

]
= ℜ

 [ z(f(z)−f(bz))
(1−b)z ]′(z)

f ′(z)

 = ℜ
[
(zf ′(z))′(z)

f ′(z)

]
(as b→ 1−).

However, since ℜ
[
(zf ′(z))′(z)

f ′(z)

]
= ℜ

[
1 + zf ′′(z)

f ′(z)

]
> 0, for f ∈ K, in the limiting case

when b → 1−, we obtain the following: For f ∈ K, Cλ,L1 [f ] ∈ SH and is convex in
the direction of the imaginary axis (compare with [4, Theorem 3.2]).
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Example 2.11. Taking f(z) = f2(z) = − log(1− z) and b = −1 in (8), we have

ℜ
[
f ′(z)− bf ′(bz)

(1− b)f ′(z)

]
= ℜ

[
f ′2(z) + f ′2(−z)

2f ′2(z)

]
= ℜ

(
1

1 + z

)
> 0,

for z ∈ D. Also f2 ∈ S2, so Theorem 2.8 implies that Cλ,L−1
[f2] ∈ SH and is convex

in the directions of the real as well as the imaginary axes. The region C10,L−1
[f2](D)

is depicted in Figure 4.

0 1 2 3 4
-2

-1

0

1

2

Figure 4: Image of D under C10,L−1 [f2]

The convolutions or Hadamard products of harmonic functions remain an active
subject of study nowadays as almost nothing significant in general is known in this
area unlike the case of analytic functions which is now a well explored domain of
knowledge. We present the following results on harmonic convolutions related to the
present investigation.

Theorem 2.12. Let F1 ∈ K and F2 ∈ S2. Then, for λ1, λ2 > 0, −1 ≤ a < 1,
−1 ≤ b ≤ 1, Cλ1,Ha

[F1]∗̃Cλ2,Lb
[F2] is locally univalent and sense preserving in D.

Proof. We write Cλ1,Ha
[F1]∗̃Cλ2,Lb

[F2](z) =M(z) +N(z), where

M(z)=
(F1∗F2)(z)+λ1(Ha∗F1∗F2)(z)+λ2(Lb∗F1∗F2)(z)+λ1λ2(Ha∗Lb∗F1∗F2)(z)

(1 + λ1)(1 + λ2)

N(z)=
(F1∗F2)(z)−λ1(Ha∗F1∗F2)(z)−λ2(Lb∗F1∗F2)(z)+λ1λ2(Ha∗Lb∗F1∗F2)(z)

(1 + λ1)(1 + λ2)
.

First, we note that M and N are analytic in D. Moreover M ′(0) = 1 implies that M ′

is not identically zero on D. Therefore, W (z) = N ′(z)/M ′(z) is analytic, considered
as defined in D and any singularity is isolated. We will show that |W (z)| < 1 for all
those z ∈ D where W is defined. This in turn will show that W has only removable
singularities on D. Then, we may define W on all of D and by using Maximum
Principle, conclude that |W (z)| < 1 for z ∈ D which proves that M + N is locally
univalent and sense preserving in D.



8 Construction of univalent harmonic mappings

For all z ∈ D where W (z) = N ′(z)/M ′(z) is defined, we have |W (z)| < 1 if and

only if ℜ
[
M ′(z)−N ′(z)
M ′(z)+N ′(z)

]
> 0. Now,

ℜ
[
M ′(z)−N ′(z)

M ′(z) +N ′(z)

]
=ℜ

[
λ1(Ha ∗ F1 ∗ F2)

′(z) + λ2(Lb ∗ F1 ∗ F2)
′(z)

(F1 ∗ F2)′(z) + λ1λ2(Ha ∗ Lb ∗ F1 ∗ F2)′(z)

]
=λ1ℜ

[
(Ha ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z) + λ1λ2(Ha ∗ Lb ∗ F1 ∗ F2)′(z)

]
(9)

+ λ2ℜ
[

(Lb ∗ F1 ∗ F2)
′(z)

(F1 ∗ F2)′(z) + λ1λ2(Ha ∗ Lb ∗ F1 ∗ F2)′(z)

]
Note that

ℜ
[
(Ha ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z)

]
= ℜ

[
(F1 ∗ F2)(z) ∗ z

(1−az)(1−z)

(F1 ∗ F2)(z) ∗ z
(1−z)2

]

=ℜ

 (F1 ∗ F2)(z) ∗
{(

1−z
1−az

)(
z

(1−z)2

)}
(F1 ∗ F2)(z) ∗ z

(1−z)2

 .
Now F1 ∈ K, F2 ∈ S2 ⊂ K implies F1 ∗ F2 ∈ K and ℜ[(1− z)/(1− az)] > 0 for all a,
−1 ≤ a < 1. So in view of Lemma 2.1, we get

ℜ
[
(Ha ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z)

]
> 0. (10)

Furthermore,

ℜ
[
(Lb ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z)

]
=ℜ

[
z(F1 ∗ F2)

′(z) ∗ z
(1−bz)(1−z)

z(F1 ∗ F2)′(z) ∗ z
1−z

]
> 0, (11)

because of Lemma 2.1, as z(F1 ∗F2)
′ = F1 ∗ zF ′

2 ∈ K (F2 ∈ S2) and ℜ[1/(1− bz)] > 0
for all b, −1 ≤ b ≤ 1. On the similar lines we can easily show that

ℜ
[

(Ha ∗ F1 ∗ F2)
′(z)

(Ha ∗ Lb ∗ F1 ∗ F2)′(z)

]
> 0 (12)

and ℜ
[

(Lb ∗ F1 ∗ F2)
′(z)

(Ha ∗ Lb ∗ F1 ∗ F2)′(z)

]
> 0. (13)

Now, since λ1, λ2 > 0, from (9), (10), (11), (12) and (13), we get

ℜ
[
M ′(z)−N ′(z)

M ′(z) +N ′(z)

]
> 0.

Theorem 2.13. Let F1, F2 ∈ K and λ1, λ2 be positive real numbers. Then, for −1 ≤
a < 1, Cλ1,Ha [F1]∗̃Cλ2,Ha [F2] ∈ SH and is convex in the direction of the real axis.

Proof. Let Cλ1,Ha
[F1]∗̃Cλ2,Ha

[F2](z) = X(z) + Y (z). Using the similar argument as
in the proof of Theorem 2.12, it is sufficient to prove that for all those z ∈ D where

Y ′(z)/X ′(z) is defined, we have ℜ
[
X′(z)+Y ′(z)
X′(z)−Y ′(z)

]
> 0. Now,

ℜ
[
X ′(z) + Y ′(z)

X ′(z)− Y ′(z)

]
= ℜ

[
(F1 ∗ F2)

′(z) + λ1λ2(Ha ∗Ha ∗ F1 ∗ F2)
′(z)

(λ1 + λ2)(Ha ∗ F1 ∗ F2)′(z)

]
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=
1

λ1 + λ2
ℜ
[

(F1 ∗ F2)
′(z)

(Ha ∗ F1 ∗ F2)′(z)

]
+

λ1λ2
λ1 + λ2

ℜ
[
(Ha ∗Ha ∗ F1 ∗ F2)

′(z)

(Ha ∗ F1 ∗ F2)′(z)

]
(14)

Note that

ℜ
[
(Ha ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z)

]
=ℜ

[
(F1 ∗ F2)(z) ∗ z

(1−az)(1−z)

(F1 ∗ F2)(z) ∗ z
(1−z)2

]

=ℜ

 (F1 ∗ F2)(z) ∗
{(

1−z
1−az

)(
z

(1−z)2

)}
(F1 ∗ F2)(z) ∗

{
z

(1−z)2

}
 .

Now F1, F2 ∈ K imply that F1 ∗ F2 ∈ K and ℜ[(1 − z)/(1 − az)] > 0 for all a,
−1 ≤ a < 1. So, in view of Lemma 2.1, we get

ℜ
[
(Ha ∗ F1 ∗ F2)

′(z)

(F1 ∗ F2)′(z)

]
> 0

or equivalently,

ℜ
[

(F1 ∗ F2)
′(z)

(Ha ∗ F1 ∗ F2)′(z)

]
> 0. (15)

Following similar steps, we easily get

ℜ
[
(Ha ∗Ha ∗ F1 ∗ F2)

′(z)

(Ha ∗ F1 ∗ F2)′(z)

]
> 0. (16)

Since λ1, λ2 > 0, from (14), (15) and (16), we get

ℜ
[
X ′(z) + Y ′(z)

X ′(z)− Y ′(z)

]
> 0.

This implies that |Y ′(z)/X ′(z)| < 1 and hence Cλ1,Ha
[F1]∗̃Cλ2,Ha

[F2] is locally univa-

lent and sense preserving in D. Moreover, X(z)−Y (z) = 2(λ1+λ2)
(1+λ1)(1+λ2)

(Ha∗F1∗F2)(z)

and Ha ∗ F1 ∗ F2 ∈ K implies that Cλ1,Ha
[F1]∗̃Cλ2,Ha

[F2] ∈ SH and is convex in the
direction of the real axis (in view of Lemma 2.2). This completes our proof. □

Theorem 2.14. Let F1, F2 ∈ S2, and λ1, λ2 > 0 be real numbers. Then, for −1 ≤
b ≤ 1, Cλ1,Lb

[F1]∗̃Cλ2,Lb
[F2] ∈ SH and is convex in the direction of the real axis.

Proof. If we write Cλ1,Lb
[F1]∗̃Cλ2,Lb

[F2](z) = R(z) + S(z), then it is easy to verify
that

R(z) =
(F1 ∗ F2)(z) + (λ1 + λ2)(Lb ∗ F1 ∗ F2)(z) + λ1λ2(Lb ∗ Lb ∗ F1 ∗ F2)(z)

(1 + λ1)(1 + λ2)

S(z) =
(F1 ∗ F2)(z)− (λ1 + λ2)(Lb ∗ F1 ∗ F2)(z) + λ1λ2(Lb ∗ Lb ∗ F1 ∗ F2)(z)

(1 + λ1)(1 + λ2)
.

By the similar argument as in the proof of Theorem 2.7, Cλ1,Lb
[F1]∗̃Cλ2,Lb

[F2] is
locally univalent and sense preserving in D if for all those z ∈ D, where S′(z)/R′(z)
is defined, we have |S′(z)/R′(z)| < 1. But this is equivalent to showing that for all



10 Construction of univalent harmonic mappings

such z ∈ D,

ℜ
[
R′(z) + S′(z)

R′(z)− S′(z)

]
> 0. (17)

Now, following the same steps as in the proof of Theorem 2.13 and noting that
F1, F2 ∈ S2 imply that Lb ∗ F1 ∗ F2 ∈ S2 ⊂ K and Lb ∗ Lb ∗ F1 ∗ F2 ∈ K, we
can prove that (17) is true. The remaining part of the proof follows using Lemma 2.2,

because R(z)− S(z) = 2(λ1+λ2)
(1+λ1)(1+λ2)

(Lb ∗ F1 ∗ F2)(z) and Lb ∗ F1 ∗ F2 ∈ K. □

From Theorem 2.3 we note that Cλ,H0
[F1] ∈ SH is convex in the direction of the

imaginary axis (also in the direction of the real axis) if F1 ∈ K and Theorem 2.8
provides us that Cλ,L1

[F2] ∈ SH and is convex in the direction of the imaginary axis
(also in the direction of the real axis) if F2 ∈ S2. In the following theorem we show
that for particular choices of a and b, we can obtain even better result (in comparison
to Theorem 2.12) as we can allow F2 to be in a larger class K (instead of S2) to get
the following theorem.

Theorem 2.15. Let F1, F2 ∈ K, and λ1, λ2 be positive real numbers. Then
Cλ1,H0

[F1]∗̃Cλ2,L1
[F2] ∈ SH and is convex in the direction of the imaginary axis.

Here H0 = − log(1− z) and L1 = z/(1− z)2.

Proof. If we write Cλ1,H0 [F1]∗̃Cλ2,L1 [F2](z) = P (z) +Q(z), then

P (z) =
(1 + λ1λ2)(F1 ∗ F2)(z) + λ1(F1 ∗ F2 ∗H0)(z) + λ2(F1 ∗ F2 ∗ L1)(z)

(1 + λ1)(1 + λ2)

and Q(z) =
(1 + λ1λ2)(F1 ∗ F2)(z)− λ1(F1 ∗ F2 ∗H0)(z)− λ2(F1 ∗ F2 ∗ L1)(z)

(1 + λ1)(1 + λ2)
.

Applying the similar argument as in the proof of Theorem 2.12, Cλ1,H0 [F1]∗̃Cλ2,L1 [F2]
is locally univalent and sense preserving in D if for all those z ∈ D where Q′(z)/P ′(z) is
defined, we have |Q′(z)/P ′(z)|<1, or equivalently, if for all such z ∈ D,
ℜ
[
P ′(z)−Q′(z)
P ′(z)+Q′(z)

]
>0. Now, we observe that

ℜ
[
P ′(z)−Q′(z)

P ′(z) +Q′(z)

]
= ℜ

[
λ1(F1 ∗ F2 ∗H0)

′(z) + λ2(F1 ∗ F2 ∗ L1)
′(z)

(1 + λ1λ2)(F1 ∗ F2)′(z)

]
=

λ1
1 + λ1λ2

ℜ
[
(F1 ∗ F2 ∗H0)

′(z)

(F1 ∗ F2)′(z)

]
+

λ2
1 + λ1λ2

ℜ
[
(F1 ∗ F2 ∗ L1)

′(z)

(F1 ∗ F2)′(z)

]
. (18)

Note that

ℜ
[
(F1 ∗ F2 ∗ L1)

′(z)

(F1 ∗ F2)′(z)

]
= ℜ

 (F1 ∗ F2)(z) ∗
{(

1+z
1−z

)(
z

(1−z)2

)}
(F1 ∗ F2)(z) ∗ z

(1−z)2

 > 0, (19)

in view of Lemma 2.1, as F1 ∗ F2 ∈ K and ℜ[(1 + z)/(1 − z)] > 0 for z ∈ D. In the
same way, we have

ℜ
[
(F1 ∗ F2 ∗H0)

′(z)

(F1 ∗ F2)′(z)

]
> 0. (20)

Therefore, from (18), (19) and (20), we get ℜ
[
P ′(z)−Q′(z)
P ′(z)+Q′(z)

]
> 0 as λ1, λ2 > 0. Now, to
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complete the proof, we note that P (z)+Q(z) = 2(1+λ1λ2)
(1+λ1)(1+λ2)

(F1∗F2)(z). But F1∗F2 is

convex in the direction of the imaginary axis as F1∗F2 ∈ K; so, in view of Lemma 2.2,
Cλ1,H0

[F1]∗̃Cλ2,L1
[F2] ∈ SH and is convex in the direction of the imaginary axis. □

We conclude this paper by stating the following result which, although a little bit
out of context here, is interesting in its own right. Its proof runs on the same lines as
that of Theorem 2.15 and hence is omitted.

Theorem 2.16. Let F1, F2 ∈ K and λ1, λ2 > 0 be positive real numbers. Then
Cλ1,h2

[F1]∗̃Cλ2,h4
[F2] ∈ SH and is convex in the direction of the imaginary axis.

Here h2(z) = (1/2)[z/(1− z) + z/(1− z)2] and h4(z) = (2/z)
∫ z

0
ζ/(1− ζ) dζ.
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