MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК Corrected proof Available online 04.01.2024

research paper оригинални научни рад DOI: 10.57016/MV-053OSOH9

ALMOST YAMABE SOLITON AND ALMOST RICCI-BOURGUIGNON SOLITON WITH GEODESIC VECTOR FIELDS

Shahroud Azami

Abstract. The aim of this paper is to prove some results about almost Yamabe soliton and almost Ricci-Bourguignon soliton with special soliton vector field. In fact, we prove that every compact non-trivial almost Ricci-Bourguignon soliton with constant scalar curvature is isometric to a Euclidean sphere. Then we show that every compact almost Ricci-Bourguignon soliton whose soliton vector field is divergence-free is Einstein and its soliton vector field is Killing. Finally, we prove that a complete almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) has V as the contact vector field of a contact manifold M with metric g and its Reeb vector field is geodesic, then it becomes a Ricci-Bourguignon soliton and g has constant scalar curvature. In particular, if V is strict, then g is a compact Sasakian Einstein.

1. Introduction

On an *n*-dimensional smooth manifold M, a Riemannian metric g and a non-vanishing vector field V define an almost Yamabe soliton [8] if there exists a smooth function λ on M such that

$$\mathcal{L}_V g = (\lambda - R)g,\tag{1}$$

respectively, an almost Ricci-Bourguignon soliton if there exists a smooth function λ on M such that

$$2Ric + \mathcal{L}_V g = 2(\lambda + \rho R)g,\tag{2}$$

where \mathcal{L}_V denotes the Lie derivative operator in the direction of the vector field V, *Ric* denotes the Ricci curvature tensor field of g, R is the scalar curvature of g, and ρ is a real constant. For λ constant, they reduce to a Yamabe soliton and a Ricci-Bourguignon soliton respectively. As in the case of almost Ricci solitons, almost

 $^{2020\} Mathematics\ Subject\ Classification:\ 53C25,\ 53E20,\ 53C21$

 $Keywords\ and\ phrases:$ Almost Ricci-Bourguignon soliton; contact manifold; Einstein Sasakian.

Ricci-Bourguignon solitons give rise to a self-similar solution of the Ricci-Bourguignon flow

$$\frac{\partial}{\partial t}g = -2(Ric - \rho Rg), \quad g(0) = g_0.$$

This flow was first considered by Bourguignon [3] and then the short-time existence and uniqueness of the solution of the Ricci-Bourguignon flow on [0, T) was shown by Catino et al. [5] for $\rho < \frac{1}{2(n-1)}$.

An almost Yamabe soliton (M, g, V, λ) (or an almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) is said to be shrinking, steady or expanding if λ is positive, zero or negative, respectively. If the potential vector field V is of gradient type, $V = \nabla f$, for a smooth function $f: M \to \mathbb{R}$, then an almost Yamabe soliton (resp. an almost Ricci-Bourguignon soliton) is called a gradient almost Yamabe soliton (or a gradient almost Ricci-Bourguignon soliton). An almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) is called trivial if V is a Killing vector field, i.e. $\mathcal{L}_V g = 0$.

If $\rho = 0$, then the almost Ricci-Bourguignon soliton reduces to the almost Ricci soliton, which was first introduced by Pigola et al. [12], and after that many authors have obtained some properties of the almost Ricci soliton. Some characterization results for compact almost Ricci solitons were obtained in [1,13,14]. Gradient Ricci-Bourguignon solitons were studied in detail, for example in [6,7], where the authors called them gradient ρ -Einstein solitons. Then Dwivedi [9] obtained some results on the almost Ricci-Bourguignon soliton.

We recall an operator \Box acting on a smooth vector field V such that $\Box V$ is a vector field and in a local coordinate system $\{x^i\}$ it has components $-(g^{jk}\nabla_j\nabla_k V^i + R^i_j V^j)$ where $R^i_j = g^{ik}R_{jk}$ and R_{jk} are the components of the Ricci tensor. From [16] we have the following definition.

DEFINITION 1.1. A vector field V on a Riemannian manifold (M, g) is called a geodesic vector field if $\Box V = 0$.

Note that the condition for a geodesic vector field is also equivalent to the condition $g^{jk} \mathcal{L}_V \Gamma^i_{jk} = 0$ and this shows that a Killing vector field and an affine Killing vector field are special examples of a geodesic vector field. Moreover, this definition of a geodesic vector field is different from a vector field whose integral curves are geodesics (see [15,16]). In this paper, we first give the following rigidity result for almost Yamabe soliton.

PROPOSITION 1.2. If an almost Yamabe soliton (M, g, V, λ) has a divergence-free soliton vector field V, then V is a Killing vector field.

Motivated by the almost Ricci soliton case, we will prove the following theorem and generalize results of [1].

THEOREM 1.3. Let $(M^n, g, V, \lambda, \rho)$ be a compact oriented almost Ricci-Bourguignon soliton. If $d\mu$ denotes the volume form with respect to g, then

$$\int_{M} \left| Ric - \frac{R}{n}g \right|^{2} d\mu = \frac{n-2}{2n} \int_{M} g(\nabla R, V) d\mu.$$
(3)

S. Azami

Furthermore, if n > 2, the almost-Ricci-Bourguignon soliton is non-trivial and the scalar curvature is constant, then (M,g) is isometric to a Euclidean sphere and almost-Ricci-Bourguignon soliton is gradient.

Consequently, we have the following rigidity result for the almost Ricci-Bourguignon soliton.

COROLLARY 1.4. If a compact Ricci-Bourguignon soliton (M, g, V, λ, ρ) has a divergencefree soliton vector field V, then V is a Killing vector field and g is an Einstein metric.

REMARK 1.5. Every Killing vector field is divergence-free, but the converse need not be true in general. Therefore, Theorems 1.2 and 1.4 provide a condition under which the converse holds.

We now note that the above result holds for a Ricci-Bourguignon soliton without the compactness condition, as follows.

THEOREM 1.6. If a Ricci-Bourguignon soliton (M, g, V, λ, ρ) has a divergence-free soliton vector field V, then for $\rho \neq \frac{1}{n}$ the vector field V is Killing and g is Einstein metric.

We study almost Yamabe solitons and almost Ricci-Bourguignon solitons when the vector field of the soliton is a geodesic vector field. In fact, we show the following.

THEOREM 1.7. In an almost Yamabe soliton (M, g, V, λ) , V is Killing if and only if V is a geodesic vector field in the sense of the Definition 1.1.

We also prove that following is true.

THEOREM 1.8. In an almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) , $\lambda + \rho R$ is constant if and only if V is a geodesic vector field in the sense of the Definition 1.1.

In the following we give some well-known definitions and basic formulas for the contact geometry of [2]. A (2m + 1)-dimensional smooth manifold M is said to be a contact manifold if it carries a 1-form η on M such that $\eta \wedge (d\eta)^m \neq 0$ on M. For a contact 1-form η there exists a unique vector field ξ (it is called a Reeb vector field) such that $d\eta(\xi, \dot{j} = 0$ and $\eta(\xi) = 1$. If we polarize $d\eta$ on the contact subbundle $\eta = 0$, we obtain a Riemannian metric g and a (1, 1) tensor field ϕ such that $d\eta(X, Y) = g(x, \phi Y), \eta(X) = g(\xi, X), \phi^2 = -I + \eta \otimes \xi, \phi(\xi) = 0$, for any vector fields X, Y on M. If the vector field ξ is Killing, then the contact manifold is called K-contact manifold and in this case we have $Ric(\xi, X) = 2mg(\xi, X)$ for any vector field X on M. A vector field X on a contact manifold is called a contact vector field if $\mathcal{L}_X \eta = f\eta$ for a smooth function f on M, and it is called strict if f = 0. A contact metric g on M is called Sasakian if the almost-Kähler structure induced on the cone $(M \times \mathbb{R}^+, r^2g + dr^2)$ is Kähler.

Finally, we prove the following results for an almost Ricci-Bourguignon soliton on contact manifolds.

Almost Ricci-Bourguignon soliton

THEOREM 1.9. If a complete (2m+1)-dimensional almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) has V as the contact vector field of a K-contact manifold M with metric g, then it becomes a Ricci-Bourguignon soliton and g has constant scalar curvature. In particular, if V is strict, then g is a compact Sasakian Einstein.

REMARK 1.10. All Sasakian manifolds are *K*-contact but the converse need not be true except in dimension three. Therefore, Theorem 1.9 gives a condition under which the converse holds.

COROLLARY 1.11. If a complete (2m+1)-dimensional almost Ricci-Bourguignon soliton (M, g, V, λ, ρ) has V as contact vector field of a contact manifold M with metric g and its Reeb vector field is geodesic in the sense of the Definition 1.1, then it becomes a Ricci-Bourguignon soliton and g has constant scalar curvature. In particular, if V is strict, then g is a compact Sasakian Einstein.

2. Proofs of the results

In this section, we prove our results.

Proof (Proposition 1.2). Taking trace of the almost Yamabe soliton equation (1) and the condition divV = 0, we get $R = \lambda$. Using this in (1) shows that V is Killing. \Box

Below we give a lemma that will be used throughout the paper. For a proof of the lemma we need the following formula from [15, pp. 23],

$$\mathcal{L}_V \Gamma_{ij}^k = \frac{1}{2} g^{kl} \left\{ \nabla_i (\mathcal{L}_V g_{jl}) + \nabla_j (\mathcal{L}_V g_{il}) - \nabla_l (\mathcal{L}_V g_{ij}) \right\}, \tag{4}$$
$$\nabla_l (\mathcal{L}_V \Gamma_{k}^k) - \nabla_i (\mathcal{L}_V \Gamma_{k}^k) = \mathcal{L}_V R_{k+1}^k, \tag{5}$$

and

$$\nabla_l (\mathcal{L}_V \Gamma_{ij}^k) - \nabla_j (\mathcal{L}_V \Gamma_{il}^k) = \mathcal{L}_V R_{lji}^k,$$
(5)

$$\Gamma_{ij}^k \text{ and } R_{lij}^k \text{ are the Christoffel symbols and the components of the curvature}$$

where Γ_{ij}^k and R_{lji}^k are the Christoffel symbols and the components of the curvature tensor of the metric g in local coordinates, respectively.

LEMMA 2.1. Let $(M^n, g, V, \lambda, \rho)$ be an almost Ricci-Bourguignon soliton. Then we have

$$\mathcal{L}_V R = (1 - 2(n-1)\rho)\Delta R - 2\rho R^2 - 2\lambda R + 2|Ric|^2 - 2(n-1)\Delta\lambda.$$
 (6)

Proof. If we take the Lie derivative of the relation $g_{lk}g^{kj} = \delta_l^j$ along the vector field V, use the equation (2) and then multiply the equation obtained by g^{il} , we obtain

$$\mathcal{L}_V g^{ij} = 2R^{ij} - 2(\lambda + \rho R)g^{ij}.$$
(7)

If you substitute (7) into (4), you obtain

 $\mathcal{L}_V \Gamma_{ij}^k = \nabla^k R_{ij} - \nabla_j R_i^k - \nabla_i R_j^k - \nabla^k (\lambda + \rho R) g_{ij} + \nabla_j (\lambda + \rho R) \delta_i^k + \nabla_i (\lambda + \rho R) \delta_j^k.$ (8) By replacing (8) with (5) and using the Ricci identity, you get

$$\begin{split} \mathcal{L}_{V}R_{lji}^{k} &= \nabla_{j}\nabla_{l}R_{i}^{k} - \nabla_{l}\nabla_{j}R_{i}^{k} + \nabla_{j}\nabla_{i}R_{l}^{k} - \nabla_{l}\nabla_{i}R_{j}^{k} + \nabla_{l}\nabla^{k}R_{ij} - \nabla_{j}\nabla^{k}R_{il} \\ &+ (\nabla_{l}\nabla_{i})(\lambda + \rho R)\delta_{j}^{k} - (\nabla_{l}\nabla^{k}(\lambda + \rho R))g_{ij} - (\nabla_{i}\nabla_{j}(\lambda + \rho R))\delta_{l}^{k} + (\nabla_{j}\nabla^{k}(\lambda + \rho R))g_{il}. \end{split}$$

S. Azami

Contracting this equation with
$$g^{lk}$$
, you get

$$\mathcal{L}_{V}R_{ij} = \nabla_{j}\nabla_{i}R - \nabla_{k}\nabla_{j}R_{i}^{k} - \nabla_{k}\nabla_{i}R_{j}^{k} + \Delta R_{ij} - (\Delta(\lambda + \rho R))g_{ij} - (n-2)\nabla_{i}\nabla_{j}(\lambda + \rho R).$$
(9)

Taking the Lie derivative of $R = g^{ij}R_{ij}$ along the vector field V and using the equations (7) and (9), we obtain (6).

Proof (Theorem 1.3). We can write (6) as

$$g(\nabla R, V) = (1 - 2(n-1)\rho)\Delta R - 2\rho R^2 - 2\lambda R + 2|Ric|^2 - 2(n-1)\Delta\lambda.$$

By integrating both sides of the last equation and applying the divergence theorem, we obtain that

$$\frac{1}{2} \int_{M} g(\nabla R, V) d\mu = \int_{M} \left[|Ric|^{2} - \rho R^{2} - \lambda R \right] d\mu$$

$$= \int_{M} \left[\left| Ric - \frac{R}{n} g \right|^{2} - \frac{(n\rho - 1)R^{2} + n\lambda R}{n} \right] d\mu.$$
(10)

The contraction of (2) leads to $\operatorname{divV} = n\lambda + (n\rho - 1)R$, then

$$\int_{M} R \mathrm{div} V d\mu = \int_{M} \left(n\lambda R + (n\rho - 1)R^{2} \right) d\mu.$$

Since

$$\operatorname{div}(RV) = g(\nabla R, V) + R\operatorname{div}V, \tag{11}$$

we conclude

$$\int_{M} g(\nabla R, V) d\mu = -\int_{M} R \mathrm{div} V d\mu.$$
(12)

Inserting (12) into (11) results in

$$\int_{M} g(\nabla R, V) d\mu = -\int_{M} \left(n\lambda R + (n\rho - 1)R^2 \right) d\mu.$$
(13)

If you insert (13) into (10), you get (3). If the scalar curvature R is constant, then (3) implies that g is Einstein. Consequently, the equation (2) reduces to $\mathcal{L}_V g = 2(\lambda + \rho R - \frac{R}{n})g$. Assuming that λ is not constant, V is a non-homothetic conformal vector field on M. We set $h := \lambda + \rho R - \frac{R}{n}$. We have $\mathcal{L}_V g = 2hg$ and from [15, pp. 26], $\mathcal{L}_V R_{ij} = (n-2)\nabla_i \nabla_j h - (\Delta h)g_{ij}$. If we take the Lie derivative of the relation $R_{ij} = \frac{R}{n}g_{ij}$ along V, we get

$$\left(\Delta h + \frac{2R}{n}h\right)g_{ij} = (2-n)\nabla_i\nabla_jh.$$
(14)

If you take the trace of the above equation, you get $\Delta h = -\frac{R}{n-1}h$ and this shows that

$$\Delta h^{2} = 2|\nabla h|^{2} + 2h\Delta h = 2|\nabla h|^{2} - \frac{2R}{n-1}h^{2}$$

If you integrate the above equation over the compact M and using the divergence

theorem, you get

$$\int_{M} |\nabla h|^2 d\mu = \frac{R}{n-1} \int_{M} h^2 d\mu.$$

This implies that R is positive. From (14) and $\Delta h = -\frac{R}{n-1}h$ we conclude

$$\nabla_i \nabla_j h = -\frac{R}{n(n-1)} h g_{ij}.$$
(15)

Obata's Theorem [11] now implies that (M, g) is isomorphic to a Euclidean sphere of radius $\sqrt{\frac{n(n-1)}{R}}$. We can write (15) as $\mathcal{L}_{\nabla h}g = -\frac{2R}{n(1-n)}hg$ or equivalently $\mathcal{L}_{-\frac{R}{n(1-n)}\nabla h}g = 2hg$. Since V is also conformal and satisfies $\mathcal{L}_V g = 2hg$, we can use the Hoge-de-Rham decomposition to conclude that $V = -\frac{R}{n(1-n)}\nabla h + Z$, where Z is a Killing vector field, so V is the gradient of a smooth function and thus the proof of the theorem is complete.

Proof (Corollary 1.4). If we replace divV = 0 in equation (3), then $\int_M |Ric - \frac{R}{n}g|^2 d\mu = 0$, which implies that $Ric = \frac{R}{n}g$, i.e. g is Einstein metric. Substituting $Ric = \frac{R}{n}g$ and $(1 - n\rho)R = n\lambda$ into (2) gives $\mathcal{L}_V g = 0$, which shows that the vector field V is Killing.

Proof (Theorem 1.6). In this case, the equation $(1 - n\rho)R = n\lambda$ applies. Since λ is constant, we conclude that R is also constant. Thus, the formulas $(1 - n\rho)R = n\lambda$ and (6) imply that $|Ric|^2 = \frac{R^2}{n}$. Substituting this into $|Ric|^2 - \frac{R^2}{n} = |Ric - \frac{R}{n}g|^2$ gives $Ric = \frac{R}{n}g$, i.e. g is Einstein metric. Finally, (2) implies that the vector field V is Killing.

Proof (Theorem 1.7). If you take the trace of the equation (1) and then take the covariant derivative of it in an orthonormal frame, you get

$$\nabla_j \nabla_i V^i = n \nabla_j (\lambda - R). \tag{16}$$

In addition, the differentiation of (1) results in

$$\nabla_i \nabla_j V^i + \nabla_i \nabla^i V_j = 2\nabla_j (\lambda - R).$$
⁽¹⁷⁾

If you subtract equation (16) from (17), you get $R_{kj}V^k + \nabla_i\nabla^i V_j = (2-n)\nabla_j(\lambda-R)$. This shows that $\Box V = (2-n)\nabla_j(\lambda-R)$. Therefore, equation (1) implies that V is a geodesic vector field if and only if V is Killing. \Box

Proof (Theorem 1.8). First we take the trace of the equation (1) and then we take the covariant derivative of it in an orthonormal frame and get

$$\nabla_j \nabla_i V^i + \nabla_j R = n \nabla_j (\lambda + \rho R). \tag{18}$$

By differentiating (1) and using the twice contracted second Bianchi identity $2 \operatorname{div} Ric = 2\nabla R$, we also arrive at the conclusion

$$\nabla_i \nabla_j V^i + \nabla_i \nabla^i V_j + \nabla_j R = 2\nabla_j (\lambda + \rho R).$$
⁽¹⁹⁾

If you subtract equation (18) from (19), you obtain $R_{kj}V^k + \nabla_i\nabla^i V_j = (2-n)\nabla_j(\lambda + \rho R)$. This results in $\Box V = (2-n)\nabla_j(\lambda + \rho R)$. Therefore, V is a geodesic vector field if and only if $\lambda + \rho R$ is constant. \Box

S. Azami

Proof (Theorem 1.9). According to the definition of the contact manifold, we have $\omega = \eta \wedge (d\eta)^m \neq 0$, then ω is a volume element and

$$\mathcal{L}_V \omega = (\mathrm{div} V)\omega. \tag{20}$$

Equation $\mathcal{L}_V \eta = f\eta$ implies that $\mathcal{L}_V d\eta = d\mathcal{L}_V \eta = df \wedge \eta + f d\eta$. It follows from the equation (20) that divV = (m+1)f.

On the other hand, from (2) we have $\operatorname{div} V = (2m+1)\lambda + ((2m+1)\rho - 1)R$. Then

$$[1 - (2m+1)\rho]R = (2m+1)\lambda - (m+1)f.$$
(21)

With the help of the formula $\eta(X) = g(\xi, X)$ we derive

()

$$(\mathcal{L}_V \eta)(X) = (\mathcal{L}_V g(\xi, X) + g(\mathcal{L}_V \xi, X),$$
(22)

for any vector field X on M. From (2) and $Ric(\xi, X) = 2mg(\xi, X)$ we get

$$\mathcal{L}_V g)(\xi, X) = 2(\lambda + \rho R - 2m)g(\xi, X).$$
(23)

Inserting (23) and $\mathcal{L}_X \eta = f\eta$ into (22) results in $g(\mathcal{L}_V \xi, X) = f\eta(X) - 2(\lambda + \rho R - 2m)g(\xi, X)$ for any vector field X on M and this shows that

$$\mathcal{L}_V \xi = (f - 2\lambda - 2\rho R + 4m)\xi.$$
⁽²⁴⁾

The inner product of (24) with ξ yields $g(\mathcal{L}_V\xi,\xi) = (f - 2\lambda - 2\rho R + 4m)$. With the Lie derivative of $g(\xi,\xi) = 1$ along V and using equation (2) and $Ric(\xi,\xi) = 2m$ we also obtain $g(\mathcal{L}_V\xi,\xi) = 2m - \lambda - \rho R$.

If we compare the two values of
$$g(\mathcal{L}_V\xi,\xi)$$
, the result is $f = \lambda + \rho R - 2m$, then

$$\mathcal{L}_V \eta = (\lambda + \rho R - 2m)\eta, \quad \mathcal{L}_V \xi = (2m - \lambda - \rho R)\xi.$$
(25)

Let Q denote the Ricci operator defined by g(QX, Y) = Ric(X, Y) for arbitrary vector fields X, Y on M. If we take the Lie derivative of $d\eta(X, Y) = g(X, \phi Y)$ along the vector field V and use equation (2) and $\mathcal{L}_V \eta = f\eta$, we obtain

$$\eta(Y)\nabla f - (Yf)\xi + 2(f - 2\lambda - 2\rho R)\phi Y = -4Q(\phi Y) + 2(\mathcal{L}_X\phi)Y.$$
(26)
Substituting ξ for Y in (26) results in

$$\nabla f - (\xi f)\xi = 2(\mathcal{L}_X\phi)\xi. \tag{27}$$

If we now take the Lie derivative of $\phi(\xi) = 0$ along the vector field V again and use the second equation of (25), we obtain $(\mathcal{L}_X \phi)\xi = 0$ and insert it into (27), we obtain $\nabla f = (\xi f)\xi$, i.e. $df = (\xi f)\eta$. If you take the exterior derivative of this and then take the wedge product with η , you get $(\xi f)\eta \wedge d\eta = 0$. Since $\eta \wedge d\eta$ is nonzero everywhere then $\xi f = 0$, i.e. df = 0 and this shows that f is constant on M. Therefore, (26) reduces to $\mathcal{L}_X \phi = 2Q\phi - (2m + \lambda + \rho R)\phi$. Since $f = \lambda + \rho R - 2m$ and f is constant, we conclude that $\lambda + \rho R$ is constant and (21) shows that R is also constant. Thus λ is constant and the almost Ricci-Bourguignon soliton is simply a Ricci-Bourguignon soliton. This completes the proof of the first part of the theorem.

To prove the second part, we choose f = 0, then $\lambda + \rho R = 2m$ and thus we have from (21) that R = 2m(2m + 1). Since λ, R are constant, (6) implies that $|Ric - 2mg|^2 = 0$, i.e. Ric = 2mg. This shows that g is an Einstein metric. Since (M, g) is complete, (M, g) is compact according to Myers' theorem. From [4,10] every compact K-contact manifold with an Einstein constant greater than -2 is Sasakian. This completes the proof of the theorem.

Almost Ricci-Bourguignon soliton

Proof (Corollary 1.11). Since the Reeb vector field is geodesic, we have from [13, Theorem 3] that the metric contact manifold is a K-contact manifold. Therefore, the Theorem 1.9 completes the proof.

References

- A. Barros, R. Ribeiro, E. Jr, Compact almost Ricci solitons with constant scalar curvature are gradiient, Monatsh. Math., 174 (2014), 29–39.
- [2] D. E. Blair, Riemannain geometry of contact and symplectic manifolds, In: Progress in mathematics, 203, Birkhauser, Basel (2002).
- [3] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis, (Berlin, 1979) Lecture nots in Math. vol 838, Springer, Berlin, 1981, 42–63.
- [4] C. P. Boyer, K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc., 129 (2001), 2419–2430.
- [5] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, *The Ricci-Bourguignon flow*, Pacific J. Math., 287(2) (2015), 337–370.
- [6] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132(4) (2016), 66-94.
- [7] G. Catino, L. Mazzieri, Samuele Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math., 17(6) (2015), 1550046.
- [8] B. Chow, P. Lu, L. Ni, *Hamilton Ricci flow*, Graduate studies in mathematics, 77, American Math. Soc. Providence, RI. Science Press, New York (2006).
- [9] S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Canadian Mathematical Bulletin, (2020), 1–14.
- [10] S. Morimoto, Almost complex foliations and is application to contact geometry, Nat. Sci. Rep. Ochanomizu Univ., 43 (1992), 11–23.
- [11] M. Obata, Cetain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333–340.
- [12] S. Pigola, M. Rigoli, M. Rinoldi, A. Setti, *Ricci almost soliton*, Ann. Scuola Norm. Sup. Pisa Cl. Sci., X(5) (2011), 757–799.
- [13] R. Sharma, Some results on almost Ricci solitons and geodesic vector fields, Beitr Algebra Geom, 59 (2018), 289–294.
- [14] R. Sharma, Almost Ricci soliton and K-contact geometry, Monatsh. Math., 174 (2014), 621– 628.
- [15] K. Yano, Integral formulas in Riemannian geometry, In: Pure and Applied Mathematics, vol. 1. Marcel Dekker Inc, New York (1970).
- [16] K. Yano, T. Nagano, On geodesic vector fields in a compact orientable Riemannian space, Commun. Math. Helv., 35 (1961), 55–64.

(received 28.05.2022; in revised form 27.04.2023; available online 04.01.2024)

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

E-mail: azami@sci.ikiu.ac.ir