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GEODESIC VECTORS ON 5-DIMENSIONAL HOMOGENEOUS
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Gauree Shanker, Jaspreet Kaur and Seema Jangir

Abstract. In this paper, firstly we study geodesic vectors for them-th root homogeneous
Finsler space admitting (α, β)-type. Then we obtain the necessary and sufficient condition for
an arbitrary non-zero vector to be a geodesic vector for the m-th root homogeneous Finsler
metric under mild conditions. Finally, we consider a quartic homogeneous Finsler metric on
a simply connected nilmanifold of dimension five equipped with an invariant Riemannian
metric and an invariant vector field. We study its geodesic vectors and classify the set of all
the homogeneous geodesics on 5-dimensional nilmanifolds.

1. Introduction

Nilpotent Lie groups play an important role in geometric analysis, mathematical
physics and harmonic analysis [10]. Among all nilpotent Lie groups, one of the most
important and interesting Lie groups that have attracted special attention is the five-
dimensional nilmanifold. In Finsler geometry, a connected Finsler manifold contain-
ing a transitive nilpotent Lie group of isometries is called a nilmanifold. Wilson [22]
proved that a Lie group G contains a unique nilpotent Lie subgroup which acts tran-
sitively on a homogeneous nilmanifold and which is also normal in G. These results
were then applied by Lauret [15] for the construction of non-abelian homogeneous
nilmanifolds of dimensions three and four, up to isometry. As an example, he studied
the structure of two-step nilmanifolds of dimension five with a 2-dimensional center.
Later, Homolya and Kowalski [11] extended these results and studied the structure of
all simply connected 5-dimensional two-step nilpotent Lie groups with left-invariant
Riemannian metrics up to isometry. Figula and Nagy [9] have classified the isometry
equivalence classes and nilmanifolds up to isometry of an arbitrary dimension and
studied the 5-dimensional nilmanifolds of nilpotency greater than two. The geometry
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2 Geodesic vectors on 5-dimensional homogeneous nilmanifolds

of two-step nilpotent Lie groups equipped with an invariant Finsler metric was stud-
ied by Tóth and Kovács [21]. In particular, they calculated the flag curvature and
the Chen-Rund connection form and found the relative geodesic equations for some
special groups. Moghaddam [16] has studied the existence of left-invariant Randers
metrics of Berwald type on the 2-step nilpotent Lie groups of dimension five and
computed the flag curvature of these metrics. Nasehi [17] has extended these results
for the Douglas-type Randers metric. Bahmandoust and Latifi [3] constructed the
set of all homogeneous geodesics of exponential metrics on 5-dimensional two-step
nilpotent Lie groups. In [12], Kaur et. al. derived the formula for the flag curvature
of a homogeneous Finsler space with a generalized Kropina metric.

Shimada developed the theory of the m-th root metric [20], which plays an im-
portant role in physics, general relativity, gravitation, and the theory of seismic
ray [1, 2, 18, 19]. For a smooth manifold M with tangent bundle TM , a Finsler
metric F defined by F = m

√
ai1i2...imyi1yi2 . . . yim is called the m-th root Finsler

metric. The third root metric F = 3
√
ai1i2i3y

i1yi2yi3 and the fourth root metric

F = 4
√

ai1i2i3i4y
i1yi2yi3yi4 are called cubic and quartic metrics, respectively. The

generalm-th root metric F = m
√
yi1yi2 . . . yim is called the Berwald-Moór metric [4,5].

Kim and Park [13] introduced the notion of them-th root Finsler metric, which admits
the (α, β)-type. Ebrahimi et. al. [8] computed the flag curvature formula for a homo-
geneous cubic Finsler metric and investigated the necessary and sufficient conditions
for a non-zero vector to be a geodesic vector.

This paper is organized as follows.
Section 2 contains some basic information about Finsler spaces, homogeneous

Finlser spaces and nilpotent Lie groups. In Section 3, we study the necessary and
sufficient condition for a nonzero vector of a homogeneous Finsler space with the m-th
root metric to be a geodesic vector. In Section 4, we study the set of all geodesics
on the two-step nilpotent Lie group of dimension five for the quartic Finsler metric.
Finally, in Section 5, we study the set of all geodesic vectors for the above metrics on
5-dimensional nilpotent Lie groups with nilpotency greater than two.

2. Preliminaries

Definition 2.1 ([6]). Let M be an n-dimensional manifold and let TM be its tangent
bundle. A Finsler metric on M is a non-negative function F : TM −→ R+ satisfying
the following properties:
(i) F is smooth on slit tangent bundle TM \ {0}.
(ii) F (x, λy) = λF (x, y) for every λ > 0, x ∈ M and y ∈ TxM .

(iii) The Hessian metric

gij =
1

2

[
∂2F 2

∂yi∂yj

]
is positive definite for every element of TM \ {0}.
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Alternatively, the bilinear symmetric form gy of TxM × TxM to the real line is
defined by

gy(u, v) =
1

2

[
∂2

∂s∂t
F 2(y + su+ tv)

]∣∣∣∣∣
s=t=0

is positive definite.

Definition 2.2 ([6]). The geodesic spray G on a smooth manifold M of dimension
n is a vector field defined on the slit tangent bundle by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi :=
1

4
gip
{

∂2F 2

∂xj∂yp
yj − ∂F 2

∂xp

}
, i = 1, 2, . . . , n.

Definition 2.3 ([6]). Let G and c(t) be the geodesic spray and the non-constant
curve on a smooth manifold M respectively. If the coordinate ci(t) of c(t) satisfies
the condition c̈i(t) + 2Gi

(
c(t), ċ(t)

)
= 0, then Gi and c(t) be the geodesic coefficients

and the geodesic of the spray on M .

Theorem 2.4 ( [14]). Let G be a connected Lie group with a Lie algebra m and
a left-invariant Finsler metric gy, then y ∈ m is a geodesic vector if and only if
gy(y, [y, z]) = 0, for all z ∈ m.

Definition 2.5 ([21]). A Finsler metric F on a connected Lie group G is called a
left-invariant Finsler metric if F (x, y) = F (e, (Lx−1)∗y) ∀ x ∈ G, y ∈ TxG, where Lx

is a left translation on G.

Lemma 2.6 ([13]). Let F be an m-th root Finsler metric on a smooth manifold M .
If F is a homogeneous function of degree one of non-degenerate form α =

√
aijyiyj

and a one-form β = bi(x)y
i, then it can be written as

F = m

√√√√ t∑
s=0

cm−2sα2sβm−2s, t ≤ m

2
, (1)

where cm−2s are real constants.

Definition 2.7 ([7]). A homogeneous Finsler space (M,F ) is a Finsler space in which
the group of isometries I(M,F ) acts transitively on the manifold M .

Definition 2.8 ([17]). A Finsler manifold N is called a homogeneous nilmanifold if
the isometry group I(N) of N contains a nilpotent Lie subgroup acting transitively
on N .

Definition 2.9 ([16]). A two-step nilpotent Lie group equipped with a left-invariant
Riemannian metric is called a 2-step homogeneous nilmanifold.



4 Geodesic vectors on 5-dimensional homogeneous nilmanifolds

3. Geodesics of the m-th root homogeneous Finsler metric

In this section we consider the m-th root Finsler metrics admitting (α, β)-type on a
homogeneous manifold M = G/H equipped with an invariant Riemannian metric g
and an invariant vector field x̃. Then we prove that the vector x = x̃(H) is a geodesic
vector of g if and only if it is a geodesic vector of F . Finally, we show that under
certain conditions, a nonzero vector y is a geodesic vector of F if and only if y is a
geodesic vector of g.

Let F be them-th root homogeneous Finsler metric admitting (α, β)-types induced
by the Riemannian metric g and an invariant vector field x defined by (1), which can
be written in the following form

F =

[
t∑

s=0

cm−2sg
s(y, y)gm−2s(x, y)

] 1
m

, t ≤ m

2
.

For p, q ∈ R we know that gy(u, v) =
1

2

∂2

∂p∂q
F 2(y + pu + qv)

∣∣∣
p=q=0

. After some

calculations we therefore get

gy(u, v) =
(2−m)

m2
F 2−2m

[
t∑

s=0

cm−2sg
s−1(y, y)gm−2s−1(x, y)

(
2sg(y, v)g(x, y)

+(m−2s)g(y, y)g(x, v)
)][ t∑

s=0

cm−2sg
s−1(y, y)gm−2s−1(x, y)

(
2sg(y, u)g(x, y)

+(m−2s)g(y, y)g(x, u)
)]

+
1

m
F 2−m

[
t∑

s=0

cm−2sg
s−2(y, y)gm−2s−2(x, y)(

4s(s−1)g(y, u)g(y, v)g2(x, y) + 2sg(y, y)g(u, v)g2(x, y)

+2s(m−2s)g(y, y)g(x, u)g(y, v)g(x, y) + 2s(m−2s)g(y, y)g(y, u)g(x, v)g(x, y)

+(m−2s)(m−2s−1)g(x, u)g(x, v)g2(y, y)
)]

. (2)

Theorem 3.1. Let (G/H,F ) be an m-th root homogeneous Finsler space with a Lie
algebra m equipped with an invariant Riemannian metric g and an invariant vector
field x̃ such that x = x̃(H). Then x is a geodesic vector of (G/H,F ) if and only if x
is a geodesic vector of (G/H, g).

Proof. Using the formula (2), for all z ∈ m, we obtain

gx(x, [x, z]m) =
(2−m)

m2
F 2−2m

[
t∑

s=0

cm−2sg
m−s−2(x, x)

(
mg(x, x)g(x, [x, z]m)

)]
[

t∑
s=0

cm−2sg
m−s−2(x, x)

(
mg2(x, x)

)]
+

1

m
F 2−m

[
t∑

s=0

cm−2sg
m−s−4(x, x)
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(
4s(s−1)g3(x, x)g(x, [x, z]m)+2sg3(x, x)g(x, [x, z]m)

+2s(m−2s)g3(x, x)g(x, [x, z]m)+2s(m−2s)g3(x, x)g(x, [x, z]m)

+(m−2s)(m−2s−1)g3(x, x)g(x, [x, z]m)
)]

=
F 2

g(x, x)
g(x, [x, z]m).

For g(x, x) ̸= 0 we therefore have gx(x, [x, z]m) = 0 if and only if g(x, [x, z]m) = 0.
This completes the proof. □

Theorem 3.2. Let (G/H,F ) be a homogeneous Finsler space with m-th root of the
Finsler metric F arising from an invariant Riemannian metric g and an invariant
vector field x̃ such that x = x̃(H). Let y be a non-zero vector of Lie algebra m such
that

∑t
s=0 2scm−2sg

s−1(y, y)gm−2s(x, y) ̸= 0 and for all z ∈ m, g(x, [y, z]m) = 0.
Then y is a geodesic vector of (M, g) if and only if it is a geodesic vector of (M,F ).

Proof. From (2) we can write

gym
(ym, [y, z]m) =(

2sg(x, ym)g(ym, [y, z]m)

+(m−2s)g(ym, ym)g(x, [y, z]m)
)][ t∑

s=0

cm−2sg
s−1(ym, ym)g

m−2s−1(x, ym)

(
mg(ym, ym)g(x, ym)

)]
+

1

m
F 2−m

[ t∑
s=0

cm−2sg
s−2(ym, ym)g

m−2s−2(x, ym)(
2s(m−1)g(ym, ym)g

2(x, ym)g(ym, [y, z]m)+(m−2s)(m−1)g(x, ym)

g2(ym, ym)g(x, [y, z]m)
)]

. (3)

Since g(x, [y, z]m) = 0 for every z ∈ m, (3) can be written in the form

gym
(ym, [y, z]m) =

(2−m)

m2
F 2−2m

[ t∑
s=0

2scm−2sg
s−1(ym, ym)g

m−2s(x, ym)g(ym, [y, z]m)

]
[ t∑

s=0

mcm−2sg
s(ym, ym)g

m−2s(x, ym)

]

+
1

m
F 2−m

[ t∑
s=0

2s(m−1)cm−2sg
s−1(ym, ym)g

m−2s(x, ym)g(ym, [y, z]m)

]
.

After simplification we get

gym
(ym, [y, z]m) =

F 2−m

m

[ t∑
s=0

2scm−2sg
s−1(ym, ym)g

m−2s(x, ym)

]
g(ym, [y, z]m).

Hence, y is a geodesic vector of (M, g) if and only if it is a geodesic vector of (M,F ).
□
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4. Two-step nilpotent Lie groups of dimension five

In this section we consider a quartic Finsler metric admitting (α, β)-type induced by
an invariant Riemannian metric and an invariant vector on a two-step nilmanifold of
dimension five. Then we study geodesic vectors and examine the set of all geodesics
on the two-step nilpotent Lie group of dimension five for the metric mentioned above.

4.1 Lie algebra with 1-dimensional center

Let p be the Lie algebra of a two-step nilmanifold of dimension five with 1-dimensional
center z equipped with a left-invariant quartic homogeneous Finsler metric. Suppose
that p is equipped with an inner product ⟨, ⟩ and N is a Lie group corresponding to
the Lie algebra p. Let E5 be a unit vector in the center z and let b be the orthogonal
complement of the center z in p. Homolya and Kowalski [11] have proved that there
exists an orthonormal basis {E1, E2, E3, E4, E5} of p with

[E1, E2] = γE5, [E3, E4] = δE5, (4)

where γ ≥ δ > 0.
Let F be a left-invariant homogeneous quartic Finsler metric admitting (α, β)-type
on the simply connected 2-step nilmanifold N of dimension five induced by the Rie-
mannian metric g and the vector field x =

∑5
i=1 xiEi, defined by

F (y) = 4
√
c1g2(y, y) + c2g(y, y)g2(x, y) + c3g4(x, y),

then we have

gy (u, v) =

−1

2F 6

[(
2c1g(y, y)g(y, v)+c2g

2(x, y)g(y, v)+c2g(x, y)g(y, y)g(x, v)+2c3g
3(x, y)g(x, v)

)
(
2c1g(y, y)g(y, u)+c2g

2(x, y)g(y, u)+c2g(x, y)g(y, y)g(x, u)+2c3g
3(x, y)g(x, u)

)]
+

1

2F 2

[
4c1g(y, u)g(y, v)+2c1g(y, y)g(u, v)+c2g

2(x, y)g(u, v)+2c2g(x, y)g(y, v)g(x, u)

+2c2g(x, y)g(y, u)g(x, v)+c2g(y, y)g(x, u)g(x, v)+6c3g
2(x, y)g(x, u)g(x, v)

]
. (5)

For any z ∈ p, using (5), we get

gy(y, [y, z]) =
1

2F 2

[
2c1g(y, y)+c2g

2(x, y)
]
g(y, [y, z])

+
1

2F 2

[
c2g(x, y)g(y, y)+2c3g

3(x, y)
]
g(x, [y, z])

=
c2g(x, y)g(y, y)+2c3g

3(x, y)

2F 2

[
g

(
x+
( 2c1g(y, y)+c2g

2(x, y)

c2g(x, y)g(y, y)+2c3g3(x, y)

)
y, [y, z]

)]
. (6)
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From Theorem 2.4, equation (6) and z = Ej , for j = 1, 2, 3, 4, 5 a vector y =
∑5

i=1 yiEi

of Lie algebra p is a geodesic vector if and only if

g

( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0, (7)

where A =

(
2c1
∑5

i=1 y
2
i + c2(

∑5
i=1 xiyi)

2∑5
i=1 xiyi

(
c1
∑5

i=1 y
2
i + 2c3(

∑5
i=1 xiyi)2

)).
With (4) and (7) we obtain that y is a geodesic vector if and only if

γy1
(
x5+Ay5

)
= 0, γy2

(
x5+Ay5

)
= 0, δy3

(
x5+Ay5

)
= 0, δy4

(
x5+Ay5

)
= 0. (8)

Theorem 4.1. Let F be a homogeneous Finsler metric on a two-step nilpotent Lie
group of dimension five with a one-dimensional center, induced by an invariant Rie-
mannian metric g and a left-invariant vector field x =

∑5
i=1 xiEi. Then y ∈ p is a

geodesic vector if and only if it satisfies (8).

Corollary 4.2. Let F be a homogeneous quartic Finsler metric induced by an in-
variant Riemannian metric g and a left invariant vector field x =

∑5
i=1 xiEi on a

two-step nilpotent Lie group of dimension five with a one-dimensional center. Then
its geodesic vectors depend only on x5.

Corollary 4.3. Let F be a quartic Finsler metric defined by a Riemannian metric
g and a left-invariant vector field x =

∑4
i=1 xiEi on a simply connected two-step

nilmanifold of dimension five with a one-dimensional center. Then y ∈ p is a geodesic
vector if and only if y ∈ span{E1, E2, E3, E4} or y = λE5, λ ̸= 0.

Theorem 4.4. Let N be a Lie group with its Lie algebra p and a quartic Finsler
metric F . Let x =

∑4
i=1 xiEi be a left-invariant vector field on the simply connected

two-step nilmanifold of dimension five with a one-dimensional center. Then y is a
geodesic vector of (N, g) if and only if it is a geodesic vector of (N,F ).

Proof. Let y be a geodesic vector of (N, g). Then

g(y, [y,Ei]) = 0 ∀i = 1, 2, 3, 4, 5. (9)

Using (4) we get

g(x, [y,Ei]) = 0. (10)

So if we use (9) and (10) in (6), we get gy(y, [y, z]) = 0.
Conversely, let y be a geodesic vector of (N,F ). Then gy(y, [y,Ei]) = 0 and

from (4) we get g(x, [y,Ei]) = 0. Therefore, from (7), y is a geodesic vector of (N, g).
□

4.2 Lie algebra with 2-dimensional center

Let N be a Lie group corresponding to the Lie algebra p of the two-step nilmanifold
of dimension five with 2-dimensional center z, equipped with the left-invariant quartic
Finsler metric and a Riemannian metric g. In [11] Homolya and Kowalski proved that
there exists an orthonormal basis {E1, E2, E3, E4, E5} of p with

[E1, E2] = γE4, [E1, E3] = δE5, (11)
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where {E4, E5} is a basis for the center of p and γ ≥ δ > 0.

Using (6), Theorem 2.4, a vector y =
∑5

i=1 yiEi of p is a geodesic vector if and
only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0, (12)

with j = 1, 2, 3, 4, 5.
If we substitute (11) into (12), we obtain that y is a geodesic vector if and only if

γy1
(
x4+Ay4

)
= 0, δy1

(
x5+Ay5

)
= 0, γy2

(
x4+Ay4

)
+δy3

(
x5+Ay5

)
= 0. (13)

Theorem 4.5. Let F be a homogeneous Finsler metric on a two-step nilpotent Lie
group of dimension five with 2-dimensional center, induced by an invariant Rieman-
nian metric g and a left-invariant vector field x =

∑5
i=1 xiEi. Then y ∈ p is a

geodesic vector if and only if it satisfies (13).

Corollary 4.6. Let F be a quartic Finsler metric with a Riemannian metric g and
let x =

∑5
i=1 xiEi be a left-invariant vector field on a simply connected two-step

nilpotent Lie group of dimension five with 2-dimensional center. Then its geodesic
vectors depend only on γ, δ, x4 and x5.

Corollary 4.7. Let p be a Lie algebra and let F be a quartic metric defined by a left-
invariant vector field x and an invariant Riemannian metric g on the simply connected
two-step nilmanifold of dimension five with a center of dimension two. Then x is a
geodesic vector of (N,F ) if and only if x is a geodesic vector of (N, g).

Theorem 4.8. Suppose F is a homogeneous quartic Finsler metric induced by the
left-invariant vector x =

∑3
i=1 xiEi and by the invariant Riemannian metric g on the

two-step nilmanifold of dimension five with a 2-dimensional center. Then y ∈ p is a
geodesic vector of (N, g) if and only if y is a geodesic vector of (N,F ).

Proof. From (11), we have g(x, [y,Ei]) = 0. Therefore, (6) can be rewritten as

gy(y, [y, z]) =
2c1g(y, y) + c2g

2(x, y)

2F 2
g(y, [y, z]) ∀ i = 1, 2, 3, 4, 5.

Then g(y, [y, z]) = 0 if and only if gy(y, [y, z]) = 0. This completes the proof. □

4.3 Lie algebra with 3-dimensional center

Let p be a Lie algebra on a simply connected two-step nilmanifold of dimension five
with three-dimensional center z. Suppose that N is a Lie group corresponding to the
Lie algebra p with a left-invariant quartic homogeneous Finsler metric. Homolya and
Kowalski [11] showed that there exists an orthonormal basis {E1, E2, E3, E4, E5} of
p with

[E1, E2] = γE3, (14)

where {E3, E4, E5} is a basis for the center of p and γ > 0.
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Then using (6) and Theorem 2.4, we get that a vector y =
∑5

i=1 yiEi of p is a
geodesic vector if and only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0, (15)

where j = 1, 2, 3, 4, 5.
From (14) and (15), we get the following conditions for y to be a geodesic vector:

γy1
(
x3 +Ay3

)
= 0, γy2

(
x3 +Ay3

)
= 0. (16)

Theorem 4.9. Let F be a homogeneous Finsler metric on a two-step nilpotent Lie
group of dimension five with a three-dimensional center induced by an invariant Rie-
mannian metric g and a left-invariant vector field x =

∑5
i=1 xiEi. Then y ∈ p is a

geodesic vector if and only if it satisfies (16).

Corollary 4.10. Let (N,F ) be a Finsler space with a quartic metric F induced by
an invariant Riemannian metric g and a left-invariant vector field x on a simply
connected two-step nilpotent Lie group N of dimension five with a three-dimensional
center. Then its geodesic vectors depend only on x3.

Corollary 4.11. Let F be a quartic Finsler metric with an invariant Riemannian
metric g and a left-invariant vector field x = x1E1+x2E2+x4E4+x5E5 on a simply
connected two-step nilpotent Lie group of dimension five with the three-dimensional
center. Then a vector y ∈ p is a geodesic vector if and only if y ∈ span{E1, E2, E4, E5}
or y ∈ span{E3, E4, E5}.

Theorem 4.12. Suppose F is a quartic Finlser metric on a simply connected two-step
nilmanifold of dimension five with the three-dimensional center defined by a Rieman-
nian metric g and the left-invariant vector field x = x1E1 + x2E2 + x4E4 + x5E5.
Then a vector y ∈ p is a geodesic vector of (N, g) if and only if it is a geodesic vector
of (N,F ).

Proof. Using (14), we can write (6) as follows

gy(y, [y, z]) =
2c1g(y, y) + c2g

2(x, y)

2F 2
g(y, [y, z]).

Therefore, y is a geodesic vector of (N, g) if and only if y is a geodesic vector of
(N,F ). □

5. 5-dimensional nilpotent Lie groups of nilpotency class greater than
two

In this section we consider the quartic Finsler metrics on three-step and four-step
nilmanifolds of dimension five. Then we study the set of all geodesic vectors for
the above metrics on these nilpotent Lie groups. In [9] Figula and Nagy give a
classification of 5-dimensional nilpotent Lie groups of nilpotency classes greater than
two, up to isometry.
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5.1 The three-step nilpotent Lie algebra l5,5

Let N be a three-step nilpotent Lie group of dimension five with Lie algebra l5,5
equipped with a left-invariant quartic metric F defined by a Riemannian metric g
and a vector field x =

∑n
i=1 xiEi. Suppose that the set {E1, E2, E3, E4, E5} is an

orthonormal basis of l5,5 such that

[E1, E2] = γE4 + δE5, [E1, E3] = λE5, [E1, E4] = ζE5, [E2, E3] = ηE5, (17)

where γ, ζ, η > 0 and δ, λ ≥ 0.
Therefore, using Theorem 2.4 and (6), a non-zero vector y =

∑5
i=1 yiEi of l5,5 is

a geodesic vector if and only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0 ∀ j = 1, 2, 3, 4, 5. (18)

Using (17) and (18), we get that the geodesic vector y satisfies the following equations:

γy2
(
x4 +Ay4

)
+ (δy2 + λy3 + ζy4)

(
x5 +Ay5

)
= 0,

γy1
(
x4 +Ay4

)
+ (δy1 + ηy3)

(
x5 +Ay5

)
= 0,

(λy1 + ηy2)
(
x5 +Ay5

)
= 0,

ζy1
(
x5 +Ay5

)
= 0.

(19)

Theorem 5.1. Let F be a homogeneous Finsler metric on a three-step nilpotent Lie
group of dimension five with its Lie algebra l5,5 induced by an invariant Riemannian

metric g and a left-invariant vector field x =
∑5

i=1 xiEi. Then y ∈ p is a geodesic
vector if and only if it satisfies (19).

Corollary 5.2. Let (N,F ) be a Finsler space with a quartic metric F induced by
an invariant Riemannian metric g and a left-invariant vector field x on a simply
connected three-step nilpotent Lie group N of dimension five with Lie algebra l5,5.
Then its geodesic vectors depend only on γ, δ, λ, ζ, η, x4 and x5.

Corollary 5.3. If (N,F ) is a Finsler space with a quartic metric F on a simply
connected three-step nilpotent Lie group N of dimension five with Lie algebra l5,5
defined by an invariant Riemannian metric g and an invariant vector field x, then x
is a geodesic vector of (N, g) if and only if it is a geodesic vector of (N,F ).

Theorem 5.4. Let F be a quartic Finsler metric induced by an invariant Riemannian
metric g and a left-invariant vector field x =

∑3
i=1 xiEi on a three-step nilpotent Lie

group of dimension five with the Lie algebra l5,5. Then y is a geodesic vector of (N,F )
if and only if it is a geodesic vector of (N, g).

Proof. Using (17) and (6), we have

gy(y, [y, z]) =
2c1g(y, y) + c2g

2(x, y)

2F 2
g(y, [y, z]).

Therefore, g(y, [y, z]) = 0 iff gy(y, [y, z]) = 0. This completes the proof. □
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5.2 The three-step nilpotent Lie algebra l5,9

Let l5,9 be a Lie algebra on a three-step simply connected nilmanifold of dimension
five equipped with the Lie group N , a left-invariant vector field x and a left-invariant
quartic Finsler metric F such that the orthonormal basis {E1, E2, E3, E4, E5} satisfies

[E1, E2] = γE3 + δE4 + λE5, [E1, E3] = ζE4, [E2, E3] = ηE5, (20)

where either γ > 0, η > ζ > 0 and δ, λ ≥ 0 or γ, ζ > 0, δ ≥ 0, λ = 0 and η = ζ.
Now, using (6), a non-zero vector y =

∑5
i=1 yiEi of l5,9 is geodesic vector if and

only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0 ∀ j = 1, 2, 3, 4, 5. (21)

From (20) and (21), we get that y is a geodesic vector if and only if

γy2
(
x3 +Ay3

)
+ (δy2 + ζy3)

(
x4 +Ay4

)
+ λy2

(
x5 +Ay5

)
= 0,

γy1
(
x3 +Ay3

)
+ δy1

(
x4 +Ay4

)
+ (λy1 + ηy3)

(
x5 +Ay5

)
= 0,

(ζy1 + ηy2)
(
x4 +Ay4

)
+ ηy2

(
x5 +Ay5

)
= 0.

(22)

Theorem 5.5. Let F be a homogeneous Finsler metric on a three-step nilpotent Lie
group of dimension five with its Lie algebra l5,9 induced by an invariant Riemannian

metric g and a left-invariant vector field x =
∑5

i=1 xiEi. Then y ∈ p is a geodesic
vector if and only if it satisfies (22).

Corollary 5.6. Let N be a Lie group equipped with a quartic Finsler metric F and
its Lie algebra l5,9 on a simply connected three-step nilmanifold of dimension five.
Then its geodesic vectors depends on γ, δ, ζ, λ, η, x3, x4 and x5.

Theorem 5.7. Suppose N is a three-step nilpotent Lie group of dimension five with
its Lie algebra l5,9 and let F be a left-invariant quartic Finsler metric induced by a

Riemannian metric g and a left-invariant vector field x =
∑2

i=1 xiEi. Then y ∈ l5,9
is a geodesic vector of (N, g) if and only if y is a geodesic vector of (N,F ).

Proof. From (20), we have g(x, [y,Ei]) = 0. Therefore, (6) can be rewritten as

gy(y, [y, z]) =
2c1g(y, y) + c2g

2(x, y)

2F 2
g(y, [y, z]).

This completes the proof. □

5.3 The four-step nilpotent Lie algebra l5,7

Let N be a four-step nilmanifold of dimension five with Lie algebra l5,7 equipped with
a left-invariant quartic Finsler metric F and a left-invariant vector field x. Suppose
that the set {E1, E2, E3, E4, E5} is an orthonormal basis of l5,7 with

[E1, E2] = γE3 + δE4 + λE5, [E1, E3] = ζE4 + ηE5, [E1, E4] = ϑE5, (23)

where γ, ζ, ϑ > 0 and either δ > 0 or δ = 0, η ≥ 0.
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Therefore, a non-zero vector y =
∑5

i=1 yiEi of l5,7 is a geodesic vector if and only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0 ∀ j = 1, 2, 3, 4, 5. (24)

From (23) and (24), we get that the geodesic vector y satisfies the following equations:

γy2
(
x3 +Ay3

)
+ (δy2 + ζy3)

(
x4 +Ay4

)
+ (λy2 + ηy3 + ϑy4)

(
x5 +Ay5

)
= 0,

γy1
(
x3 +Ay3

)
+ δy1

(
x4 +Ay4

)
+ λy1

(
x5 +Ay5

)
= 0,

ζy1
(
x4 +Ay4

)
+ ηy1

(
x5 +Ay5

)
= 0,

ϑy1
(
x5 +Ay5

)
= 0.

(25)

Theorem 5.8. Let F be a homogeneous Finsler metric on a four-step nilpotent Lie
group of dimension five with its Lie algebra l5,7 induced by an invariant Riemannian

metric g and a left-invariant vector field x =
∑5

i=1 xiEi. Then y ∈ p is a geodesic
vector if and only if it satisfies (25).

Corollary 5.9. Let N be a four-step nilpotent Lie group of dimension five with its
Lie algebra l5,7 and a left-invariant quartic Finsler metric F induced by an invariant
Riemannian metric g and a left-invariant vector field x. Then its geodesic vectors
depend only on γ, δ, λ, ζ, η, ϑ, x3, x4 and x5.

Corollary 5.10. If F is a quartic metric on a four-step nilmanifold of dimension
five with its Lie algebra l5,7 induced by an invariant Riemannian metric g and an
invariant vector field x, then x is a geodesic vector of (N,F ) if and only if x is a
geodesic vector of (N, g).

Theorem 5.11. Suppose F is a quartic Finsler metric defined by an invariant Rie-
mannian metric g and x =

∑2
i=1 xiEi is a left-invariant vector field on the four-step

nilpotent Lie group of dimension five with the Lie algebra l5,7. Then y ∈ l5,7 is a
geodesic vector of (N, g) if and only if it is a geodesic vector of (N,F ).

Proof. Using (23), we can write (6) as follows

gy(y, [y, z]) =
2c1g(y, y) + c2g

2(x, y)

2F 2
g(y, [y, z]).

Therefore, y is a geodesic vector of (N, g) iff y is a geodesic vector of (N,F ). □

5.4 The four-step nilpotent Lie algebra l5,6

Let N be a four-step nilmanifold of dimension five equipped with Lie algebra l5,6
and a left-invariant quartic homogeneous Finsler metric F such that the orthonormal
basis {E1, E2, E3, E4, E5} satisfies the following condition

[E1, E2] = γE3 + δE4 + λE5, [E1, E3] = ζE4 + ηE5, [E1, E4] = ϑE5, [E2, E3] = µE5,
(26)

where γ, ζ, ϑ, µ > 0 and either δ > 0 or δ = 0, λ ≥ 0.
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From (6), a non-zero vector y =
∑5

i=1 yiEi of l5,6 is a geodesic vector if and only if

g
( 5∑
i=1

xiEi +A

5∑
i=1

yiEi,
[ 5∑

i=1

yiEi, Ej

])
= 0 ∀ j = 1, 2, 3, 4, 5. (27)

From (26) and (27), we get that the geodesic vector y satisfies the following equations:

γy2
(
x3 +Ay3

)
+ (δy2 + ζy3)

(
x4 +Ay4

)
+ (λy2 + ηy3 + ϑy4)

(
x5 +Ay5

)
= 0,

γy1
(
x3 +Ay3

)
+ δy1

(
x4 +Ay4

)
+ (λy1 + µy3)

(
x5 +Ay5

)
= 0,

ζy1
(
x4 +Ay4

)
+ (ηy1 + µy2)

(
x5 +Ay5

)
= 0,

ϑy1
(
x5 +Ay5

)
= 0.

(28)

Theorem 5.12. Let F be a homogeneous Finsler metric on a four-step nilpotent Lie
group of dimension five with its Lie algebra l5,6 induced by an invariant Riemannian

metric g and a left-invariant vector field x =
∑5

i=1 xiEi. Then y ∈ p is a geodesic
vector if and only if it satisfies (28).

Corollary 5.13. Let (N,F ) be a four-step nilpotent Lie group of dimension five with
its Lie algebra l5,6 and a left-invariant quartic metric F induced by a left-invariant
Riemannian metric g and a left-invariant vector field x. Then its geodesic vectors
only depends on γ, δ, ϑ, λ, ζ, η, µ, x3, x4 and x5.

Theorem 5.14. Let N be a four-step nilpotent Lie group of dimension five equipped
with a quartic Finsler metric F and a Lie algebra l5,6 induced by an invariant Rieman-

nian metric g and a left-invariant vector field x =
∑2

i=1 xiEi. Then y is a geodesic
vector of (N, g) if and only if it is a geodesic vector of (N,F ).

Proof. Using (26) and (6), we get

gy(y, [y, z]) =
2c1g(y, y) + c2g(x, y)

2

2F 2
g(y, [y, z]).

Therefore, y is a geodesic vector of (N, g) iff y is a geodesic vector of (N,F ). □
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