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SOME IDENTITIES FOR GENERALIZED HARMONIC NUMBERS

S. Koparal, N. Ömür and K. N. Südemen

Abstract. In this paper, we derive some nonlinear differential equations from generating
function of generalized harmonic numbers and give some identities involving generalized
harmonic numbers and special numbers by using these differential equations. For example,
for any positive integers N, n, r, α and any integer m ≥ 2,

S1(n+N, r + 1)

n!
=

n∑
j=0

n∑
i=0

i∑
l=0

l∑
z=0

r∑
k=0

(−1)l−z−i

(
m

l − z

)(
i− l +m− 2

i− l

)
N jαi

j! (n− i)!

× S1(N, r − k + 1)S1 (n− i, k)H(z, j − 1, α)

where S1 (n, k) is Stirling number of the first kind.

1. Introduction

The harmonic numbers are defined by H0 = 0 and Hn =
∑n

i=1
1
i for n ≥ 1. Recently,

harmonic numbers and generalized harmonic numbers have been studied by many
mathematicians [1–3,6, 14,15,18].

In [6], for any α ∈ R+ and n ∈ N, the generalized harmonic numbers Hn(α) are
defined by H0(α) = 0 and Hn(α) =

∑n
i=1

1
iαi . For α = 1, the usual harmonic numbers

are Hn(1) = Hn and the generating function of Hn(α) is

−
ln
(
1− x

α

)
1− x

=

∞∑
n=1

Hn(α)x
n.

In [13], for the generalized harmonic numbers Hn(α), Ömür et al. defined the gen-
eralized hyperharmonic numbers of order r, Hr

n (α) as follows: For r < 0 or n ≤ 0,
Hr

n (α) = 0 and for n ≥ 1, the generalized hyperharmonic numbers of order r, Hr
n (α)

are defined by

Hr
n (α) =

n∑
i=1

Hr−1
i (α) , for r ≥ 1,

2020 Mathematics Subject Classification: 05A15, 05A19, 11B73

Keywords and phrases: Generalized hyperharmonic numbers of order r; Daehee numbers;
Stirling numbers of the first kind and the second kind; generating function.

1



2 Some identities for generalized harmonic numbers

where H0
n (α) = 1

nαn . For α = 1, Hr
n (1) = Hr

n are the hyperharmonic numbers of
order r. The generating function of the generalized hyperharmonic numbers of order
r is

−
ln
(
1− x

α

)
(1− x)

r =

∞∑
n=1

Hr
n(α)x

n. (1)

In [7,18], the generalized harmonic numbers H (n, r) of rank r are defined as for n ≥ 1
and r ≥ 0,

H (n, r) =
∑

1≤n0+n1+···+nr≤n

1

n0n1 · · ·nr

or, equivalently, as H (n, r) =
(−1)

r+1

n!

(
dn

dxn

[ln (1− x)]
r+1

1− x

)∣∣∣∣∣
x=0

.

It is clear that H(n, 0) = Hn.

In [5], H (n, r, α) are defined as for n ≥ 1 and r ≥ 0,

H (n, r, α) =
∑

1≤n0+n1+···+nr≤n

1

n0n1 · · ·nrαn0+n1+···+nr

or, equivalently, as H (n, r, α) =
(−1)

r+1

n!

(
dn

dxn

[
ln
(
1− x

α

)]r+1

1− x

)∣∣∣∣∣
x=0

.

For α = 1, H (n, r, 1) = H(n, r). The generating function of the generalized har-
monic numbers of rank r, H (n, r, α) is given by(

− ln
(
1− x

α

))r+1

1− x
=

∞∑
n=0

H (n, r, α)xn. (2)

The Daehee numbers of order r, Dr
n, are defined by the generating functions to be(

ln (1 + x)

x

)r

=

∞∑
n=0

Dr
n

xn

n!
. (3)

For r = 1, D1
n = Dn are called Daehee numbers.

The Cauchy numbers of order r, Cr
n, are defined by the generating functions to be(

x

ln (1 + x)

)r

=

∞∑
n=0

Cr
n

xn

n!
. (4)

The Stirling numbers of the first kind S1(n, k) are defined by

xn =

n∑
k=0

S1(n, k)x
k,

and the Stirling numbers of the second kind S2(n, k) are defined by

xn =

n∑
k=0

S2(n, k)x
k,

where xn stands for the falling factorial defined by x0 = 1 and xn = x (x− 1) . . . (x− n+ 1).
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The generating function of the Stirling numbers of the first kind S1(n, k) is given
by

(ln (1 + x))k

k!
=

∞∑
n=0

S1 (n, k)
xn

n!
, for k ≥ 0, (5)

and the generating function of the Stirling numbers of the second kind S2(n, k) is
given by

(ex − 1)
k

k!
=

∞∑
n=k

S2(n, k)
xn

n!
, for k ≥ 0. (6)

The generalized geometric series are given by for any positive integer a,

1

(1− x)
a+1 =

∞∑
n=0

(
n+ a

n

)
xn. (7)

In [12], Kwon et al. investigated some explicit identities of Daehee numbers, using
differential equations arising the generating function of Daehee numbers. For example,
for positive integer N and nonnegative integer n,

Dn+N−1 =
(−1)

N−1
(N − 1)!

n+N

n∑
k=0

(−1)
k
NkS1(n, k).

In [17], Rim et al. gave some identities involving hyperharmonic numbers, the Stirling
numbers of the second kind and Daehee number as follows: for any positive integer
N and nonnegative integer n,

Dn+N−1 = (n+N − 1)
N−1

n+N∑
k=0

(
r

n+N − k

)
(−1)

k+1
Hr

k ,

(−1)
n
(N − 1)!Nn =

n∑
i=0

i+N∑
k=0

(
r

i+N − k

)
(−1)

N−k
(i+N)N i!S2 (n, i)H

r
k .

In [5], Duran et al. obtained sums including generalized hyperharmonic numbers and
special numbers. For example, for any positive integers n, r, m and α,

Dr+1
n = n!αn+1

n∑
i=0

i∑
j=0

(
m

n− i

)
(−1)j

αi−j (i− j)!
Dr

i−jH
m
j+1 (α) .

It is known that for an ordinary series f(x) =
∑
n≥0

fnx
n,

dm

dxm
f(x) =

∞∑
n=0

(
m+ n

n

)
m!fn+mxn. (8)

Let F (x) =
∞∑

n=0
anx

n and G(x) =
∞∑

n=0
bnx

n be two generating functions. The product

of these functions is given as follows:

F (x)G(x) =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

cnx
n, (9)
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where cn =
n∑

k=0

akbn−k. Let H(x) =
∞∑

n=0
hn

xn

n! and K(x) =
∞∑

n=0
kn

xn

n! be two exponen-

tial generating functions. The product of these functions is given by

H(x)K(x) =

( ∞∑
n=0

hn
xn

n!

)( ∞∑
n=0

kn
xn

n!

)
=

∞∑
n=0

ln
xn

n!
, (10)

where ln =
n∑

i=0

(
n
i

)
hikn−i.

Harmonic numbers and generalized harmonic numbers have been studied since the
distant past and are involved in a wide range of diverse fields such as analysis, com-
puter science and various in a wide range of diverse fields such as analysis, computer
science and various branches of number theory [3–5,13,14,19,21].

Recently, many famous mathematicians have studied the combinatorial properties
of special numbers and polynomials by using differential equations associated with the
generating function [8,9,11]. There are some works including various special numbers
arising from the differential equations [8, 10,12,16,17].

2. Some identities arising from nonlinear differential equations

In this section, inspired by studies in [12, 17], we set for any positive integer α and
variable x G := G (x) = ln

(
1− x

α

)
, and from here, for every integer r ≥ 0, F :=

F (x) = (G (x))
r+1

.

In this paper, we denote the N−times product and the Nth derivative of F,
respectively, by FN and F (N). From the definitions of G and F, by differentiating
these functions according to x, we then obtain

G′ = − 1

α
e−G and F ′ = −r + 1

α
Gre−G,

G
′′
= − 1

α2
e−2G and F ′′ =

r + 1

α2
e−2G

(
rGr−1 −Gr

)
,

G(3) = − 2

α3
e−3G and F (3) = −r + 1

α3
e−3G

(
r(r − 1)Gr−2 − 3rGr−1 + 2Gr

)
.

By repeating this process, we easily have

eNGG(N) = − (N − 1)!

αN
,

and eNGF (N) = (−1)N
(r + 1)!

αN

r∑
i=0

S1(N, r − i+ 1)
Gi

i!
. (11)

It is clearly known that

Gi

i!
=

∞∑
n=0

(−1)
n
α−nS1 (n, i)

xn

n!
, (12)
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eNG =

∞∑
n=0

n∑
i=0

(−1)
n
α−nN iS1 (n, i)

xn

n!
, (13)

and G(N) =
N !

αN

∞∑
n=0

n∑
i=0

(−1)i+n+1α−nN i−1S1 (n, i)
xn

n!
. (14)

Now we can give some identities concerning the generalized hyperharmonic num-
bers of order r, the Daehee numbers of order r and the Stirling numbers of the first
and second kind.

Theorem 2.1. For any positive integers N, n, r and α, we have
n∑

i=0

(−1)iN i−1S1 (n, i) = (−1)
N
αN+n (n+N)!

N !

n+N∑
j=0

(−1)j
(

r

n+N − j

)
Hr

j (α).

Proof. By (1), (2) and (8), we have

G(N) =
dN

dxN

(
ln(1− x

α )

(1− x)r
(1− x)r

)
=

dN

dxN

 ∞∑
i=0

Hr
i (α)x

i
∞∑
j=0

(−1)
j+1

(
r

j

)
xj


=

dN

dxN

( ∞∑
n=0

n∑
i=0

(−1)
n−i+1

(
r

n− i

)
Hr

i (α)x
n

)

=

∞∑
n=0

n∑
i=0

dN

dxN

(
r

n− i

)
(−1)

n−i+1
Hr

i (α)x
n

= N !

∞∑
n=N

n∑
i=0

(−1)
n−i+1

(
r

n− i

)(
n

N

)
Hr

i (α)x
n−N

=

∞∑
n=0

n+N∑
i=0

(−1)
n+N−i+1

(
r

n+N − i

)(
n+N

N

)
N !Hr

i (α)x
n. (15)

By (14) and (15), comparing the coefficients on both sides, we have the proof. □

Theorem 2.2. For any positive integers N, n, r and α, we have

αn+N (n+N − 1)!

n+N∑
i=0

(−1)
i+1

(
r

n+N − i

)
Hr

i (α) = Dn+N−1.

Proof. By (8), we have

G(N) =
dN

dxN

(
ln(1− x

α )
x
α

x

α

)
=

dN

dxN

( ∞∑
n=1

(−1)
n

αn(n− 1)!
Dn−1x

n

)

=

∞∑
n=N

(−1)
n

(
n

N

)
N !

αn(n− 1)!
Dn−1x

n−N

=

∞∑
n=0

(−1)
n+N

(
n+N

N

)
N !

αn+N (n+N − 1)!
Dn+N−1x

n. (16)
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Thus, from (15) and (16), the proof is complete. □

Theorem 2.3. For any positive integers N, n, r and α, we have
n∑

k=0

k∑
i=0

(−1)iN i−1S1 (k, i)S2(n, k)

= (−1)NαN
n∑

k=0

k+N∑
j=0

(−1)jαkk!

(
r

k +N − j

)(
k +N

N

)
Hr

j (α)S2(n, k).

Proof. Substituting α(1− ex) instead of x in (14) and (15), respectively, we have

G(N) (α(1− ex)) = −N !

αN

∞∑
k=0

k∑
i=0

(−1)iN i−1S1 (k, i)
(ex − 1)

k

k!

= −N !

αN

∞∑
k=0

k∑
i=0

(−1)iN i−1S1 (k, i)

∞∑
n=0

S2(n, k)
xn

n!

= −N !

αN

∞∑
n=0

n∑
k=0

k∑
i=0

(−1)iN i−1S1 (k, i)S2(n, k)
xn

n!
,

and

G(N) (α(1− ex))

= −
∞∑
k=0

k+N∑
j=0

(−1)k+N−j

(
r

k +N − j

)(
k +N

N

)
N !Hr

j (α) (−α)
k
(ex − 1)

k

= −
∞∑
k=0

k+N∑
j=0

(−1)k+N−j

(
r

k +N − j

)(
k +N

N

)
N !Hr

j (α) (−α)
k
k!×

∞∑
n=0

S2(n, k)
xn

n!

= −
∞∑

n=0

n∑
k=0

k+N∑
j=0

(−1)N−jαkk!N !

(
r

k +N − j

)(
k +N

N

)
Hr

j (α)S2(n, k)
xn

n!
.

Comparing the coefficients of xn in the first and last series, the proof is complete. □

Theorem 2.4. For any positive integers N, n, m and r, we have

S1(n+N, r + 1)

(
n+N +m

m

)(
r +m+ 1

m

)−1

=

n+N∑
i=0

(
n+N +m

i

)
Cm

i S1(n+N +m− i, r +m+ 1).

Proof. By (5), we have

F =

∞∑
n=0

(−1)nα−nS1(n, r + 1)(r + 1)!
xn

n!
,
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and from here, by (8)

F (N) =

∞∑
n=0

(−1)n+NS1(n+N, r + 1)(r + 1)!

αn+N (n+N)!
N !

(
n+N

N

)
xn. (17)

(4) and (5) yield that

F = (−1)m
(
ln
(
1− x

α

))r+m+1 (−x/α)
m(

ln
(
1− x

α

))m αm

xm

=

∞∑
n=0

(−1)n+mS1(n, r +m+ 1)(r +m+ 1)!

αnn!
xn−m

∞∑
n=0

(−1)
n
αm−nCm

n

xn

n!

=

∞∑
n=0

(−1)nS1(n+m, r +m+ 1)(r +m+ 1)!

αn+m(n+m)!
xn

∞∑
n=0

(−1)
n
αm−nCm

n

xn

n!
.

By (8) and (9), we have

F (N)=

∞∑
n=N

n∑
i=0

(−1)n
(
n

N

)
N !

Cm
i S1(n+m−i, r+m+1)(r+m+1)!

αni!(n+m−i)!
xn−N

=

∞∑
n=0

n+N∑
i=0

(−1)n+N

(
n+N

N

)
N !Cm

i ×S1(n+N+m−i, r+m+1)(r+m+1)!

αn+N (n+N+m−i)!

xn

i!
. (18)

Thus, comparing the coefficients on right side of (17) and (18), we have the result. □

Lemma 2.5 ([20]). Let n and m be any positive integers. For 0 ≤ m ≤ n− 1, then
n∑

k=0

(
m− k

n− k

)
(1− x)k = (1− x)m+1(−x)n−m−1.

Theorem 2.6. Let m, t be any integers such that 0 ≤ m ≤ t−1. For positive integers
n, r and α we have:

n∑
j=0

t∑
k=0

(−1)t+m+1

(
m− k

t− k

)
H(j + t−m− 1, r − 1, α)Hm−k+1

n−j (α) = H(n, r, α).

Proof. With the help of Lemma 2.5, we have(
ln(1− x

α )
)r+1

1− x
=

t∑
k=0

(
m− k

t− k

)
(1− x)k

(
ln(1− x

α )
)r+1

1− x
(1− x)−m−1(−x)−t+m+1

=

t∑
k=0

(
m− k

t− k

)(
ln(1− x

α )
)r

(1− x)

ln(1− x
α )

(1− x)m−k+1
(−x)−t+m+1,

and from (2) and (9),(
ln(1− x

α )
)r+1

1−x

=

t∑
k=0

(
m−k

t−k

)(
(−1)r

∞∑
n=0

H(n, r−1, α)xn

)
×

− ∞∑
j=0

Hm−k+1
j (α)xj

 (−x)−t+m+1



8 Some identities for generalized harmonic numbers

=

t∑
k=0

(−1)r−t+m

(
m−k

t−k

) ∞∑
n=0

H(n, r−1, α)xn−t+m+1 ×
∞∑
j=0

Hm−k+1
j (α)xj

=

t∑
k=0

(−1)r−t+m

(
m−k

t−k

) ∞∑
n=−t+m+1

H(t+n−m−1, r−1, α)xn ×
∞∑
j=0

Hm−k+1
j (α)xj

=

t∑
k=0

(−1)r−t+m

(
m−k

t−k

) ∞∑
n=0

n∑
j=0

H(j+t−m−1, r−1, α)Hm−k+1
n−j (α)xn

=

∞∑
n=0

n∑
j=0

t∑
k=0

(−1)r−t+m

(
m−k

t−k

)
H(j+t−m−1, r−1, α)×Hm−k+1

n−j (α)xn. (19)

Thus, comparing the coefficients on right side of (2) and (19), we have the proof. □

The proof of the following lemma is easily obtained.

Lemma 2.7. For n ≥ 0, then
n∑

k=0

k

(
n

k

)
xk(1− x)n−k = nx.

Theorem 2.8. For any positive integers n, m, r and α, we have

H(n, r, α) =

n∑
j=0

m∑
k=1

(
m− 1

k − 1

)
H(j − k + 1, r − 1, α)Hk−m

n−j (α).

Proof. By (1), (2) and Lemma 2.7, the proof is similar to the proof of Theorem 2.6. □

Theorem 2.9. Let N, n, r be any positive integers. Then

n!

r∑
k=0

(−1)k
(
r

k

)(
Nk

n

)
=

n∑
k=0

r∑
i=0

(−1)i
(
r

i

)(
n

k

)
ikNkDk

n−k.

Proof. From definition of eNG, we have eNG−1 =
(
1− x

α

)N −1. From here, we write((
1−x

α

)N
−1

)r

=

r∑
k=0

(−1)r−k

(
r

k

)(
1−x

α

)kN
=

r∑
k=0

(−1)r−k

(
r

k

) ∞∑
n=0

(−1)n
(
kN

n

)
xn

αn

=

∞∑
n=0

r∑
k=0

(−1)r−k+n

(
r

k

)(
kN

n

)
xn

αn

and by (3),(
eNG−1

)r
=

r∑
i=0

(−1)r−i

(
r

i

)
eNGi =

r∑
i=0

(−1)r−i

(
r

i

) ∞∑
k=0

ikNk

k!

(
ln
(
1− x

α

))k(
− x

α

)k (
−x

α

)k
=

r∑
i=0

(−1)r−i

(
r

i

) ∞∑
k=0

ikNk

k!
xk

∞∑
n=0

(−1)n+k Dk
n

αn+k

xn

n!

=

r∑
i=0

(−1)r−i

(
r

i

) ∞∑
n=0

n∑
k=0

ikNk

k!

(−1)n

(n−k)!αn
Dk

n−kx
n
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=

∞∑
n=0

n∑
k=0

r∑
i=0

(−1)n+r−i

(
r

i

)
ikNk

k!(n−k)!αn
Dk

n−kx
n.

If we compare the coefficients of xn in the first and last series, we have the proof. □

Theorem 2.10. For any positive integers N, n and r, we have
r∑

k=0

S1(N, r + 1− k)S1 (n, k)

=
N !n!

(r + 1)!

n∑
j=0

j∑
i=0

N i

j! (n− j +N − r − 1)!

(
n− j +N

N

)
S1 (j, i)D

r+1
n+N−j−r−1.

Proof. By (5), (11) and (12), we write

eNGF (N) = (−1)N
(r + 1)!

αN

r∑
k=0

S1(N, r − k + 1)
Gk

k!

= (−1)N
(r + 1)!

αN

r∑
k=0

S1(N, r − k + 1)

∞∑
i=k

(−1)
i
α−iS1 (i, k)

xi

i!

= (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i

αi
S1(N, r − k + 1)S1 (i, k)

xi

i!
. (20)

With the help of (3), we have

F =
(ln(1− x

α ))
r+1

(− x
α )

r+1

(
−x

α

)r+1

=

∞∑
n=0

(−1)n

αn(n− r − 1)!
Dr+1

n−r−1x
n,

and then taking the Nth derivative of function F , by (8),

F (N) =

∞∑
n=0

(−1)n+N

(
n+N

N

)
N !

αn+N (n+N − r − 1)!
Dr+1

n+N−r−1x
n. (21)

From here, (9) and (13) yield that

eNGF (N) = (−1)N
N !

αN

∞∑
n=0

n∑
j=0

j∑
i=0

(−1)
n
N i

j!(n− j +N − r − 1)!αn

×
(
n− j +N

N

)
S1 (j, i)D

r+1
n+N−j−r−1x

n.

From here, by (20), the comparison of the coefficients on both sides, the proof is
obtained. □

Theorem 2.11. For any positive integers N, n and r, we have

Dr+1
n+N−r−1

(
n+N

r + 1

)
=

n∑
j=0

r∑
k=0

n−j∑
i=0

(−1)i
(
n

j

)
N iS1 (j, k)S1(N, r − k + 1)S1 (n− j, i) .
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Proof. By (5), (11) and (12), we write

F (N) = (−1)N
(r+1)!

αN
e−NG

r∑
k=0

S1(N, r−k+1)
Gk

k!

= (−1)N
(r+1)!

αN

∞∑
n=0

n∑
i=0

(−1)n+iN
iS1 (n, i)

αn

xn

n!
×

∞∑
i=0

r∑
k=0

(−1)
i S1 (i, k)

αi
S1(N, r−k+1)

xi

i!
.

(10) yields that

F (N) = (−1)N
(r+1)!

αN

∞∑
n=0

n∑
j=0

r∑
k=0

n−j∑
i=0

(−1)
n+i N i

n!αn

×
(
n

j

)
S1 (j, k)S1(N, r−k+1)S1 (n−j, i)xn. (22)

Also,

F (N) =
dN

dxN

( ln
(
1− x

α

)
− x

α

)r+1 (
−x

α

)r+1

 =
dN

dxN

( ∞∑
n=0

(−1)
n Dr+1

n−r−1

αn(n−r−1)!
xn

)

=

∞∑
n=0

(−1)
n+N

(
n+N

N

)
N !

αn+N (n+N−r−1)!
Dr+1

n+N−r−1x
n. (23)

Thus, comparing the coefficients on right side of (22) and (23), we have the proof. □

Theorem 2.12. For any positive integers N, n, m and r, we have
n∑

i=0

r∑
k=0

(−1)
i
S1(N, r−k+1)S1 (i, k)S2(n, i)

=

n∑
j=0

j∑
k=0

k∑
i=0

n−j∑
m=0

(−1)
m+k

N i

(
m+N

r+1

)(
n

j

)
× S1 (k, i)S2(j, k)S2(n−j,m)Dr+1

m+N−r−1.

Proof. Substituting α (ex−1) instead of x in (13) and (21), respectively, we have

eNGF (N) =

∞∑
n=0

n∑
i=0

(−1)
n
N iS1 (n, i)

(ex−1)n

n!

∞∑
n=0

(−1)n+NN !Dr+1
n+N−r−1

(
n+N

N

)
× (ex−1)n

αN (n+N−r−1)!
.

(6) yields that

eNGF (N) =

∞∑
n=0

n∑
i=0

(−1)
n
S1 (n, i)N

i
∞∑

k=n

S2(k, n)
xk

k!

∞∑
n=0

(−1)n+NDr+1
n+N−r−1

× (n+N)!

αN (n+N−r−1)!

∞∑
k=n

S2(k, n)
xk

k!
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=

∞∑
n=0

n∑
k=0

k∑
i=0

(−1)
k
N iS1 (k, i)S2(n, k)

xn

n!

×
∞∑

n=0

n∑
m=0

(−1)m+N (m+N)!

αN (m+N−r−1)!
S2(n,m)Dr+1

m+N−r−1

xn

n!
.

By (10), we have

eNGF (N) =
(r+1)!

αN

∞∑
n=0

n∑
j=0

j∑
k=0

k∑
i=0

n−j∑
m=0

(−1)
m+k+N

N i

(
m+N

r+1

)(
n

j

)
× S1 (k, i)S2(j, k)S2(n−j,m)Dr+1

m+N−r−1

xn

n!
. (24)

Similarly, substituting α (ex−1) instead of x in (11), by (6) and (12),

eNGF (N) = (−1)N
(r+1)!

αN

r∑
j=0

S1(N, r−j+1)
Gj

j!

= (−1)N
(r+1)!

αN

r∑
j=0

S1(N, r−j+1)

∞∑
i=0

(−1)
i
S1 (i, j)

(α (ex−1))
i

αii!

= (−1)N
(r+1)!

αN

∞∑
i=0

r∑
j=0

(−1)
i
S1(N, r−j+1)S1 (i, j)

(ex−1)i

i!

= (−1)N
(r+1)!

αN

∞∑
i=0

r∑
j=0

(−1)
i
S1(N, r−j+1)S1 (i, j)

∞∑
j=i

S2(j, i)
xj

j!

= (−1)N
(r+1)!

αN

∞∑
n=0

n∑
i=0

r∑
j=0

(−1)
i
S1(N, r−j+1)S1 (i, j)S2(n, i)

xn

n!
. (25)

Thus, comparing the coefficients on right side of (24) and (25), we have the proof. □

Theorem 2.13. For any positive integers N, n and r, we have

(r + 1)

r∑
k=0

S1(N, r − k + 1)S1(n, k)

=

n∑
j=0

j+N∑
k=0

n−j∑
i=0

(
n

j

)(
j +N

k + 1

)
(k + 1)N iS1(k, r)S1(n− j, i)Dj+N−k−1.

Proof. From (3) and (5), we have

F =

∞∑
n=0

(−1)nα−nr!S1(n, r)
ln
(
1− x

α

)
− x

α

(
−x

α

) xn

n!

=

∞∑
n=0

(−1)nα−nr!S1(n, r)
xn

n!

∞∑
k=0

(−1)
k Dk−1

αk(k − 1)!
xk.
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By (9),

F =

∞∑
n=0

n∑
k=0

(−1)n
r!

αnk! (n− k − 1)!
S1(k, r)Dn−k−1x

n.

Thus, from (8), we get

F (N) = N !

∞∑
n=0

n+N∑
k=0

(−1)n+N

(
n+N

N

)
r!S1(k, r)

αn+Nk! (n+N − k − 1)!
Dn+N−k−1x

n.

Notice that from (11),

eNGF (N) =

N !r!

∞∑
n=0

n∑
j=0

j+N∑
k=0

n−j∑
i=0

(
j+N

N

)
N i (−1)n+NS1(k, r)S1 (n−j, i)

αn+Nk!(n−j)! (j+N−k−1)!
×Dj+N−k−1x

n. (26)

Thus, comparing the coefficients on right side of (20) and (26) yield the desired
result. □

We also give the following identities with the generalized harmonic numbers of
rank r, H (n, r, α) and the Stirling number of the first kind.

Theorem 2.14. Let N, n, r and α be any positive integers. For any integer m ≥ 2,
n+N∑
j=0

j∑
i=0

(−1)
j−i

(
m

j−i

)(
n+N−j+m−2

n+N−j

)
H(i, r, α)

=
(−1)N+n+r+1(r+1)!

αN+n(n+N)!

n∑
i=0

i∑
k=0

r∑
j=0

(−1)
k
Nk

(
n

i

)
S1(N, r+1−j)× S1 (n−i, j)S1 (i, k) .

Proof. By (7), (8) and (9), we have

F (N) =
dN

dxN

(
(−1)

r+1 (− ln(1− x
α )
)r+1

1−x
(1−x)

m 1

(1−x)
m−1

)

=
dN

dxN

(−1)
r+1

∞∑
n=0

H(n, r, α)xn
∞∑
i=0

(−1)
i

(
m

i

)
xi

∞∑
j=0

(
j+m−2

j

)
xj


=

dN

dxN

(−1)
r+1

∞∑
n=0

n∑
i=0

(−1)
n−i

(
m

n−i

)
H(i, r, α)xn

∞∑
j=0

(
j+m−2

j

)
xj


=

dN

dxN

(−1)
r+1

∞∑
n=0

n∑
j=0

j∑
i=0

(−1)
j−i

(
m

j−i

)(
n−j+m−2

n−j

)
H(i, r, α)xn


= (−1)

r+1
∞∑

n=0

n∑
j=0

j∑
i=0

dN

dxN

(
(−1)

j−i

(
m

j−i

)(
n−j+m−2

n−j

)
H(i, r, α)xn

)
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= (−1)
r+1

∞∑
n=0

n+N∑
j=0

j∑
i=0

(−1)
j−i

N !

(
m

j−i

)(
n+N−j+m−2

n+N−j

)(
n+N

N

)
×H(i, r, α)xn. (27)

Thus, comparing the coefficients on right side of (22) and (27), we have the proof. □

Theorem 2.15. Let N, n, r and α be any positive integers. For any integer m ≥ 2,

(−1)N+n+r+1 (r + 1)!

N !n!αN+n

r∑
k=0

S1(N, r − k + 1)S1 (n, k)

=

n∑
k=0

k∑
l=0

n−k+N∑
j=0

j∑
i=0

N l (−1)
k+j−i

αkk!
S1 (k, l)H(i, r, α)

×
(

m

j − i

)(
n− k +N − j +m− 2

m− 2

)(
n+N − k

N

)
.

Proof. By (13) and (27), we write

eNGF (N) = (−1)
r+1

∞∑
n=0

(
n∑

l=0

N lS1 (n, l) (−1)
n

αn

)
xn

n!

×
∞∑

n=0

n+N∑
j=0

j∑
i=0

(−1)
j−i

(
m

j−i

)(
n+N−j+m−2

n+N−j

)(
n+N

N

)
N !H(i, r, α)xn

= (−1)
r+1

N !

∞∑
n=0

n∑
k=0

k∑
l=0

n−k+N∑
j=0

j∑
i=0

(−1)
k+j−i N l

αkk!

(
m

j−i

)

×
(
n−k+N−j+m−2

n−k+N−j

)(
n−k+N

N

)
S1 (k, l)H(i, r, α)xn. (28)

Comparing the coefficients on right side of (20) and (28), the proof is complete. □

Theorem 2.16. Let N, n, r and α be any positive integers. For any integer m ≥ 2,

S1(n+N, r + 1)

n!

=

n∑
j=0

n∑
i=0

i∑
l=0

l∑
z=0

r∑
k=0

(−1)
l−z−i

(
m

l − z

)(
i− l +m− 2

i− l

)
N jαi

j! (n− i)!

× S1(N, r − k + 1)S1 (n− i, k)H(z, j − 1, α).

Proof. By (11) and (12), we have

F (N) = (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i
α−iS1 (i, k)S1(N, r − k + 1)

xi

i!
e−NG,

and from the generating function of exponential function,

F (N) = (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i
α−iS1 (i, k)S1(N, r − k + 1)

xi

i!
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×
∞∑
j=0

N j

j!

(
− ln

(
1− x

α

))j
1− x

(1− x)m
1

(1− x)
m−1 .

From here, for m ≥ 2, by (7) and (9), we have

F (N) = (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i
α−iS1 (i, k)S1(N, r − k + 1)

xi

i!

×
∞∑
j=0

N j

j!

∞∑
n=0

H(n, j − 1, α)xn
∞∑
z=0

(−1)
z

(
m

z

)
xz

∞∑
l=0

(
l +m− 2

l

)
xl

= (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i
α−iS1 (i, k)S1(N, r − k + 1)

xi

i!

×
∞∑
j=0

N j

j!

∞∑
n=0

n∑
z=0

(−1)
n−z

(
m

n− z

)
H(z, j − 1, α)xn

∞∑
l=0

(
l +m− 2

l

)
xl

= (−1)N
(r + 1)!

αN

∞∑
i=0

r∑
k=0

(−1)
i
α−iS1 (i, k)S1(N, r − k + 1)

xi

i!

×
∞∑

n=0

n∑
j=0

n∑
l=0

l∑
z=0

(−1)
l−z

(
m

l − z

)(
n− l +m− 2

n− l

)
N j

j!
H(z, j − 1, α)xn

= (−1)N
(r + 1)!

αN

∞∑
n=0

n∑
j=0

j∑
i=0

i∑
l=0

l∑
z=0

r∑
k=0

(−1)
l−z+n−i

(
m

l − z

)(
i− l +m− 2

i− l

)

×H(z, j − 1, α)S1(N, r − k + 1)S1 (n− i, k)
N j

(n− i)!j!

xn

αn−i
. (29)

Comparing the coefficients on right side of (17) and (29), the proof is complete. □
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