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Abstract. In this paper, we initiate the study of enriched ρ-nonexpansive mappings
in modular function spaces. First we show that in modular function spaces, every ρ-
nonexpansive mapping is enriched ρ-nonexpansive mapping but not conversely and that
their sets of fixed point are same. Next, we prove a ρ-convergence result on approximation
of fixed points of enriched ρ-nonexpansive mappings in modular function spaces. We verify
the validity of the result by an example. We construct a table to show our findings. Finally,
we give one more ρ-convergence result under different conditions. Our results are new for
ρ-nonexpansive mappings in modular function spaces.

1. Introduction and preliminaries

Nakano [4] began the study of modular spaces in connection with the theory of ordered
spaces. Musielak and Orlicz [5] presented their generalization. As part of nonlinear
functional analysis, fixed point theory for nonlinear mappings has found many ap-
plications in nonlinear integral equations and differential equations. The study of
this theory in the context of modular function spaces was initiated by Khamsi [6].
Kozlowski [10] has made remarkable contributions in this field.

First, of course, the results on the existence of fixed points were proved. The
approximation of fixed points in modular function spaces continued to seek attention
until Dehaish and Kozlowski [3] used Mann iterative methods to approximate fixed
points of asymptotically point-wise nonexpansive mappings. The class of asymptot-
ically pointwise non-expansive mappings is more general than that of non-expansive
mappings. Kumam [8] has obtained some fixed point results for nonexpansive map-
pings in arbitrary modular spaces. However, his results are more restrictive, while
those of Dehaish and Kozlowski [3] hold for a more general class and under less re-
strictive conditions.
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2 Enriched ρ-nonexpansive mappings

The author [9] introduced a hybrid iterative Picard-Mann process and proved
analytically and supported by numerical examples that it is faster than many existing
iterative processes, including Mann’s and thus Krasnoselskii’s iterative processes. On
the other hand, the idea of enriched mappings in a metric or a normed space is a
relatively new idea introduced by Berinde [1]. His work on enriched non-expansive
mappings in uniformly convex Banach spaces can be seen, for example, in [2], where he
introduced the Krasnoselskii’s iterative process to obtain convergence to fixed points.

In this paper, we start by investigating the approximation of fixed points of en-
riched ρ-nonexpansive mappings in modular function spaces using Picard-Mann hy-
brid iterative process. We substantiate our main convergence theorem by a numerical
example, the results of which are shown in Table 1.

Some basic facts and notations needed in this paper are recalled below.
Let Ω be a non-empty set and Σ a non-trivial σ-algebra of subsets of Ω. Let P be

a δ-ring of subsets of Ω, such that E ∩ A ∈ P for every E ∈ P and A ∈ Σ. Suppose
that there is an increasing sequence of sets Kn ∈ P such that Ω = ∪Kn. With 1A,
we denote the characteristic function of the set A in Ω. With E we denote the linear
space of all simple functions with supports from P. With M∞ we denote the space
of all extended measurable functions.

A set A ∈ Σ is called ρ-null if ρ(g1A) = 0 for every g ∈ E . A property p(ω) means
that ρ holds -almost everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω) does not hold}
is ρ-null. We define M (Ω,Σ,P, ρ) = {f ∈ M∞ : |f(ω)| < ∞ ρ-a.e.}, where f ∈
M (Ω,Σ,P, ρ) is actually an equivalence class of functions equal to ρ-a.e. and not a
single function. Where there is no confusion, we write M instead of M (Ω,Σ,P, ρ) .

Definition 1.1. Let ρ be a regular function pseudomodular. We say that ρ is a
regular convex function modular if ρ(f) = 0 impliesf = 0 ρ-a.e.

It is known (see [10]) that ρ satisfies the following properties:

(1) ρ(0) = 0 iff f = 0 ρ-a.e.

(2) ρ(αf) = ρ(f) for every scalarα with |α| = 1 and f ∈ M.

(3) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α+ β = 1, α, β ≥ 0 and f, g ∈ M.

ρ is called a convex modular if the following property is also fulfilled:
(3’) ρ(αf + βg) ≤ αρ(f) + βρ(g) if α+ β = 1, α, β ≥ 0 and f, g ∈ M.

Definition 1.2. The convex function modular ρ defines the modular function space
Lρ as Lρ = {f ∈ M; ρ(λf) → 0 as λ → 0}.

In general, the modular ρ is not sub-additive and therefore does not behave like a
norm or a distance. However, the modular space Lρ can be equipped with an F -norm,
which is defined by

∥f∥ρ = inf{α > 0 : ρ

(
f

α

)
≤ α}.

The class of all nonzero regular convex function modulars defined on Ω is denoted
by ℜ.

The following properties of the uniform convexity type of ρ can be found in [3].
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Definition 1.3. Let ρ be a regular non-zero convex function modular defined on Ω.
Let t ∈ (0, 1) , r > 0, ε > 0. Define

D(r1, ϵ) = {(f, g) : f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr} .

Let δt1(r, ϵ) = inf

{
1− 1

r
ρ(tf + (1− t)g) : (f, g) ∈ D(r1, ϵ)

}
if \D(r1, ϵ) ̸= ϕ,

and δ1(r, ϵ) = 1 if D(r1, ϵ) = ϕ. The usual notation is δ1 = δ
1
2
1 .

Definition 1.4. A regular non-zero convex function which is modular ρ satisfies
(UUC1) if for every s ≥ 0, ϵ > 0, there exists an η1(s, ϵ) > 0 that depends only on s
and ϵ such that δ1(r, ϵ) > η1(s, ϵ) > 0 for each r > s.

Definition 1.5. Let Lρ be a modular space. The sequence {fn} ⊂ Lρ is called:
(i) ρ-convergent to f ∈ Lρ if ρ(fn − f) → 0 as n → ∞.

(ii) ρ-Cauchy if ρ(fn − fm) → 0 as n and m → ∞.

Definition 1.6. A subset D ⊂ Lρ is called
(i) ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D.

(ii) ρ-compact if every sequence in D has a ρ-convergent subsequence in D.

(iii) ρ-bounded if diamρ(D) = sup{ρ(f − g) : f, g ∈ D} < ∞.

The following lemma can be seen as an analogy to a famous lemma of Schu [12]
in Banach spaces.

Lemma 1.7. Let ρ ∈ ℜ satisfy (UUC1) and let {tk} ⊂ (0, 1) be bounded away from 0
and 1. If there exists R > 0 such that lim supn→∞ ρ(un) ≤ R, lim supn→∞ ρ(vn) ≤ R
and limn→∞ ρ(tnun + (1− tn)vn) = R, then limn→∞ ρ(un − vn) = 0.

A function f ∈ Lρ is called a fixed point of T : Lρ → Lρ if f = Tf. The set of all
fixed points of T is denoted by Fρ(T ).

Definition 1.8. A mapping T : D → D is called ρ-nonexpansive if

ρ(Tf − Tg) ≤ ρ (f − g) for all f, g ∈ D.

The following theorem about the existence of fixed point of the so-called pointwise
ρ-nonexpansive mappings, a class that is broader than ρ-nonexpansive mappings, can
be found in Khamsi and Kozlowski [7].

Theorem 1.9. Let ρ ∈ ℜ satisfy (UUC1). Let D be a ρ-closed ρ-bounded convex non-
empty subset. Then any asymptotically pointwise ρ-nonexpansive mapping T : D → D
has a fixed point. Moreover, the set of all fixed points Fρ(T ) is ρ-closed.

Considering that the class of asymptotically pointwise ρ-nonexpansive mappings
contains the class of ρ-nonexpansive mappings, the above theorem yields the following
theorem about the existence of fixed points of ρ-nonexpansive mappings.

Theorem 1.10. Let ρ ∈ ℜ satisfy (UUC1). Let D be a ρ-closed ρ-bounded convex
non-empty subset. Then any ρ-nonexpansive mapping T : D → D has a fixed point.
Moreover, the set of all fixed points Fρ(T ) is ρ-closed.



4 Enriched ρ-nonexpansive mappings

2. Fixed-point approximation of enriched ρ-nonexpansive mappings

In this section, we prove a ρ-convergence result for the approximation of fixed points of
enriched ρ-nonexpansive mappings in modular function spaces using a hybrid Picard-
Mann iteration method. We define enriched ρ-nonexpansive mappings in modular
function spaces as follows.

Definition 2.1. Let D be a subset of Lρ. We say that a mapping T : D → D is
called enriched ρ-nonexpansive if there exist α ∈ (0, 1) such that

ρ((1− α)(f − g) + α(Tf − Tg)) ≤ ρ (f − g) for all f, g ∈ D. (1)

The following important proposition gives a relationship between enriched ρ-
nonexpansiveness and ρ-nonexpansive and the sets of their fixed points. We support
later this Proposition by Example 2.6.

Proposition 2.2. Suppose that T is an enriched ρ-nonexpansive mapping as defined
in (1). Define

Tαf = (1− α)f + αTf. (2)

Then
(i) Tα is ρ-nonexpansive.

(ii) The set of fixed pints of T is the same as that of Tα. That is, Fρ(T ) = Fρ(Tα).

Proof. (i) By (1) and (2) , we have ρ(Tαf − Tαg) ≤ ρ (f − g) for all f, g ∈ D.
Consequently, Tα is a ρ-nonexpansive.
(ii) Let f ∈ Fρ(T ). Then Tf = f implies that Tαf = (1 − α)f + αf = f.

Conversely, if Tαf = f then (1 − α)f + αTf = f implies αTf = αf and therefore
Tf = f. □

Before proving our main convergence theorem, we need the following key result
for enriched ρ-nonexpansive mappings in modular function spaces using the hybrid
Picard-Mann iteration method.

Theorem 2.3. Let ρ ∈ ℜ satisfy (UUC1) and D be a non-empty ρ-closed, ρ-bounded
and convex subset of Lρ. Let T : D → D be an enriched ρ-nonexpansive mapping as
defined in (1). Let {fn} ⊂ D be defined by the iterative process as follows.

fn+1 = Tαgn, gn = (1− β)fn + βTαfn, (3)

where Tα is defined as in (2). Then limn→∞ ρ(fn − c) exists for all c ∈ Fρ(Tα), and
limn→∞ ρ(fn − Tαfn) = 0.

Proof. Since T : D → D is enriched ρ-nonexpansive, by Proposition 2.2, Tα is ρ-
nonexpansive and Fρ(T ) = Fρ(Tα). Then, according to the Theorem 1.10, Fρ(Tα) ̸=
∅. Let c ∈ Fρ(Tα). To prove that limn→∞ ρ(fn − c) exists for all c ∈ Fρ(Tα), we
consider ρ(fn+1 − c) = ρ (Tαgn − Tαc) ≤ ρ (gn − c).

Also because Tα is a ρ-nonexpansive, ρ (Tαfn − Tαc) ≤ ρ (fn − c), so

ρ(fn+1 − c) ≤ ρ (gn − c) = ρ[(1− β) (fn − c) + βρ (Tαfn − Tαc)]
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≤ (1− β)ρ (fn − c) + βρ (fn − c) = ρ (fn − c) .

Thus, limn→∞ ρ(fn − c) exists for every c ∈ Fρ(Tα).
To prove the rest of the result, we assume that

lim
n→∞

ρ(fn − c) = m (4)

where m ≥ 0.
Note that the above calculations also result in the following inequality:

ρ (gn − c) ≤ ρ (fn − c) .

Next, we prove that limn→∞ ρ(fn − Tαfn) = 0. Now

m = lim
n→∞

ρ(fn+1 − c) ≤ lim
n→∞

ρ( gn − c) ≤ lim
n→∞

ρ (fn − c) = m.

This results in limn→∞ ρ(gn − c) = m. In addition,

lim sup
n→∞

ρ( Tαfn − c) ≤ lim
n→∞

ρ( fn − c) = m. (5)

But then ρ(fn+1 − c) ≤ ρ(gn − c) means that

lim
n→∞

ρ [(1− β)(fn − c) + β(Tαfn − c)] = lim
n→∞

ρ [(1− β)fn + βTαfn)− c]

= lim
n→∞

ρ(gn − c) = m. (6)

Now through (4), (5), (6) and Lemma 1.7, we have limn→∞ ρ(fn − Tαfn ) = 0 as
required. □

Using the above result, we now prove the following convergence theorem by our
iterative process (3) for approximating fixed points of enriched ρ-nonexpansive map-
pings in modular function spaces as follows.

Theorem 2.4. Let ρ ∈ ℜ satisfy (UUC1). Let D be a non-empty ρ-compact and
convex subset of Lρ. Let T : D → D be an enriched ρ-nonexpansive mapping. Let
{fn} be as defined by (3). Then let {fn} ρ-converges to a fixed point of T.

Proof. Since D isρ- compact, there exists a subsequence {fnk
} of {fn} such that

limk→∞ (fnk
− w) = 0 for some w ∈ D. Since Tα is a ρ-nonexpansive, using the

convexity of ρ, we have

ρ

(
w − Tαw

3

)
= ρ

(
w − fnk

3
+

fnk
− Tαfnk

3
+

Tαfnk
− Tαw

3

)
≤ 1

3
ρ(w − fnk

) +
1

3
ρ(fnk

− Tαfnk
) +

1

3
ρ(Tαfnk

− Tαw)

≤ ρ(w − fnk
) + ρ(fnk

− Tαfnk
) + ρ(fnk

− w)

≤ 2ρ (w − fnk
) + ρ(fnk

− Tαfnk
).

Applying the Theorem 2.3, we therefore have ρ(w−Tαw
3 ) = 0. Hence w is a fixed

point of Tα and by Proposition 2.2, w is also a fixed point of T . This means that
{fn} ρ-converges to a fixed point of T. □

Corollary 2.5. Let ρ ∈ ℜ satisfy (UUC1). Let D be a non-empty ρ-compact and
convex subset of Lρ. Let T : D → D be a ρ-nonexpansive mapping. Let {fn} be as
defined by (3) . Then {fn} ρ-converges to a fixed point of T.



6 Enriched ρ-nonexpansive mappings

Proof. As already mentioned, every ρ-nonexpansive mapping is an enriched ρ-nonexpansive
mapping, the proof is complete. □

We now give an example to support our main result Theorem 2.4 above.

Example 2.6. Let us consider the modular space Lρ = R equipped with the norm
∥.∥ , that is, ρ(f) = |f | and D =

{
f ∈ Lρ : 1

3 ≤ f ≤ 3
}
. Obviously, D is a non-

empty ρ-compact and ρ-convex subset of Lρ. Define T : D → D by Tf = 1
f for all

f ∈ D. Then Fρ(T ) = {1}. We show that T is not ρ-nonexpansive, but it is enriched
ρ-nonexpansive. Now, for all f, g ∈ D

ρ(Tf − Tg) =

∣∣∣∣ 1f − 1

g

∣∣∣∣ = ∣∣∣∣g − f

fg

∣∣∣∣ ≰ |f − g| = ρ(f − g).

For example, let us take f = 0.6 and g = 0.9. Then ρ(Tf − Tg) = 0.556 > 0.3 =
ρ(f − g). T is therefore not ρ-nonexpansive.

However, T is 1
5 -enriched ρ-nonexpansive as follows.

ρ((1− α)(f − g) + α(Tf − Tg)) =

∣∣∣∣45(f − g) +
1

5
(
1

f
− 1

g
)

∣∣∣∣ = ∣∣∣∣45(f − g) +
1

5
(
g − f

fg
)

∣∣∣∣
= |f − g|

∣∣∣∣45 − 1

5fg

∣∣∣∣ ≤ ρ (f − g)

for all f, g ∈ D because
∣∣∣ 45 − 1

5fg

∣∣∣ ≤ 1 iff −1 ≤ 4
5 −

1
5fg ≤ 1 iff − 9

5 ≤ − 1
5fg ≤ 1

5 . That

is, 1
5 ≥ − 1

5fg and 1
5fg ≤ 9

5 or 1 ≤ −1
fg and 1

9 ≤ fg or fg ≤ −1 and 1
9 ≤ fg, which are

true for all f, g ∈ D.

Iteration# fn gn fn+1

1 0.6000000000 0.8133333333 1.0266666667
2 1.0266666667 1.0161385281 1.0056103896
3 1.0056103896 1.0033724939 1.0011345983
6 1.0000455075 1.0000273049 1.0000091023
8 1.0000018205 1.0000010923 1.0000003641
10 1.0000000728 1.0000000437 1.0000000146
12 1.0000000029 1.0000000017 1.0000000006
14 1.0000000001 1.0000000001 1.0000000000
15 1.0000000000 1.0000000000 1.0000000000

Table 1: Convergence of our process to the fixed point

Next, we construct a sequence as in (3) and show that it converges to 1, the
unique fixed point of Tα that is identical to the fixed point of T . Take f1 = 0.6,
α = 2

5 , β = 1
2 . With these assumptions, the Table 1 shows that {fn} given by (3)

converges to 1 with an accuracy of 7 decimal places at the 10th iteration and 10
decimal places at the 15th iteration. The speed of convergence naturally depends on
the choice of the parameters α, β and the initial estimate f1. For example, if α, β
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remain the same, the convergence speed increases the closer we move from the left to
2
3 , e.g. 0.66, 0.666 etc. But as soon as we move above or further below 2

3 , we take for
example f1 = 0.6700000000 or f1 = 0.57, the convergence slows down until we get
f1 = 1. Of course, if we start with f1 = 1, there is nothing to show and {fn} given
by (3) converges to 1 as a constant sequence.

Finally, we give another ρ-convergence theorem under different conditions. Con-
sistent with Kilmer et al. [11], we define the ρ-distance from a f ∈ Lρ to a set D ⊂ Lρ

as distρ(f,D) = inf{ρ(f −h) : h ∈ D}. The following definition is a function-modular
space version of Senter and Dotson’s condition (I) [13]. Let D ⊂ Lρ. A mapping
T : D → D is said to satisfy the condition (I) if there is a non-decreasing function
ℓ : [0,∞) → [0,∞) with ℓ(0) = 0, ℓ(r) > 0 for all r ∈ (0,∞) such that

ρ(f − Tf) ≥ ℓ(distρ(f, Fρ(T )) for all f ∈ D.

Theorem 2.7. Let ρ ∈ ℜ satisfy (UUC1) and ∆2-condition. Let D be a non-empty
ρ-closed, ρ-bounded and convex subset of Lρ. Let T : D → D be an enriched ρ-
nonexpansive satisfying the condition (I). Let {fn} be as defined by (3). Then {fn}
ρ-converges to a fixed point of T.

Proof. According to Theorem 2.3, limn→∞ ρ(fn − w) exists for all w ∈ Fρ(Tα). Sup-
pose that limn→∞ ρ (fn − w) = m > 0 because otherwise limn→∞ ρ (fn − w) = 0
means that there is nothing left to prove. Again by the same theorem, we have
ρ (fn+1 − w) ≤ ρ (fn − w) so that distρ(fn+1, Fρ(Tα)) ≤ distρ(fn, Fρ(Tα)). This
means that limn→∞ distρ(fn, Fρ(Tα)) exists. Applying the condition (I) and the
Theorem 2.3 results in

lim
n→∞

ℓ(distρ(fn, Fρ(Tα))) ≤ lim
n→∞

ρ(fn − Tαfn) = 0.

Since ℓ is a non-decreasing function and ℓ(0) = 0, therefore

lim
n→∞

distρ(fn, Fρ(Tα)) = 0. (7)

To prove that {fn} is a ρ-Cauchy sequence in D, let ε > 0. By (7) , there exists a
constant n0 such that for all n ≥ n0, distρ(fn, Fρ(Tα)) <

ε
2 . There therefore exists a

y ∈ Fρ(Tα) such that ρ (fn0
− y) < ε. Now for m,n ≥ n0,

ρ

(
fn+m − fn

2

)
≤ 1

2
ρ (fn+m − y) +

1

2
ρ (fn − y) ≤ ρ (fn0

− y) < ε.

This implies by the ∆2-condition that ρ (fn+m − fn) < ε for m,n ≥ n0. Hence, {fn}
is a ρ-Cauchy sequence in a ρ-closed subset D of the ρ-complete space Lρ, and thus ρ-
converges inD. Let lim

n→∞
fn = w. Then distρ(w,Fρ(Tα)) = lim

n→∞
distρ(fn, Fρ(Tα)) = 0

by (7) . Since Fρ(Tα) is closed, w ∈ Fρ(Tα). This means that {fn} ρ-converges to a
fixed point Tα and thus from T. □

Corollary 2.8. Let ρ ∈ ℜ satisfy (UUC1) and ∆2 the condition. Let D be a
non-empty ρ-closed, ρ-bounded and convex subset of Lρ. Let T : D → D be a ρ-
nonexpansive satisfying the condition (I). Let {fn} be as defined by (3). Then {fn}
ρ-converges to a fixed point of T .
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Proof. The proof follows from the fact that every ρ-nonexpansive is enriched ρ-
nonexpansive. □
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