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Abstract. The primary objective of this paper is to investigate the commutativity of
o-prime rings with the second kind involution, involving pairs of derivations that satisfy
specific differential identities. Finally, we present examples to illustrate that the conditions
assumed in our results are essential and cannot be omitted.

1. Introduction

Throughout this work, & is taken to be an associative ring with _#7 as its center.
For any t1,ty €%, the notation [¢1, 2] denotes the commutator, defined by t1te —tatq,
while t1 o to represents the anti-commutator, given by t1ts 4 tot;. We use the basic
identities [tltg,tg] = tl[tg,tg] + [tl,tg]tg and [tl,tgtg] = [tl,tg]tg + tz[thtg] for all
ty,to,t3 € XZ very frequently. Recall that an involution is an anti-automorphism of
order 2. A ring # with an involution ¢ is said to be o-prime if aZb = aZc(b) = (0)
or o(a)Zb = aZ%b = (0) implies either a = 0 or b = 0. Every prime ring with an
involution ¢ is a o-prime ring, but the converse is not true in general. For instance,
let S =% x %°, where %° is the opposite ring of a prime ring Z. The mapping o on
S defined by o(t1,t2) = (t2,t1) is an involution on S. Thus, S with an involution o is
o-prime but not a prime ring. An element ¢; € Z is said to be hermitian if o(t1) = ¢;
and skew-hermitian if o(t1) = —t1. Let £y denote the set of all hermitian elements
and _Zgs denote the set of all skew-hermitian elements of Z. An involution o is said
to be of the first kind if #7 C _#py; otherwise, it is of the second kind, and in this
case, we have #ZgN #z # (0). An element t; € Z is called a normal element if it
commutes with its image under involution o, and a ring Z is called a normal ring if
every element of the ring % is normal (see in [5]).

A mapping ¢ on Z is termed a derivation if (¢t; + t2) = ¥(t1) + ¢¥(t2) and
P(tita) = Y(t1)te + t19(t2) hold for all ¢1,t2 € Z. Let b €Z be a fixed element of Z.
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2 o-prime rings with a pair of derivations

Then, the mapping ¢ on % defined by ¥ (t1) = [b,t1] = bty — t1b for all t; € Z is a
derivation, and such a derivation is called an inner derivation induced by b. A map
[+ — Z is called centralizing on Z if [f(t1),t1] € #z holds for all t; € Z. In
particular, if [f(¢1),t1] = 0 holds for all ¢t; €%, then it is called commuting,.

Stimulated by the description of centralizing maps, a map f from Z into itself is
called o-centralizing if [f(t1),0(t1)] € #7 for all t; € Z and is called o-commuting if
[f(t1),0(t1)] = 0 for all t; € #Z. The narrative of centralizing and commuting maps
dates back to 1955, when Divinsky proved that if a simple Artinian ring has commut-
ing non-trivial automorphisms, then it is commutative. A few years later, Posner [14]
established that the presence of a nonzero centralizing derivation on a prime ring
implies the commutativity of the ring. The study of centralizing (resp. commuting)
derivations and various generalizations of the concept of centralizing (resp. commut-
ing) maps are the main concepts emerging directly from Posner’s result, with many
applications in various areas. Recently, a number of algebraists have demonstrated
the commutativity theorem for prime and semi-prime rings with or without an in-
volution, accepting identities on automorphisms, derivations, left centralizers, and
generalized derivations (for example) [1,2,4,8,9,11].

In 2014, Ali and Dar [1] began the study of o-centralizing derivations on prime
rings with an involution and proved a o-version of the classical results of Posner [14],
under certain assumptions. They proved that if # is a prime ring with an invo-
lution o such that char(#) # 2, and 1 is a nonzero derivation on % such that
[Y(t1),0(t1)] € Fz for all t1 € Z and Y(_Fs N _Fz) # (0), then Z is commutative.
Furthermore, this result was extended by Najjar et al. [10] for the second kind in-
volution instead of the condition ¥(_#s N #z) # (0). Recently, Alahmadi et al. [2]
generalized the above results for generalized derivations and proved that “Let Z be a
prime ring with an involution o of the second kind such that char(#Z) # 2, and if #
admits a nonzero generalized derivation F' associated with a derivation d such that
[F(t),0(t)] € Fz for all t € Z, then Z is commutative.” In this direction, a lot of
work has been done in recent years (see [3,6,7] and the references therein).

The main goal of our work is to investigate the commutativity of o-prime rings
that satisfy some central identities involving pairs of derivations. Our motivation for
this manuscript comes from the types of identities studied by Mamouni et al. in [10],
and motivated by these types of identities, we generalized some results from [10]. To
prove our main results, we need some lemmas as well as some facts.

2. The main results

LEMMA 2.1. Let Z be a o-prime ring. If a €#Z and z € Z7 such that az € _f7 and
ao(z) € _Zz, then either a € £z or z = 0.

Proof. Since, az € _#z and ac(z) € _#z, we have (0) = [az,r| = [ac(z),r]| forallr € Z,
which implies that (0) = z[a,r| = o(2)[a,r]. Therefore (0) = 2Z[a,r| = o(2)Z%[a, ],
by the definition of o-prime rings we have either z =0 or a € _#. U
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LEMMA 2.2. Let Z be a o-prime ring. If a €Z and z € _Fz such that az € 7 and
o(a)z € 7, then either a € Z7 or z=0.

Proof. Since, az € _#z and o(a)z € #z, we have (0) = [az,r] = [o(a)z,r] forallr € Z,
which implies that 0 = z[a,r] = z[o(a),r]. Therefore (0) = 2%Z[a,r| = zZ[o(a), ], by
the definition of o-prime rings we have either z =0 or a € ¢7. U

LEMMA 2.3. Let Z be a o-prime ring of char(Z) # 2, then % is 2-torsion free.

Proof. Let u € Z and 2u = 0 suggests, 2u(vw) = 0 for all v,w € Z and uZ(2w) =0
for all w € %Z. Since char(#Z) # 2 and Z # (0) then there exist 0 # p € #Z such that
2p # 0, forces uZ(2p) = (0) = uZo(2p), by the definition of o-prime rings we have,
either u = 0 or 2p = 0. The second case is not possible by the assumption and first
case implies that & is 2-torsion free. O

LEMMA 2.4. In o-prime ring, fz N _fu and 7N _Fs are free from zero-divisor.

Proof. Let a €Z and b € #z N _Zu, such that ab = 0, implies abu = 0 for all u € #Z
provide us aZb = (0) = aZo(b), by the definition of o-prime ring, we have either
a=0o0rb=0. 0

LEMMA 2.5. Let Z be a 2-torsion free o-prime ring with an involution o which is of
the second kind. Ift3 € #7 for all ty €, then % is commutative.

Proof. We are given that t? €!_# for all t; €!%. By linearizing the last relation and
using it, we obtain {1ty + tat1 €! £z for all t1,ty €LZ. Since o is of the second kind,
there exists 0 # c €!_#z N _#5. Now, replacing t» by ¢, we have tic €!_#z for all
t; €%, which implies that [t1,r]c = 0 for all r €!%. Applying Lemma 2.4, we get
that [t1,7] = 0 for all ¢;,r €!%, which implies that % is commutative. O

LEMMA 2.6. Let Z be a 2-torsion free o-prime ring and ¢ be the derivation on Z.
If o is of the second kind and 1(h) =0 for all h € Zuy N _Zz, then ¥(z) =0 for all

26/2.

Proof. By the given hypothesis, we have 1(h) = 0, where h € #Zy N _#z, then
P(k?)=0forall k € _ZsN _¢z. Hence ki(k) = 0, making use of Lemma 2.4, we have
either k = 0 or (k) = 0. The first case is not possible because o is of the second
kind. So we have ¢(k) =0for k € #ZsN _#z. Now for any z € ¢z we have 2z = h+k,
where h = z + o(z) and k = z — o(2). Therefore, we have 1(2z) = ¥(h) + ¥ (k) = 0.
Consequently, ¢(z) = 0 for all z € _¢5. O

Fact 2.7. Let Z be a 2-torsion free o-prime rings with an involution o which is of
the second kind, if # is normal, then Z is commutative.

Proof. Since Z is normal, i.e., hk = kh where h € _Zg and k € _#s respectively. Take
any t; €%, then t; —o(t1) € _#g and

h(tl — O'(tl)) = (tl — O'(tl))h, for all t; € and h E/H. (1)



4 o-prime rings with a pair of derivations

Take s € Zs N _Zz, then s(ty + o(t1)) € Zg for all t1 € #Z, using the normality
condition of #Z, we have hs(t1 + o(t1)) = s(t1 + o(t1))h for all t; € Z and h € .
This implies that

s{h(ti +o(t1)) — (t1 +o(t1))h} =0, for all ¢, €# and for all h e _Zy.
Invoking Lemma 2.4, we have either s = 0 or h(t1 + o(t1)) = (t1 + o(t1))h. The
first case is not possible, because o is of the second kind and the latter case together
with (1), gives us ht; = tih for all t; € Z and h € _F. Replacing t; by ta, we obtain

hty =toh, forallt, €Z and h € _Zpy. (2)
Substituting h by t1 + o(t1) in (2), we get
{Ifl—l-O'(tl)}tg :tg{tl —‘rO’(tl)} for all t1,t, €Z. (3)

Now, we take s € _Zg N _#z, then s(t1 — o(t1)) € Zm and using (2), we have s{(t; —
o(t1))te — ta(ts — o(t1))} = 0 for all t1,t2 € Z. Making use of Lemma 2.4, we have
either s =0 or (t; — o(t1))t2 = t2(t1 — o(t1)) but the first case is not possible, due to
o is of the second kind and the latter case implies that

(t1 — o(t1))te = ta(t1 — o(t1)) for all t1,t2 €Z. (4)
Using (3), together with (4), we get, t1ta = totq for all t1,t2 €Z. O
Fact 2.8. Let Z be a 2-torsion free o-prime rings with an involution o which is of
the second kind, then o is centralizing iff Z is commutative.
Proof. Let
[t1,0(t1)] € F7 for all t; €Z. (5)
Linearizing (5), we get
[t1,0(t2)] + [t2,0(t1)] € Fz for all ti,ty €Z.
Replacing to by o(t2), we get
[[t1,t2], t1] + [[o(t2),0(t1)], t1] = O for all ¢1,ty €Z. (6)
Replacing to by toty in (6), we get
([t1, to], t1]t1+o(t1)[[o(t2), o(t1)], t1]+[o(t1), t1][o(t2), o (t1)] = O for all ¢1,t2 € 2. (7)
Combining (6) in (7), we get
[[t1,t2], t1]t1 — o(t1)[[te, t1], t1] + [o(t1), t1][o(t2),0(t1)] = O for all ¢1,t; €Z. (8)
Taking toty for to in the above equation, we obtain
[[t1, t2], t1]t2—o (t1)[[ta, t1], t1]t1+[o(t1), t1]o(t1)[o(t2), o(t1)] = O for all t1,t, € Z.

(9)
Using (8) in (9), and replacing ¢, by o(t1) and t3 by o(t2), we have
[t1,0(t1)|[{t1[t2, t1] — [t2,t1]o(t1)} = O for all ¢,y €Z. (10)
Exchanging to by tot; in (10), we capture
[t o (t)]{t1[ta, t1]t1 — [t2, ta]t10(t1)} = 0 for all ¢, ts € Z. (11)

Invoking (10) in (11), we obtain
[tl,O’(tl)][tg,tl]{—tlo'(tl) + O’(tl)tl} =0 for all t1,t2 €Z.
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The last relation further implies
[t1,0(t1)]>Z]ta, t1] = 0 for all t,t, €. (12)
Replacing ¢; by o(t1) and t2 by o(t2) in (12), we find
[t1,0(t))>R[ta, t1] = 0 = [t1,0(t1)]2R o{[ta, t1]}, for all t;,ty € Z.
By the definition of o-prime ring, we get
[t1,0(t1)]* = 0 or [t1,ts] = Ofor all t1,ty €.

The later case suggests that & is commutative. The first case implies that

[t1,0(t1)]> =0 for all t; €Z.
Since [t1,0(t1)] € _Zz N _Zx and making use of Lemma 2.4, we get

[t1,0(t1)] =0 for all t; €Z.
Using Fact 2.7, # is commutative. 0

FACT 2.9. Let #Z be a 2-torsion free o-prime ring with an involution o, which is of
the second kind. Then ty o o(t1) € Fz for all ty €Z iff Z is commutative.

Proof. By the given condition, we have
tioo(t) € #z forallty €Z.
Linearizing the above relation, we get
tioo(ty) +taoo(ty) € Zz for all ty,t €Z.
The last relation further implies that

[tioo(t),r]+ [taoo(tr),r] =0 for all t1,ts,7 €Z. (13)
Replacing t2 by o(t2) in (13), we find that
[t1 0ta, 7]+ [0(t2) oo (t1),7] =0 for all ¢1,ta, 7 €Z. (14)
Taking ¢ in place of t9 in (14), we grasp
[t3,7] + [o(t1)?,r] = 0 for all t;,r € Z. (15)
Assuming t5 € 77\ {0} and ¢; = ¢3 in (13), we have
[t1,7]ts + [o(t1)?,7]o(ty) = 0 for all t;,r € Z. (16)

Making use of (15) and (16), we obtain
[t2,7]{ts — o(t2)} =0 for all ¢1,t2,r €Z.

Now, {t — o(t2)} € Zs N Fz, by using Lemma 3, we have either [t],7] = 0 or
{ta — o(t2)} = 0, the latter case is not possible, because o is of the second kind, the
first case implies that [t7,7] = O for all t1,r € Z. So, t? € Z(#) for all t; € #.
Invoking Lemma 2.5, &% is commutative. 0

Fact 2.10. Let Z be a 2-torsion free o-prime ring. If o is of the second kind involu-
tion and ¥ # 0 be a o-centralizing derivation on %, then % is commutative.

Proof. By the given condition
[w(t1)70'(t1)] E/Z for all t; €Z.
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Replacing t; by t1 + t2, we get

[W(t1),0(t2)] + [W(t2),0(t1)] € £z for all ty,t; €. (17)
Substituting toh in place of t5 in (17) and using it, where 0 # h € _Zz N _Zu, we
obtain

[ta,o(t1)]Y(h) € Zz for all t1,ty €Z.
Replacing ¢; with o(¢1) and ¢ by o(t2), in the above relation we get
o([te,o(t1))¥(h) € #z for all t1,t; €Z.

By using Lemma 2.2, we have either [t2,0(t1)] € £z or ¢(h) = 0, the first case

implies the commutativity of #Z and the later case implies that ¥(z) = 0 for all
z € _Zz. Replacing t by toz in (17), where z € _#z, we obtain

[W(t1),0(t2)]lo(z) + [Wh(t2),0(t1)]z € £z for all ty,ty €. (18)
Combining (18) and (17), we obtain
[[Y(t1)], t2],7](c(2) —2) =0 for all ty,t2,r €Z.
Since, 0(2) —z € _#z N _Zu, by Lemma 2.4 we obtain
[W(t1)], t1] € Zz forall t) €Z.
By [13, Theorem 1], % is commutative. U

THEOREM 2.11. Let Z be a noncommutative o-prime ring with char(Z) # 2. If o is of
the second kind and ¢, Y2 are derivations on Z satisfying 1 (t1)o(t1) —o(t1)a(t1) €
Fz for allty €Z, then 11 =y = 0.

Proof. Given that
P1(t1)o(tr) —o(t)ve(th) € 7z for all t1 €Z. (19)
Linearizing the above, we achieve
P (tr)o(ta)+1(te)o(ti)—o(t)pe(ta)—o(ta)a(tr) € Fz forall ti,to €Z. (20)
Replacing t2 by o(t2) in (20), we have
1 (t1)ta+r (o (t2))o(t1)—o(tr)e(o(ta))—taha(th) € Fz for all ti,to €Z. (21)
Replacing ty by toh, where 0 £ h € £z N _Zu, we receive
Y1(t1)t2h + P1(o(t2))o(t)h + o(tz)o(tr)vr(h) — o(t)pa(o(t2))h
—o(t1)o(ta)a(h) — taha(ti)h € _#z for all ti,ty €Z. (22)
Invoking (21) in (22) and using Lemma 2.4, we have
o(ta)o(t1)1(h) — o(t1)o(ta)e(h) € #z for all t1,t; €Z. (23)
Substituting ¢t by h, where 0 #h € _#z N _Zy, we get
ho(t1)1(h) — o(t)hpa(h) € Fz  for all ty,ty €Z.
The last relation further implies that
h{o(ti)r(h) — o(ti)2(h)} € Fz forall ti,ty €. (24)
Replacing t; by o(t1) in (24) and using Lemma 2.4, we obtain
ti{1(h) —a(h)} € 77 forallt; €Z.
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The last relation further implies that
[t1, 7[{t)1(h) —P2(h)} =0 for all t1,r €Z. (25)
Replacing r by ru, where u € Z and using (25), we have
[t1, rJu{y1(h) — a(h)} =0 for all t1,r,u €EZ.
The last relation further implies that
[t1,7] Z {¢1(h) — w2(h)} = (0) = o{[t1, 7]} Z {1(h) —2(h)} for all t1,r €Z.
By the definition of o-prime ring we have either [t1,7] = 0 or {¢1(h) —2(h)} = 0, the

first case implies that the commutative of Z which is not possible by our assumption.
The latter case implies that i (h) = 12 (h) and by (23), we have

{U(tg)d(tl) - O'(tl)O'(tQ)}wg(h) S /Z for all t1,t; €Z.
The last relation further implies
[O’(tg),O’(tl)] wg(h) E/Z fOI‘ all tl,tg G%.

On manipulating the last relation, we obtain

[tg,h]l[)g(h) S /Z for all t1,t; €Z. (26)
The above relation further implies that

O'([t2,t1])1/12(h) sz for all tl,tQ 6.@.

The last relation together with (26) and Lemma 2.2, we have either ¥s(h) = 0 or
[ta,t1] € Zz, for all ti,t; € Z. Replacing t; by o(tz), then Z is commutative
by the Fact 2.8, which is not possible by our assumption. The first case implies
that ¢o(h) = 0 = ¢1(h) for all h € Zz N _Zu. Replacing ty by h in (22), where
he_#zN _Zu, we obtain

wl(tl)_d@(tl) G/Z for all t; €.
Let assume @(t1) = ¥1(t1) — P2(t1), so ¢(t1) € #z for all ¢ € Z, if Y1 # 1y then
¢ is centralizing derivation so, by [13, Theorem 1], # is commutative, which is not
possible by our assumption. Now, if 1y = 15, then (19), gives [¢1(t1),0(t1)] € 7z
for all t; €Z. Fact 2.10, implies ¢, = 0 U
COROLLARY 2.12 ([10, Theorem 1]). Let Z be a noncommutative prime ring with an
involution o which is of the second kind, with char(Z) # 2, if Yn, Va2 are derivations
of Z satisfying 1 (t1)o(t1) — o(t1)Ya(ti) € Zz for all ty € X, then 1 = = 0.
THEOREM 2.13. Let Z be a noncommutative o-prime rings with an involution o which
is of the second kind with char(Z) # 2, if ¥1 and vs are derivations of % satisfying
wl(g(tl))tl — U(tl)wg(tl) sz fOT’ all t 6%, then ’l/)l = ’1/12 =0.
Proof. Given that

¢1(U(f1))t1 — O'(tl)’(/JQ(t1) E/Z for all tl,tz cEX.
Linearizing the above relation, we achieve

P1(o(t))ta +1(o(te))ts — o(t1)a(te) — o(ta)e(ty) € Zz forall ty,ty €Z. (27)
Replacing t» by toh, where 0 # h € _#z N _Zx, we receive

Y1(o(t1))teh — o(ty)a(ta)h — o(t1)tathe(h) + b1 (o (t2))t1h
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+ o(te)tiyr(h) + o(t2)ve(ti)h € Fz forall ti,ty €Z. (28)
Using (27) in (28), we obtain
o(ta)tip1(h) — o(t1)taha(h) € #z forall ti,ty €Z. (29)
Taking t2 = ¢ in (29), we gain
o(t)t1{1(h) —2(h)} € Fz forall t; € Z.
The last relation further implies that
[0(t1)t1, 7] {1 (h) —¢2(h)} =0 for all t; €Z. (30)
Replacing r by ru, where u € Z and using (30), we have
[o(t1)t1, 7| Z {1 (h) — Pa(h)}=(0)=0c([o(t1)t1, 7)) Z {1 (h) — 2 (h)} for all t; €Z.
By the definition of o-prime rings we have, either o(t1)t; € #z or ¥1(h) = ¢a(h),

the first case implies that the commutativity of %, which is not possible by our
assumption. The later case together with (29), gives us

{o(to)t1 — o(t1)ta}1(h) € Zz for all ty,t €Z. (31)
The formal relation further implies that

o(o(ta)ti —o(t)ta)i(h) € Fz forall ti,t €Z.
The previous relation together with (31) and Lemma 2.2, we have either o(t2)t; —

o(th)te € Zz for all ty,to € Z or 1(h) =0 for all h € #z N _#Zy. The initial case
implies that

O'(tz)tl — O'(tl)tQ € /Z for all tl,tz 6%. (32)

Taking ¢;s in place of ¢;, where 0 # s € #z N _Zg, making use of Lemma 2.4, we
obtain

o(to)tr +o(ti)te € 7z for all t1,t €Z. (33)
Combining (32) and (33) and using char(Z#) # 2, we obtain
o(ta)t1 € Fz forall ty,ts €Z.
Replacing t; by t1, we achieve

O'(tl)tl S jZ for all t; €. (34)
Replacing t; by o(t1), we get
tio(th) € #z forallty €Z. (35)

Combining (35) and (34), we obtain

[U(tl),tl] E/Z for all t; €Z%.
By Fact 2.8, # is commutative, which is not true by our assumption. Now, if 11 (h) =
0 for all h € #z N _Zu, then ¥s(h) = 0, Lemma 2.6 implies ¢1(2) = 12(z) = 0, for
all z € _#z, replacing ty by h in (27), where h € #z N _Z, we obtain

’lﬁl(()'(tl)) — ’(/Jg(tl) S fZ for all t; €Z. (36)
Replacing t; by s in (27), where s € £z N _Zg, we obtain
1/}1(U(t1)) + 1/)2(151) (S jZ for all t cA. (37)

The last relation together with (36), implies that ¢ (t1) € #7 for all t; € Z. By [13,



M. A. Madni, M. R. Mozumder 9

Theorem 1], ¥y = 0, so (37), implies ¥2(t1) € #z for all t1 € %, so by same result
o = 0. O
COROLLARY 2.14 ([10, Theorem 2]). Let Z be a noncommutative prime rings with an
involution o which is of the second kind with char(Z) # 2, if Y1 and 1o are derivations
of Z satisfying 1 (o(t1))t1 — o(t1)Ya(th) € Fz for allty €Z, then 1 =1y = 0.

THEOREM 2.15. Let Z be a o-prime rings with an involution o which is of the second

kind with char(%Z) # 2, if 11 and 1o are derivations on Z such that V10 = o)1, or
(o0 = o1ha), then following assertions are equivalent:

(1) Yi(t1) opa(o(ty)) —tioo(ti) € Zz for allty €X.

(it) Yi(t1) opa(o(tr)) +tioo(t) € Zz for allty €.
(1it) [1(t1),2(0(t1))] —tioa(ty) € _Zz forallt, €Z.
() [Y1(t1),Y2(0(t1))] +t1oo(ti) € Zz for allty €.

(v) Z is commutative.

Proof. Clearly (v) = (i)—(iv).
If ¢y = 0 or 1) = 0, then the above relation reduces to t; o o(t1) € # for all
ty €Z. Then & is commutative by Fact 2.9.
Now, we assume 1, # 0 and ¥ # 0.
(i) = (v) Given that
wl(tl) o wg(a(tl)) —t0 0’(751) G/Z for all t; €Z.

Linearizing the above equation, we receive
P1(t1) o Ya(o(te)) + Yi(te) o a(o(t1)) —ti o o(ta) —taoo(tr) € Zz forall ty,ts €Z.
Replacing to by toh, where 0 # h € _#zN _Zy, in the above equation and using it, we
get
{¢1 (tl) o U(tg)}’(ﬂg(h) + {tz o wQ(U(tl))}wl(h) € fz for all tl, to €EX. (38)
Putting A in the place of t, where; 0 # h € _#z N _Zp, in the above relation and using
Lemma 2.4, we get
U1 (t1)’lb2(h) + Z/)Q(O‘(tl))l/Jl(h) S /Z for all t; €Z. (39)
Putting s in the place of t3 in (38), where, 0 # s € £z N _Zg, and using Lemma 2.4,
we get
— 1 (t1)Y2(h) + o(o(t1))yn(h) € Fz for all t; €Z. (40)
Combining (39) and (40) and using char(Z) # 2, we obtain
¢2(t1)’(/J1 (h) € /Z for all t; €Z%.
The previous relation further implies that
{[2(t1), r]}o1(h) =0 for all t1,r €Z.

Since, o commutes with 1, then 11 (h) € _#zN _Zu, so by Lemma 2.4, we have either
P1(h) =0 or [¢a(t1),r] = 0. The first case is not possible because o is of the second
kind, the later case implies that [¢)2(¢1),r] = 0 for all ¢1,7 € Z. In particular, taking
r = t1, we have [¢5(t1),t1] =0 for all t; € %Z. By Fact 2.10, Z is commutative.
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(ii) = (v) Given that
P1(t1) oa(a(ty)) +t1o0(ty) € £z forallty €Z.
Linearizing the above equation, we obtain
P1(t1) o Ya(o(t2))+11(t2) o a(o(t))+t1 o o(ta)+ta0oo(th) € Fz for all t1,t €Z.
Replacing ts by toh, where 0 # h € _Zz N _Zy, in the above equation, we get
{1(t1) oo (ta) }eha(h) + {ta 0 Ya(o(t1)) }th1(h) € Zz for all t1,ty €Z.
The above equation is same as (38), so by the same argument % is commutative.
(iii) = (v) Given that
[1(t1), Ya2(o(tr))] —tioo(tr) € #z forallty €Z.

Taking t; = t1 + t2 in the above relation, we obtain
[1(t1), 2(o(t2))] + [Y1(t2), ¥2(o(t1))]
—tioo(ty) —taoo(ti) € Fz forall ti,t; €Z. (41)
Replacing to by toh in (41) and using it, where 0 # h € _#Zz N _Zy, we gain
[W1(t1), o(t2)] Ya(h) + [ta, ¥a2(o(t1)]1(h) € Fz for all t1,ts €Z. (42)
Substituting ts by t2s in (42), where 0 # s € _#z N _Zg, we obtain
—[W1(t1), 0 (t2)] tha(h) + [t2, ¥2(o(t1))]h1(h) € Fz  for all t1,12 €. (43)
By combining (42) and (43), we achieve

[wl(tl),a(tg)]’(/)g(h) Ejz for all tq,to EX.
The previous relation further implies that
le(tl)y J(tQ)], 7“}1/)2(h) =0 for all t1,ta, T EXA.
Since, o commutes with 1o, then 12(h) € _#zN _fu, so by Lemma 2.4, we have either
Pa(h) =0 or [[¢1(t1), o(t2)],r] = 0. The first case is not possible because o is of the
second kind, the latter case implies that [¢1(t1),0(t2)] € #z for all t;,t € Z. In
particular, taking to = o(t1), we have [¢1(t1), t1] € #7 for all t; € %Z. By Fact 2.10,
Z is commutative.
(iv) = (v) Given that
[¢1(t1)7’(/)2(0(t1))] +t100'(t1) sz for all t; €Z.
Taking t; = t1 + t2 in the above relation, we obtain
[wl (tl), wg(O'(tQ))}-i-[wl (tg), wg(d(t1))]+t1 o U(t2)+t2 o O’(t1) S /Z for all t1,to cX.
Replacing t» by t2h in the above equation, where 0 A h € _#z N _Zy, we get
{1(t1) o o(t2) b2 (h) + {t2 0 tha(o(t1)) b1 (h) € Fz for all ty,t; €.
The above equation is same as (42), so by the same argument % is commutative. U
COROLLARY 2.16. Let #Z be a o-prime rings with an involution o which is of the
second kind, with char(Z) # 2, if Y1 and 1y are derivations on Z such that Y10 =

o1, or (Yao = oibs), then following assertions are equivalent:
(1) Y1(t1) oha(te) —tiote € _Fz for allty,to €Z.

(ii) P1(t1) o ha(th) +t10ta € _Fz for all ty,to €X.
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(Z’LZ) [’(/}1(t1),1/}2(t2)] — tl Otz G/Z fOT‘ CL” tl,tz 6%.
(Z’U) [Qpl(tl),ipg(tz)} + tl (¢] (tg) S /Z fOT all tl,tQ Ge@.
(v) Z is commutative.
As it is well-known that the zero-divisor is impossible in the center of a prime

ring, but in o-prime rings center is not free from zero divisor. The follwing example
explain that the above fact.

EXAMPLE 2.17. Consider #Z = 8 2 a,be Z}, define o in such away,
a 0 b 0 . . . . . . .
o 0 b =lo ol It is easy to verify that & is a o-prime ring with an invo-
. a 0 0 0
lution ¢. For any non zero a, 0 0 € ¥z, and for any nonzero b, [ 0 b ] €EZX
a 0 0 0 0 0 .
and [ 0 0 } { 0 b }—[ 0 0 } This shows the fact.
The following examples show that the second kind is necessary in Theorem 2.15.
ExaMPLE 2.18. Consider #Z = z Z } ‘a,b, c,d € Z}. Define o in such a way
a b d —b . . . . . .
that o ¢ d =| ¢ 4 | It is easy to verify that Z is a o-prime ring with

an involution o of the first kind.

Moreover,deﬁnewland¢2bY¢1([CCL Z}):{ OC g]andd}Q({a Z])Z

— c
0 —
c 0
for all t; € Z. However, #Z is noncommutative.

. Here, 91 and v satisfy the condition 11 (t1) ote(o(t1)) —tioo(t) € 72
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