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Abstract. In this paper, we show the convergence of matrix series and the conditions for
their convergence by finding an upper bound for some specific matrix inequalities. Finally,
we introduce a new form of arithmetic-geometric matrix series and analyze their convergence.

1. Introduction

Let Mn(C) be the algebra of all n × n complex matrices. The singular values

s1(A), . . . , sn(A) of a matrix A ∈ Mn(C) are the eigenvalues of the matrix (A∗A)
1/2

,
arranged in decreasing order and repeated according to multiplicity. A Hermitian
matrix A ∈ Mn(C) is said to be positive semidefinite, written as A ≥ 0, if x∗Ax ≥ 0
for all x ∈ Cn, and it is called positive definite, written as A > 0, if x∗Ax > 0 for all
x ∈ Cn with x ̸= 0. The Hilbert-Schmidt norm (or Frobenius norm) ∥·∥2 is the norm

defined on Mn(C) by ∥A∥2 =
(∑

j = 1ns2j (A)
)1/2

, A ∈ Mn(C). The Hilbert-Schmidt
norm is unitarily invariant; that is, ∥UAV ∥2 = ∥A∥2 for all A ∈ Mn(C) and all uni-
tary matrices U, V ∈ Mn(C). Another property of the Hilbert-Schmidt norm is that

∥A∥2 =
(∑

i, j = 1n |fj∗Aei|2
)1/2

, where ejj = 1n and fjnj=1 are two orthonormal

bases of Cn.
The spectral matrix norm, denoted by ∥·∥, of a matrix A ∈ Mn(C) is the norm

defined by ∥A∥ = sup ∥Ax∥ : x ∈ Cn, ∥x∥ = 1, or equivalently, ∥A∥ = s1 (A). For
further properties of these norms, the reader is referred to [5,6]. A matrix A ∈ Mn(C)
is called a contraction if ∥A∥ ≤ 1, or equivalently, if A∗A ≤ In, where In is the identity
matrix in Mn(C). An n× n matrix A = (aij) is called a doubly stochastic matrix if
and only if aij ≥ 0 for all i, j = 1, . . . , n, and the sums of all rows and columns are
equal to one; see [2].
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2 On some matrix inequalities

Doubly stochastic matrices are of particular interest in matrix analysis due to
their connections with geometric problems, such as the Birkhoff-von Neumann the-
orem. This theorem states that the set of n × n doubly stochastic matrices forms
a convex polytope whose vertices are precisely the permutation matrices [2]. In our
work, doubly stochastic matrices play a crucial role in establishing convergence con-
ditions for matrix series, as their spectral properties (e.g., eigenvalues bounded by 1)
ensure the applicability of contraction-based inequalities. For instance, Corollary 2.3
leverages their properties to derive bounds for series involving these matrices.

In this paper, we define matrix series convergence and determine the conditions for
their convergence by finding an upper bound for certain specific matrix inequalities.

In Section 2, we introduce a type of harmonic series inequality with its lower and
upper bounds and present its matrix form. In Section 3, we construct a matrix form
for new types of inequalities for the Hilbert-Schmidt and spectral norms, as the sum
approaches infinity. In Section 4, we study arithmetic-geometric inequalities and their
convergence for matrices.

2. Inequalities of harmonic series

We consider the harmonic series in the following form:
∑∞

n=1
1
n , or, in general form,∑∞

n=1
1

an+b , where a ̸= 0, b are real numbers and a
b is positive. A generalization of the

harmonic series is the p-series (or hyperharmonic series), defined as
∑∞

n=1
1
np . In [1],

the author shows the following inequality; with respect to the harmonic series, the
following lemma holds.

Lemma 2.1. Let n > 1 be positive integer. Then

2
√
n+ 1− 2 <

n∑
k=1

1√
k
< 2

√
n− 1. (1)

Hence, we can see that
n∑

k=1

√
k =

n∑
k=1

k√
k
≤

(
n∑

k=1

k

)(
n∑

k=1

1√
k

)

≤n(n+ 1)

2

(
2
√
n− 1

)
= n(n+ 1)(

√
n− 0.5) (2)

We have a more general representation of this through the following theorem.

Theorem 2.2. Let A ∈ Mn(C) be a positive definite matrix. Then∥∥∥∥∥
n∑

k=1

√
kAk

∥∥∥∥∥
2

<
n(n+ 1)(

√
n− 0.5)(1− ∥A∥2)n+1

1− ∥A∥2
.

Proof. Let us consider that A has singular values s1(A) ≥ . . . ≥ sn(A) and let U be
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a unitary matrix such that A = U diag(s1(A), . . . , sn(A))U∗. Then∥∥∥∥∥
n∑

k=1

√
kAk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

diag(
√
ksk1(A), . . . ,

√
kskn(A))

∥∥∥∥∥
2

<

n∑
k=1

√
k
∥∥diag(sk1(A), . . . , skn(A))

∥∥
2

≤ n(n+ 1)(
√
n− 0.5)

n∑
k=1

∥∥diag(sk1(A), . . . , skn(A))
∥∥
2

≤ n(n+ 1)(
√
n− 0.5)

n∑
k=1

(∥diag(s1(A), . . . , sn(A))∥2)
k

= n(n+ 1)(
√
n− 0.5)

n∑
k=1

(∥A∥2)
k

=
n(n+ 1)(

√
n− 0.5)(1− ∥A∥2)n+1

1− ∥A∥2
.

The following corollary shows the result of the theorem when applied to doubly
stochastic matrices.

Corollary 2.3. Let A be a positive definite doubly stochastic matrix. Then∥∥∥∥∥
n∑

k=1

√
kAk

∥∥∥∥∥
2

≤ n2(n+ 1)(
√
n− 0.5).

Proof. Since A is a positive definite doubly stochastic matrix, 0 < ∥A∥2 ≤ 1. □

Lemma 2.4. Let n > 1 be a positive integer and xk, k = 1, 2, . . . , n, be positive
numbers. Then

min(xk)1≤k≤n

n(n+ 1)(
√
n− 0.5)

⋖
n∑

k=1

xk√
k
< n(2

√
n− 1)max(xk)1≤k≤n. (3)

Proof. From Lemma 1, we have
n∑

k=1

xk√
k
≤

(
n∑

k=1

xk

)(
n∑

k=1

1√
k

)
< n(2

√
n− 1)max(xk)1≤k≤n.

Then, from inequality (2), for the left-hand side we obtain

n∑
k=1

xk√
k
≥

n∑
k=1

xk

n∑
k=1

√
k
>

nmin(xk)1≤k≤n

n(n+ 1)(
√
n− 0.5)

=
min(xk)1≤k≤n

(n+ 1)(
√
n− 0.5)

(4)

This completes the proof. □

Based on Corollary 3, we have the following theorem.
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Theorem 2.5. Let A,X∈Mn(C) be positive definite matrices and ⌊sk(A)⌋, ⌈sk(A)⌉≤
n. Then

⌊sk(A)⌋sn(X)

(⌊sk(A)⌋+ 1)
(√

⌊sk(A)⌋ − 0.5
) ⋖

⌊sk(A)⌋∑
k=1

sk(XA−0.5) < ⌊sk(A)⌋s1(X)
(
2
√
⌊sk(A)⌋ − 1

)
for k = 1, 2, . . . , n.

Proof. Since, from Lemma 2.4, we have

⌊sk(A)⌋∑
k=1

sk(XA−0.5) ≤

⌊sk(A)⌋∑
k=1

s1(X)

⌊sk(A)⌋∑
k=1

sk(A
−0.5)


= ⌊sk(A)⌋s1(X)

⌊sk(A)⌋∑
k=1

sk(A
−0.5)


≤ ⌊sk(A)⌋s1(X)

⌊sk(A)⌋∑
k=1

1

⌊sk(A)⌋0.5


< ⌊sk(A)⌋s1(X)(2

√
⌊sk(A)⌋ − 1),

then, for the left-hand side of the inequality, we obtain

⌊sk(A)⌋∑
k=1

sk(XA−0.5) ≥

⌊sk(A)⌋∑
k=1

sn(X)

⌊sk(A)⌋∑
k=1

sk(A
−0.5)


= ⌊sk(A)⌋sn(X)

⌊sk(A)⌋∑
k=1

sk(A
−0.5)


≥ ⌊sk(A)⌋sn(X)

⌊sk(A)⌋∑
k=1

1

⌈sk(A)⌉0.5


>

⌊sk(A)⌋sn(X)

(⌊sk(A)⌋+ 1)
(√

⌊sk(A)⌋ − 0.5
) by Lemma 2.4.

In the next section, we formally define the concept of convergent matrix series and
establish their convergence criteria.

The convergence of a matrix series
∑∞

k=0 Ak is defined as the convergence of its

partial sums SN =
∑N

k=0 Ak in a given matrix norm (e.g., spectral or Frobenius),
following standard definitions in matrix analysis (see [7]).
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3. Matrix series and their converge

We begin this section by formally defining the convergence of matrix series, follow-
ing standard results in matrix analysis. A matrix series

∑∞
k=0 Ak is said to con-

verge if the sequence of partial sums SN converges in norm. This is equivalent to
limN,M→∞ |SN − SM | = 0, according to the Cauchy criterion. We now state a key
theorem on convergence criteria (see [7]).

Theorem 3.1. If A ∈ Mn(C), then the series
∑

k = 0∞akA
k converges if there exists

a matrix norm ∥·∥ on Mn(C) such that the numerical series
∑

k = 0∞ |ak|
∥∥Ak

∥∥
converges, or if the partial sums of the series are bounded.

By Theorems 2.5 and 3.1, we can apply matrix series to obtain a more general
convergence formula.

Theorem 3.2. Let A ∈ Mn(C) and p > 1. Then∥∥∥∥∑ k = 0∞
1

kn+p
Ak

∥∥∥∥ ≤ 1

p− 1
e∥|A|∥,

and

∞∑
k=0

1

kn+p
Ak converges.

Proof. Since∥∥∥∥∥
∞∑
k=0

1

kn+p
Ak

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
k=0

k!

kn+p

Ak

k!

∥∥∥∥∥ ≤
∞∑
k=0

k!

kn+p

∥∥∥∥∥
∞∑
k=0

Ak

k!

∥∥∥∥∥ ≤
∞∑
k=0

1

kp

∥∥∥∥∥
∞∑
k=0

Ak

k!

∥∥∥∥∥
≤ 1

p− 1

∥∥eA∥∥ =
1

p− 1
e∥|UA|∥ =

1

p− 1
e∥|A|∥,

by Theorem 3.1,

∞∑
k=0

1

kn+p
Ak converges. □

From [8], we have the following lemma for unitarily invariant norms involving
powers of singular values.

Lemma 3.3. Let A,B,X ∈ Mn(C), where A,B are positive definite matrices and X
is Hermitian. Then ∣∣∣∣∣∣∣∣∣Asn(A)X +XBsn(B)

∣∣∣∣∣∣∣∣∣ ≥ 2e−e−1

|||X||| .

This lemma can be generalized in the following theorem.

Theorem 3.4. Let Ai, Bi, X ∈ Mn(C), where Ai,Bi, i = 1, . . . ,m, are positive defi-
nite matrices and X is Hermitian. Then∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

A
sn(Ai)
i Xi +XiB

sn(Bi)
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ 2e−e−1

∣∣∣∣∣∣∣∣∣∣∣∣I −Xm+1

I −X

∣∣∣∣∣∣∣∣∣∣∣∣ ≥ 2e−e−1

(1− sm+1
1 (X))

1− sn(X)
.
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If X = I, then ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

A
sn(Ai)
i +B

sn(Bi)
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ 2(m+ 1)e−e−1

.

Proof. Since aa ≥ e−e for any positive number and X is Hermitian, then Xi is
Hermitian for every i = 1, . . . ,m, and for any positive definite matrix A ≥ sn(A)I.
We obtain:∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

A
sn(Ai)
i Xi +XiB

sn(Bi)
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

ssn(Ai)
n (Ai)X

i +Xissn(Bi)(Bi)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

(ssn(Ai)
n (Ai) + ssn(Bi)(Bi))X

i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

2e−e−1

Xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = 2e−e−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

Xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

= 2e−e−1

∣∣∣∣∣∣∣∣∣∣∣∣I −Xm+1

I −X

∣∣∣∣∣∣∣∣∣∣∣∣ ≥ 2e−e−1

(1− sm+1
1 (X))

1− sn(X)
.

If X = I, then∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

A
sn(Ai)
i +B

sn(Bi)
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

(ssn(Ai)
n (Ai) + ssn(Bi)(Bi))I

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=0

2e−e−1

I

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=

m∑
i=0

2e−e−1

|||I||| = 2(m+ 1)e−e−1

.

4. Arithmetic-geometric matrix series and their convergence

From the following lemma we have the arithmetic geometric mean inequality.

Lemma 4.1. Let ai, for i = 1, . . . , n, be nonnegative real number, then

n
√
a1.a2 . . . .an ≤

n∑
i=1

ai

n
.

Equality holds for ai = 0, 1, i = 1, . . . , n.

So, from this lemma we can conclude the following.

Lemma 4.2. Let ai, for i = 1, . . . , n, be positive real numbers, then

(

n∑
i=1

ai)(

n∑
i=1

a−1
i ) ≥ n2.
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The equality holds for ai = 1, i = 1, . . . , n.

Proof. From Lemma 4.1, we obtain:

1 = a1.a2 . . . an.
1

a1
.
1

a2
. . .

1

an
= n

√
a1.a2 . . . an

n

√
1

a1
.
1

a2
. . .

1

an
≤

n∑
i=1

ai

n
.

n∑
i=1

a−1
i

n
.

The last theorem implies that when m −→ ∞ it diverges, while it tends to partial
sum when it is finite.

From [4], we have the following lemma.

Lemma 4.3. Let A,B ∈ Mn(C) be positive definite matrices. Then∥∥(A+B)2
∥∥
2
≥ 4 ∥AB∥2 . (5)

We can see that if we replace B by A−1, then (2) becomes:∥∥(A+A−1)2
∥∥
2
≥ 4

√
n.

The Lemma 4.3 can be generalized to the following theorem.

Theorem 4.4. Let Ak ∈ Mn(C), k = 1, . . . ,m be positive definite matrices, then∥∥∥∥∥(
m∑

k=1

Ak)
2

∥∥∥∥∥
2

≥ 2m

∥∥∥∥∥
m∏

k=1

Ak

∥∥∥∥∥
2

.

Proof. By Lemma 4.3, we have for m = 2:
m∑

k=1

∥∥(Ak)
2
∥∥
2
≥

∥∥∥∥∥
m−1∑
k=1

(Ak +Ak+1)
2

∥∥∥∥∥
2

.

Assume the statement holds when m = l. Then∥∥∥∥∥(
l∑

k=1

Ak)
2

∥∥∥∥∥
2

≥ 2l

∥∥∥∥∥
l∏

k=1

Ak

∥∥∥∥∥
2

. (6)

We need to show that it is true when m = l + 1.∥∥∥∥∥(
l+1∑
k=1

Ak)
2

∥∥∥∥∥
2

=

∥∥∥∥∥(
l∑

k=1

Ak +Al+1)
2

∥∥∥∥∥
2

=

∥∥∥∥∥(
l∑

k=1

Ak)
2 + 2Al+1

l∑
k=1

Ak + (Al+1)
2

∥∥∥∥∥
2

≥

∥∥∥∥∥
l∑

k=1

(Ak)
2

∥∥∥∥∥
1
2

2

+
∥∥(Al+1)

2
∥∥ 1

2

2

≥ 2

∥∥∥∥∥
l∑

k=1

(Ak)
2

∥∥∥∥∥
2

∥∥(Al+1)
2
∥∥
2

(by Lemma 4.1),

≥ 2l

∥∥∥∥∥
l∏

k=1

Ak

∥∥∥∥∥
2

2 ∥Al+1∥2 (by (6))
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≥ 2l+1

∥∥∥∥∥
l∏

k=1

AkAl+1

∥∥∥∥∥
2

= 2l+1

∥∥∥∥∥
l+1∏
k=1

Ak

∥∥∥∥∥
2

.

From [3], we have another form of inequalities by the following lemma.

Lemma 4.5. Let A,B ∈ Mn(C) be positive definite contractions. If r ≤ sn(B) and
t ≤ sn(A), then

s−1
j (Ar +Bt) +

1

4
(sj(A) + sn(B)) ≤ 1

2

(
sj(A)

sn(B)
+

sn(B)

sj(A)

)
,

with equality holding for A = B = I.

If we have Ai, Bi, i = 1, . . . ,m, with A0 = I this gives a generalization of
Lemma 4.5 by the following theorem.

Theorem 4.6. Let A , B ∈ Mn(C) be positive definite contractions matrices. If
ri ≤ sn(B

i), ti ≤ sn(A
i) and di = max(sj(A

i), sn(B
i)), then:

s−1
j (

m∑
i=0

(Ari +Bti)) +
1

4
(

m∑
i=0

(sj(A
i) + sn(B

i)))

≤ 1

2

m∑
i=0

(
sj(A

i)

sn(Bi)
+

sn(B
i)

sj(Ai)
) (7)

≤ 1

2

(
m∑
i=0

(
d

r

)i

+

m∑
i=1

(
d

t

)i
)

(8)

=
1

2

((
rm+1 − dm+1

)
rm (r − d)

+
tm+1 − dm+1

tm (t− d)

)
(9)

and the series in (9) does not converge because one of its terms tends to infinity as
m → ∞, given d > r and d > t.

Proof. We prove the equation (7) when i = 1.

s−1
j (Ar +Bt) +

1

4
(sj(A) + sn(B)) ≤ 1

2
(
sj(A)

sn(B)
+

sn(B)

sj(A)
) (by Lemma 4.5) (10)

Let the statement be true when m = k:

s−1
j (

k∑
i=1

(Ari +Bti)) +
1

4
(

k∑
i=1

(sj(A
i) + sn(B

i))) ≤ 1

2

k∑
i=

(
sj(A

i)

sn(Bi)
+

sn(B
i)

sj(Ai)
). (11)

We want to show it is true for m = k + 1, then

s−1
j (

k+1∑
i=1

(Ari+Bti

i ))+
1

4
(

k+1∑
i=1

(sj(A
i)+sn(B

i)))

= s−1
j (

k∑
i=1

(Ari+Bti

i )+(Ark+1

+Btk+1

))+
1

4
(

k∑
i=1

(sj(A
i)+sn(B

i)+(sj(A
k+1)+sn(B

k+1)))
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≤

(
s−1
j (

k∑
i=1

(Ari+Bti

i )+
1

4
(

k∑
i=1

(sj(A
i)+sn(B

i))

)

+s−1
j (Ark+1

+Btk+1

)+
1

4
(sj(A

k+1)+sn(B
k+1))

≤ 1

2

k∑
i=

(
sj(A

i)

sn(Bi)
+
sn(B

i)

sj(Ai)
)+

1

2
(
sj(A

k+1)

sn(Bk+1)
+
sn(B

k+1)

sj(Ak+1)
)

=
1

2

k+1∑
i=

(
sj(A

i)

sn(Bi)
+
sn(B

i)

sj(Ai)
) (by (10) and (11)).

To prove (8), it is sufficient to replace sn(B
i) with ri, sn(A

i) with ti and di with
max(sj(A

i), sn(B
i)), then we obtain a geometric series with summation like in (9). □

This series always diverges since one of the terms tends to ∞. Where d > r and
t,m → ∞.

Theorem 4.7. Let {fi.(t) = ∥A∥αit : i = 1, 2, . . . ,m} be a set of functions , A ∈
Mn(C) be positive definite matrix, and

n∑
i=1

αi = 1 where αi ∈ [0, 1]. Then

m∑
i=1

n∏
k=1

fk
i (t) =

∥A∥t −
(
∥A∥t

)n+1

1− ∥A∥t

Proof.
m∑
i=1

n∏
k=1

fk
i (t) = 1 +

n∏
k=1

fi(t) + . . .+

n∏
k=1

fm
i (t)

= 1 + ∥A∥α1t ∥A∥α2t . . .+ ∥A∥αnt + . . .+
(
∥A∥α1t ∥A∥α2t . . .+ ∥A∥αnt

)n
= 1 + ∥A∥t + ∥A∥2t + . . .+ ∥A∥nt =

∥A∥t −
(
∥A∥t

)n+1

1− ∥A∥t
.

This geometric series is convergent when n → ∞, and ∥A∥ < 1, for ∥A∥t

1−∥A∥t , then

if A doubly stochastic matrix, the sum converges.
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