MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК

Corrected proof Available online 30.10.2025 research paper оригинални научни рад DOI: 10.57016/MV-ICMJ2670

$\mathcal{K}(2)$ -SUPERSYMMETRIES OF MODULES OF DIFFERENTIAL OPERATORS

Jamel Boujelben and Imen Safi

Abstract. Let \mathfrak{F}^2_{λ} be the space of tensor densities of degree $\lambda \in \mathbb{C}$ on the supercircle $S^{1|2}$. We consider the space $\mathfrak{D}^{2,k}_{\lambda,\mu}$ of k-th order linear differential operators from \mathfrak{F}^2_{λ} to \mathfrak{F}^2_{μ} as a module over the superalgebra $\mathcal{K}(2)$ of contact vector fields on $S^{1|2}$ and we compute the superalgebra $\mathcal{K}^{2,k}_{\lambda,\mu}$ of endomorphisms on $\mathfrak{D}^{2,k}_{\lambda,\mu}$ commuting with the $\mathcal{K}(2)$ -action. We prove that this algebra is trivial except for $\lambda=0$.

1. Introduction

Let M be an n-dimensional manifold and $\operatorname{Vect}(M)$ the Lie algebra of vector fields on M. For every $\lambda \in \mathbb{C}$, we consider the space $\mathcal{F}_{\lambda}(M)$ of tensor densities of degree λ on M (i.e., the space of sections of the line bundle $\Delta_{\lambda}(M) = |\Lambda^n T^* M|^{\otimes \lambda}$ over M). Clearly, $\mathcal{F}_0(M) \cong C^{\infty}(M)$ as a $\operatorname{Vect}(M)$ -module.

Denote $\mathcal{D}_{\lambda,\mu}(M) := \text{Homdiff}(\mathcal{F}_{\lambda}(M), \mathcal{F}_{\mu}(M))$ as the space of linear differential operators from $\mathcal{F}_{\lambda}(M)$ to $\mathcal{F}_{\mu}(M)$. This space is an associative (and therefore a Lie) algebra with a filtration by the order of differentiation:

$$\mathcal{D}^0_{\lambda,\mu}(M) \subset \mathcal{D}^1_{\lambda,\mu}(M) \cdots \subset \mathcal{D}^k_{\lambda,\mu}(M) \subset \cdots$$

The study of these two-parameter Vect(M)-module families, namely the classification of these modules, has been the subject of several works. Let us cite, for example, [1-3, 5, 8, 10].

Obviously, the classification of $\operatorname{Vect}(M)$ -modules $\mathcal{D}_{\lambda,\mu}(M)$ is obtained through the study of the existence of isomorphisms between modules $\mathcal{D}_{\lambda,\mu}^k(M)$, i.e., linear bijective maps that are invariant under the $\operatorname{Vect}(M)$ -action on these spaces. More generally, one can consider linear operators acting on differential operators (not necessarily bijective) that commute with the $\operatorname{Vect}(M)$ -action (or specifically with the action of a given subalgebra of $\operatorname{Vect}(M)$), i.e., linear maps $T: \mathcal{D}_{\lambda,\mu}^k(M) \to \mathcal{D}_{\lambda,\mu}^k(M)$ satisfying, for all X in $\operatorname{Vect}(M)$,

$$[\mathcal{L}_X^{\lambda,\mu},T]:=\mathcal{L}_X^{\lambda,\mu}\circ T-T\circ\mathcal{L}_X^{\lambda,\mu}=0,$$

2020 Mathematics Subject Classification: 53D55

 $Keywords\ and\ phrases$: Contact structure; differential operators; densities.

where $\mathcal{L}_{X}^{\lambda,\mu}$ stands for the action of the vector field X on the space $\mathcal{D}_{\lambda,\mu}^{k}(M)$. Such an operator T is called a *symmetry* of the module $\mathcal{D}_{\lambda,\mu}^{k}(M)$.

The most important example of symmetries in the case where $M = \mathbb{R}$ (or S^1) is the conjugation of differential operators. This map associates to an operator A its adjoint operator A^* . If $A \in \mathcal{D}^k_{\lambda,\mu}(\mathbb{R})$, then $A^* \in \mathcal{D}^k_{1-\mu,1-\lambda}(\mathbb{R})$, so this map defines a symmetry if and only if $\lambda + \mu = 1$.

In [7], the algebra of symmetries of the module $\mathcal{D}_{\lambda,\mu}^k(S^1)$ was investigated; a complete description and classification for all integer k were provided in this paper.

In [4,11,12], we were interested in the study of analogous superstructures. Namely, we considered the superspace $\mathfrak{D}\lambda$, μ of linear differential operators $A:\mathfrak{F}_{\lambda}\to\mathfrak{F}_{\mu}$, where \mathfrak{F}_{λ} and \mathfrak{F}_{μ} are the spaces of tensor densities on the supercircle $S^{1|1}$ of degree λ and μ , respectively.

Naturally, the Lie superalgebra $\operatorname{Vect}\mathbb{C}(S^{1|1})$ acts on $\mathfrak{D}_{\lambda,\mu}$. However, in [11], we restricted ourselves to the orthosymplectic superalgebra $\mathfrak{osp}(1|2)$, which can be realized as a subalgebra of $\operatorname{Vect}\mathbb{C}(S^{1|1})$, and we studied what we called the algebra of orthosymplectic supersymmetries of the module $\mathfrak{D}_{\lambda,\mu}^k$ – that is, the algebra of endomorphisms of $\mathfrak{D}_{\lambda,\mu}^k$ that commute with the $\mathfrak{osp}(1|2)$ -action.

In [12], we studied the more interesting setting: the algebra $\mathfrak{C}_{\lambda,\mu}^k$ of contact super-symmetries. We considered the space $\mathfrak{D}_{\lambda,\mu}$ as a module over the superalgebra $\mathcal{K}(1)$ of contact vector fields on $S^{1|1}$. In this context, we computed the space $\mathfrak{C}_{\lambda,\mu}^k$ of linear maps on $\mathfrak{D}_{\lambda,\mu}^k$ commuting with the $\mathcal{K}(1)$ -action. We established several results similar to the S^1 case.

A slightly more interesting result, unlike the case of orthosymplectic supersymmetries, is the stability of the dimension of $\mathfrak{C}^k_{\lambda,\mu}$ for $k\geq 3$. This result is due to the fact that any contact supersymmetry is completely determined by its restriction to the subspace of second-order operators. The particular values $k=\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2},3$ are investigated. For all (λ,μ) , a complete description of the algebra $\mathfrak{C}^k_{\lambda,\mu}$ for these values of k is provided.

In [4], we considered the general case of the supercircle $S^{1|n}$, $n \in \mathbb{N}^*$. Naturally, the Lie superalgebra $\operatorname{Vect}\mathbb{C}(S^{1|n})$ of vector fields on $S^{1|n}$ – and in particular, the Lie subalgebra $\mathcal{K}(n)$ of contact vector fields on $S^{1|n}$ – acts on the superspace $\mathfrak{D}^{k,n}\lambda$, μ of linear differential operators of order at most k from \mathfrak{F}^n_λ to \mathfrak{F}^n_μ , where \mathfrak{F}^n_λ and \mathfrak{F}^n_μ are the spaces of tensor densities on the supercircle $S^{1|n}$ of degree λ and μ , respectively.

Evidently, computations in this general case are quite involved and complex. Our main result in this paper was the characterization of $\mathfrak{aff}(n|1)$ -supersymmetries – that is, the endomorphisms of $\mathfrak{D}_{\lambda,\mu}^{n,k}$ that commute with the $\mathfrak{aff}(n|1)$ -action, where $\mathfrak{aff}(n|1)$ is the affine subalgebra of Vect $\mathbb{C}(S^{1|n})$, which can be realized as a subalgebra of $\mathcal{K}(n)$.

In the present paper, we focus our study on the case of the supercircle $S^{1|2}$. We consider the superspace $\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ of linear differential operators of order at most k from \mathfrak{F}^2_{λ} to \mathfrak{F}^2_{μ} , where \mathfrak{F}^2_{λ} and \mathfrak{F}^2_{μ} are the spaces of tensor densities on the supercircle $S^{1|2}$ of degree λ and μ , respectively.

Naturally, the Lie superalgebra $\text{Vect}_{\mathbb{C}}(S^{1|2})$ of vector fields on $S^{1|2}$, and its Lie

subalgebra $\mathcal{K}(2)$ of contact vector fields on $S^{1|2}$, act on $\mathfrak{D}^{2,k}_{\lambda,\mu}$. Using the results of [4], we are able in this work to compute the algebras $\mathcal{K}^{2,k}_{\lambda,\mu}$, $k\in\frac{1}{2}\mathbb{N}^*$, of $\mathcal{K}(2)$ -supersymmetries – i.e., the algebra of linear operators $T:\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})\to\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ commuting with the $\mathcal{K}(2)$ -action on $\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$. We prove that the algebra $\mathcal{K}^{2,k}_{\lambda,\mu}$ is trivial except when $\lambda=0$.

2. Basic definitions and tools

In this section, we recall the main definitions and facts related to the geometry of the supercircle $S^{1|2}$. For more details see [5, 6, 9].

2.1 $\mathcal{K}(2)$ -supersymmetries

We consider the supercircle $S^{1|2}$ with local coordinates (x, θ_1, θ_2) , where x is the even variable and θ_1, θ_2 are the odd variables, i.e., $\theta_1 \theta_2 = -\theta_2 \theta_1$. The superalgebra $C_{\mathbb{C}}^{\infty}(S^{1|2})$ of smooth functions on $S^{1|2}$ consists of elements of the form

$$F = f_0 + \sum_{s=1}^{2} \sum_{1 \le i_1 < i_2 \le 2} f_{i_1 i_2}(x) \theta_{i_1} \theta_{i_2},$$

where $f_0, f_{i_1 i_2} \in C_{\mathbb{C}}^{\infty}(S^1)$.

Let us introduce the standard contact structure given by the following 1-form:

$$\alpha_2 = dx + \sum_{i=1}^{2} \theta_i d\theta_i.$$

On the space $C_{\mathbb{C}}^{\infty}(S^{1|2})$, we consider the contact bracket

$$\{F,G\} = FG' - F'G - \frac{1}{2}(-1)^{|F|} \sum_{i=1}^{2} \overline{D}_i(F) \cdot \overline{D}_i(G),$$

where $\overline{D}_i = \frac{\partial}{\partial \theta_i} - \theta_i \frac{\partial}{\partial x}$ and |F| is the parity of F.

Note that the derivations \overline{D}_i are the generators of 2-extended supersymmetry and generate the kernel of the form α_2 as a module over the ring of functions.

Let $Vect(S^{1|2})$ be the superspace of vector fields on $S^{1|2}$:

$$\operatorname{Vect}(S^{1|2}) = \left\{ F_0 \partial_x + \sum_{i=1}^2 F_i \partial_i \mid F_i \in C^{\infty}(S^{1|2}) \right\},\,$$

where $\partial_i = \frac{\partial}{\partial \theta_i}$ and $\partial_x = \frac{\partial}{\partial x}$.

We consider the superspace $\mathcal{K}(2)$ of contact vector fields on $C^{\infty}(S^{1|2})$. That is, $\mathcal{K}(2)$ is the superspace of vector fields on $S^{1|2}$ preserving the distribution defined by the 1-form α_2 :

$$\mathcal{K}(2) = \left\{ X \in \mathrm{Vect}_{\mathbb{C}}^{\infty}(S^{1|2}) \mid \text{there exists } F \in C^{\infty}(S^{1|2}) \text{ such that } \mathfrak{L}_{X}(\alpha_{2}) = F\alpha_{2} \right\},$$

where \mathfrak{L}_X denotes the Lie derivative along the vector field X.

The Lie superalgebra $\mathcal{K}(2)$ is spanned by the fields of the form:

$$X_F = F\partial_x - \frac{1}{2} \sum_{i=1}^2 (-1)^{|F|} \overline{D}_i(F) \overline{D}_i, \quad \text{where } F \in C^{\infty}(S^{1|2}).$$
 (1)

The function F is said to be the contact Hamiltonian of the field X_F . The bracket in $\mathcal{K}(2)$ can be written as: $[X_F, X_G] = X_{\{F,G\}}$.

Note that in the The Lie superalgebra $\mathcal{K}(2)$ contains two important subalgebra, the *orthosymlectic* Lie superalgebra $\mathfrak{osp}(2|2) \subset \mathcal{K}(2)$ generated by

$$\mathfrak{osp}(2|2) = \mathrm{Span}(X_1, X_x, X_{x^2}, X_{\theta_1}, X_{\theta_2}, X_{\theta_1\theta_2}, X_{x\theta_1}, X_{x\theta_2})$$

and the affine superalgebra $\mathfrak{aff}(2|1)$ which is subalgebra of $\mathfrak{osp}(2|2)$, and then of $\mathcal{K}(2)$ spanned by

$$\mathfrak{aff}(2|1) = \operatorname{Span}(X_1, X_x, X_{\theta_1}, X_{\theta_2}, X_{\theta_1\theta_2}).$$

2.2 Weighted densities on $S^{1|2}$

For any $\lambda \in \mathbb{C}$, we define the space of λ -densities on $S^{1|2}$ as $\mathfrak{F}^2_{\lambda} = \{F\alpha_2^{\lambda} \mid F \in C^{\infty}(S^{1|2})\}$. As a vector space, \mathfrak{F}^2_{λ} is isomorphic to $C^{\infty}_{\mathbb{C}}(S^{1|2})$. The Lie derivative of the density $G\alpha_2^{\lambda}$ along the vector field $X_F \in \mathcal{K}(2)$ is given by the rule

$$\mathfrak{L}_{X_F}^{\lambda}(G\alpha_2^{\lambda}) = \mathfrak{L}_{X_F}^{\lambda}(G)\alpha_2^{\lambda}, \text{ with } \mathfrak{L}_{X_F}^{\lambda} = X_F + \lambda F'.$$

The space \mathfrak{F}^2_{λ} is thus a module over the contact Lie superalgebra $\mathcal{K}(2)$. Obviously, we can easily see that:

- 1) The adjoint $\mathcal{K}(2)$ -module is isomorphic to \mathfrak{F}_{-1}^2 .
- 2) As a $\mathcal{K}(1)$ -module, $\mathfrak{F}^2_{\lambda} = \mathfrak{F}^1_{\lambda} \oplus \prod (\mathfrak{F}^1_{\lambda + \frac{1}{\alpha}})$.

2.3 Differential operators on weighted densities

We denote by $\mathfrak{D}^2_{\lambda,\mu}$ the space of differential operators from \mathfrak{F}^2_{λ} to $\mathfrak{F}\mu^2$ for any $\lambda, \mu \in \mathbb{C}$. We can express any element $A \in \mathfrak{D}^2_{\lambda,\mu}$ in terms of the vector fields $\overline{D}_i = \partial_i - \theta_i \partial_x$, i = 1, 2. Indeed, since $\overline{D}^2_i = -\partial_x$ and $\partial_i = \overline{D}i - \theta_i \overline{D}i^2$ for all i = 1, 2, we can write the operator A as a finite sum

$$A = \sum \ell = (\ell_1, \ell_2) b_\ell \overline{D}_1^{\ell_1} \overline{D} 2^{\ell_2}, \tag{2}$$

where the coefficients $b\ell$ are smooth functions on $S^{1|2}$ and $\ell \in \mathbb{N}^2$. That is, for all $F = f\alpha_2^{\lambda} \in \mathfrak{F}_{\lambda}^2$,

$$A(F) = \sum_{\ell = (\ell_1, \ell_2)} b_{\ell}(x, \theta) \overline{D}_1^{\ell_1} \overline{D}_2^{\ell_2}(f) \alpha_2^{\mu}.$$

For $k \in \frac{1}{2}\mathbb{N}$, we denote by $\mathfrak{D}_{\lambda,\mu}^{2,k}$ the subspace of $\mathfrak{D}_{\lambda,\mu}^2$ consisting of differential operators of the form

$$A = \sum_{\substack{\ell = (\ell_1, \ell_2) \in \mathbb{N} \times \mathbb{N} \\ |\ell| = \ell_1 + \ell_2 < 2k}} b_\ell \overline{D}_1^{\ell_1} \overline{D}_2^{\ell_2}. \tag{3}$$

The superspace $\mathfrak{D}_{\lambda,\mu}^{2,k}$ is then a $\mathcal{K}(2)$ -module for the natural action:

$$\mathfrak{L}_{X_F}^{\lambda,\mu}(A)=\mathfrak{L}_{X_F}^{\mu}\circ A-(-1)^{|A||F|}A\circ\mathfrak{L}_{X_F}^{\lambda},\quad X_F\in\mathcal{K}(2).$$

Thus, clearly, we have the filtration:

$$\mathfrak{D}^{2,0}_{\lambda,\mu}\subset\mathfrak{D}^{2,\frac{1}{2}}_{\lambda,\mu}\subset\mathfrak{D}^{2,1}_{\lambda,\mu}\subset\mathfrak{D}^{2,\frac{3}{2}}_{\lambda,\mu}\subset\cdots\subset\mathfrak{D}^{2,\ell-\frac{1}{2}}_{\lambda,\mu}\subset\mathfrak{D}^{2,\ell}_{\lambda,\mu}\cdots$$
 Note that we can write the operator A in (3) uniquely in the form

$$A = \sum_{m=0}^{2k} \sum_{\substack{(s,\epsilon_1,\epsilon_2) \in \mathbb{N} \times \{0,1\}^2 \\ 2s+\epsilon_1+\epsilon_2 = m}} a_{s,\epsilon_1,\epsilon_2}^m \partial_x^s, \overline{D}_1^{\epsilon_1} \overline{D} 2^{\epsilon_2},$$

where the coefficients $a^m s$, ϵ are smooth functions on $S^{1|2}$. We will adopt this notation in the sequel.

2.4 $\mathcal{K}(2)$ -supersymmetries

A linear operator

$$T: \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \tag{4}$$

is said to be local if it preserves the supports of its arguments: Supp(T(A)) $\operatorname{Supp}(A)$, for all $A \in \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$. That is, for every open subset $U \subset S^{1|2}$, we have

$$A_{|U}=0 \Rightarrow T(A)_{|U}=0; \forall A \in \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}).$$

The map T is non-local if there exists some $A \in \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ vanishing on an open subset $U \subset S^{1|2}$ such that T(A) does not vanish on U

In [7], it has been proven that, in the S^1 -case, the large class of symmetries of the modules $\mathfrak{D}_{\lambda,\mu}^k(S^1)$ – that is, linear operators $T:\mathfrak{D}_{\lambda,\mu}^k(S^1)\to\mathfrak{D}_{\lambda,\mu}^k(S^1)$ commuting with the $\mathrm{Vect}(S^1)$ action on $\mathfrak{D}_{\lambda,\mu}^k(S^1)$ is given by local operators. Indeed, the only non-local linear operator T commuting with the $Vect(S^1)$ -action might exist when $(\lambda, \mu) = (0, 1)$ and is given by

$$T\left(\sum_{\ell=0}^{k} \left(\frac{d}{dx}\right)^{\ell}\right) = \left(\int_{S^1} a_0(x)\right) \circ d,$$

where d is the de Rham differential.

Thus, we focus our study in this work on the large class of linear local operators $T: \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ commuting with the $\mathcal{K}(2)$ -action on $\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$, which we call $\mathcal{K}(2)$ -supersymmetries of the modules $\mathfrak{D}_{\lambda,\mu}^{2,k}(S^{1|2})$. The superalgebra of such operators will be denoted by $\mathcal{K}_{\lambda,\mu}^{2,k}$. Thanks to the renowned Peetre theorem in classical differential geometry, if T is

a local operator as in (4), then for all $(\ell, \epsilon_1, \epsilon_2) \in \mathbb{N} \times \{0, 1\}^2$ and for all $(s, \epsilon'_1, \epsilon'_2) \in \mathbb{N} \times \{0, 1\}^2$, the operator that associates to the function $a \in C^{\infty}(S^{1|2})$ the component with respect to $\partial^s \overline{D}_1^{\epsilon'_1} \overline{D}_2^{\epsilon'_2}$ of $T(a\partial^l \ \overline{D}_1^{\epsilon_1} \overline{D}_2^{\epsilon_2})$ is a local operator acting between superfunctions. Hence, the coefficients of the operator $T(a\partial^l \overline{D}_1^{\epsilon_1} \overline{D}_2^{\epsilon_2})$ appear as derivations of the function a.

That is, for all $0 \le m \le 2k$ and for all $(\ell, \epsilon_1, \epsilon_2) \in \mathbb{N} \times \{0, 1, \}^2$ such that $2\ell + \epsilon_1 + \epsilon_2 = m$, there exist an integer \mathcal{M}_m and some functions $T^{s_2, \epsilon_1'', \epsilon_2''}_{s_1, \epsilon_1', \epsilon_2'} \in \mathbb{C}^{\infty}(S^{1|2})$ such

$$T\left(\sum_{\substack{(s,\epsilon_1,\epsilon_2)\in\mathbb{N}\times\{0,1\}^2\\2s+\epsilon_1+\epsilon_2=m}} a_{s,\epsilon_1,\epsilon_2}^m \partial_x^s \overline{D}_1^{\epsilon_1} \overline{D}_2^{\epsilon_2}\right) = \tag{5}$$

$$\sum_{\substack{(s,\epsilon_1,\epsilon_2)\in\mathbb{N}\times\{0,1\}^2\\2s+\epsilon_1+\epsilon_2=m}}\sum_{\substack{(s_1,\epsilon_1',\epsilon_2')\in\mathbb{N}\times\{0,1\}^2\\2s_1+\epsilon_1'+\epsilon_2'\leq m}}\sum_{\substack{(s_2,\epsilon_1'',\epsilon_2'')\in\mathbb{N}\times\{0,1\}^2\\2s_2+\epsilon_1''+\epsilon_2''\leq M_m}}T_{s,s_1,s_2}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2''}\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_1}\overline{D}_1^{\epsilon_1'}\overline{D}_2^{\epsilon_2'}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_1}\overline{D}_1^{\epsilon_1'}\overline{D}_2^{\epsilon_2'}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_1}\overline{D}_1^{\epsilon_1'}\overline{D}_2^{\epsilon_2'}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2,\epsilon_1''}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2,\epsilon_1''}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2,\epsilon_1''}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}(a_{s,\epsilon_1,\epsilon_2}^m)\partial_x^{s_2}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_2''}\overline{D}_1^{\epsilon_1''}\overline{D}_2^{\epsilon_1''}\overline{D}_2^{\epsilon_$$

3. The algebra $\mathcal{K}_{\lambda,\mu}^{2,k}$

In [4], we have computed, for all $k \in \frac{1}{2}\mathbb{N}$, the superalgebra of $\mathfrak{aff}(2|1)$ -supersymmetries, i.e., the set of (local) endomorphisms $T: \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ commuting with the $\mathfrak{aff}(2|1)$ -action on $\mathfrak{D}_{\lambda,\mu}^{2,k}(S^{1|2})$, that is

$$[\mathfrak{L}_{X_F}^{\lambda,\mu},T]:=\mathfrak{L}_{X_F}^{\lambda,\mu}\circ T-(-1)^{|T||F|}T\circ\mathfrak{L}_{X_F}^{\lambda,\mu}=0,\quad X_F\in\mathfrak{aff}(2|1).$$

Let us recall this result

Theorem 3.1. Let
$$A = \sum_{m=0}^{2k} \sum_{\substack{(s,\epsilon_1,\epsilon_2)) \in \mathbb{N} \times \{0,1\}^2 \\ \frac{2s+\epsilon_1+\epsilon_2-m}{2s+\epsilon_1+\epsilon_2-m}} a_{s,\epsilon_1,\epsilon_2}^m \partial_x^s \ \overline{D}_1^{\epsilon_1} \overline{D}_2^{\epsilon_2} \in \mathfrak{D}_{\lambda,\mu}^{2,k}(S^{1|2}) \ and \ T(A)$$

as in (5). Then the operator T commutes with the $\mathfrak{aff}(2|1)$ -action on $\mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ if and only if T(A) reads as

$$T(A) = \sum_{m=0}^{2k} \sum_{\substack{(s,\epsilon_1,\epsilon_2)) \in \mathbb{N} \times \{0,1\}^2 \\ 2s+\epsilon_1+\epsilon_2 = m}} \sum_{\substack{(t,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2'') \in \mathbb{N} \times \{0,1\}^4 \\ 2t+\epsilon_1'+\epsilon_2'+\epsilon_1''+\epsilon_2' \leq m \\ \epsilon_1+\epsilon_2-\epsilon_1'-\epsilon_2'-\epsilon_1''-\epsilon_2'' \in \mathbb{Z}}} \\ T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2''} \partial_x^t \overline{D}_1^{\epsilon_1''} \overline{D}_2^{\epsilon_2''} (a_{s,\epsilon_1,\epsilon_2}) \partial_x^{s+\frac{1}{2}(\epsilon_1+\epsilon_2-\epsilon_1'-\epsilon_2'-\epsilon_1''-\epsilon_2''-t)} \overline{D}_1^{\epsilon_1'} \overline{D}_2^{\epsilon_2'},$$
 where $T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1,\epsilon_2,\epsilon_1,\epsilon_2}$ are constant scalars satisfying the following conditions:

$$T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon'_1,\epsilon'_2,\epsilon''_1,\epsilon''_2} \partial_x^t \overline{D}_1^{\epsilon''_1} \overline{D}_2^{\epsilon''_2} (a_{s,\epsilon_1,\epsilon_2}) \partial_x^{s+\frac{1}{2}(\epsilon_1+\epsilon_2-\epsilon'_1-\epsilon'_2-\epsilon''_1-\epsilon''_2-t)} \overline{D}_1^{\epsilon'_1} \overline{D}_2^{\epsilon'_2}, \quad (6)$$

$$T_{s,t}^{\epsilon_{1},\epsilon_{2},\epsilon'_{1},\epsilon'_{2},\epsilon''_{1},\epsilon''_{2}} = 0 \text{ if } (\epsilon_{1},\epsilon_{2}), (\epsilon'_{1},\epsilon'_{2}) \in \{(1,1),(0,0)\}, (\epsilon''_{1},\epsilon''_{2}) \in \{(1,0),(0,1)\}, (\epsilon''_{1},\epsilon''_{2}) \in \{(1,1),(0,0)\}, (\epsilon'_{1},\epsilon'_{2}) \in \{(1,0),(0,1)\}, (\epsilon''_{1},\epsilon''_{2}), (\epsilon''_{1},\epsilon''_{2}) \in \{(1,1),(0,0)\}, (\epsilon_{1},\epsilon_{2}) \in \{(1,0),(0,1)\}.$$

$$\begin{array}{l} 2) \ T_{s,t}^{\epsilon_1,\epsilon_2,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} = T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} \ if \ (\epsilon_1,\epsilon_2) \in \{(1,1),(0,0)\}, \ (\epsilon_1',\epsilon_2') = \\ (0,1),(\epsilon_1'',\epsilon_2'') = (1,0) \ or \ (\epsilon_1',\epsilon_2') = (1,0),(\epsilon_1'',\epsilon_2'') = (0,1), \\ (respectively \ T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} = T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} \ if \ (\epsilon_1',\epsilon_2') \in \{(1,1),(0,0)\}, \\ (\epsilon_1,\epsilon_2) = (0,1),(\epsilon_1'',\epsilon_2'') = (1,0) \ or \ (\epsilon_1,\epsilon_2) = (1,0),(\epsilon_1'',\epsilon_2'') = (0,1), \ respectively \\ T_{s,t}^{1-\epsilon_1,1-\epsilon_2,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2''} = T_{s,t}^{\epsilon_1,\epsilon_2,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} \ if \ (\epsilon_2'',\epsilon_2'')\{(1,1),(0,0)\}, \ ((\epsilon_1,\epsilon_2) = (0,1), (\epsilon_1',\epsilon_2') = (0,1), (\epsilon_1',\epsilon_2') = (0,1), (\epsilon_1'',\epsilon_2') = (0,1), \end{array}$$

$$3) \ T_{s,t}^{\epsilon_1,\epsilon_2,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} = -T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} \ if \ (\epsilon_1,\epsilon_2) \in \{(1,1),(0,0)\}, \ (\epsilon_1',\epsilon_2') = (\epsilon_1'',\epsilon_2'') = (1,0) \ or \ (\epsilon_1',\epsilon_2') = (\epsilon_1'',\epsilon_2'') = (0,1) \ (respectively \ T_{s,t}^{1-\epsilon_1,1-\epsilon_2,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2''} = -T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} \ if \ (\epsilon_1',\epsilon_2') \in \{(1,1),(0,0)\}, \ (\epsilon_1,\epsilon_2) = (\epsilon_1'',\epsilon_2'') = (1,0) \ or \ (\epsilon_1,\epsilon_2) = (\epsilon_1'',\epsilon_2'') = (0,1), \ respectively \ T_{s,t}^{1-\epsilon_1,1-\epsilon_2,\epsilon_1',\epsilon_2',\epsilon_1'',\epsilon_2''} = -T_{s,t}^{\epsilon_1,\epsilon_1,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} \ if \ (\epsilon_1'',\epsilon_2'') \in \{(1,1),(0,0)\}, \ (\epsilon_1,\epsilon_2) = (\epsilon_1',\epsilon_2') = (1,0) \ or \ (\epsilon_1,\epsilon_2) = (\epsilon_1',\epsilon_2') = (0,1).$$

4)
$$T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''}=0$$
 if $(\epsilon_1,\epsilon_2)=(\epsilon_1',\epsilon_2')=(\epsilon_1'',\epsilon_2'')=(1,0)$ or $(1,0)$.

5)
$$T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} = -2T_{s,t}^{1-\epsilon_1,1-\epsilon_2,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} = -2T_{s,t}^{1-\epsilon_1,1-\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''}$$
 if $(\epsilon_1,\epsilon_2) = (1,0), (\epsilon_1',\epsilon_2') = (\epsilon_1',\epsilon_2') = (0,1)$ or $(\epsilon_1,\epsilon_2) = (0,1), (\epsilon_1',\epsilon_2') = (\epsilon_1',\epsilon_2') = (1,0)$.

6)
$$T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} = -2T_{s,t}^{1-\epsilon_1,1-\epsilon_2,\epsilon',1-\epsilon_1'',1-\epsilon_2''} = -2T_{s,t}^{\epsilon_1,\epsilon_2,1-\epsilon_1',1-\epsilon_2',1-\epsilon_1'',1-\epsilon_2''}$$
 if $(\epsilon_1,\epsilon_2) = (\epsilon_1',\epsilon_2') = (1,0), (\epsilon_1'',\epsilon_2'') = (0,1)$ or $(\epsilon_1,\epsilon_2) = (\epsilon_1',\epsilon_2') = (0,1), (\epsilon_1'',\epsilon_2'') = (1,0)$.

7)
$$T_{s,t}^{\epsilon_1,\epsilon_2,\epsilon_1',\epsilon_2',1-\epsilon_1'',1-\epsilon_2''} = -2T_{s,t}^{1-\epsilon_1,1-\epsilon_2,1-\epsilon_1',1-\epsilon_2',\epsilon_1'',\epsilon_2''} = -2T_{s,t}^{\epsilon_1,\epsilon_2,1-\epsilon_1',1-\epsilon_2',1-\epsilon_1'',1-\epsilon_2''}$$
 if $(\epsilon_1,\epsilon_2) = (\epsilon_1'',\epsilon_2'') = (1,0), (\epsilon_1',\epsilon_2') = (0,1)$ or $(\epsilon_1,\epsilon_2) = (\epsilon_1'',\epsilon_2'') = (0,1), (\epsilon_1',\epsilon_2') = (1,0).$

Now, since $[X_{\theta_i}, X_{\theta_i f}] = X_f, \forall f \in C^{\infty}(S^1)$, as a superalgebra, $\mathcal{K}(2)$ is generated by the set of odd vector fields $X_{\theta_i f}, f \in C^{\infty}(S^1)$, i=1,2 and by a classical argument we can just consider "polynomial vector fields", i.e., of the form $X_{x^n\theta_i}, n \in \mathbb{N}, i=1,2$. Starting with an $\mathfrak{aff}(2|1)$ -invariant linear operator $T: \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ and given that, for i=1,2, $[X_{x\theta_i}, X_{x\theta_i}] = X_{x^2}$ and $[X_1, X_{x^2\theta_i}] = X_{x\theta_i}$, for the $\mathfrak{aff}(2|1)$ -invariant linear operator T, the invariance of T with respect to $X_{x\theta_i}$ and X_{x^2} holds as soon as the invariance with respect to $X_{x^2\theta_i}$ is. Thus, in our approach, the next step is to impose the invariance with respect the contact vectors fields $X_{x^2\theta_i}, i=1,2$. Moreover, it is well known that, if we identify S^1 with \mathbb{RP}^1 with homogeneous coordinates $(x_1:x_2)$ and choose the affine coordinate $x=x_1/x_2$, the vector fields $x=x_1/x_2$ are globally defined and correspond to the standard projective structure on \mathbb{RP}^1 . In this adapted coordinate the action of the algebra $\mathfrak{sl}(2)=\mathrm{Span}\left(\frac{d}{dx},x\frac{d}{dx},x^2\frac{d}{dx}\right)$ is well defined. Thus, in the corresponding adapted coordinate (x,θ_1,θ_2) of $S^{1|2}$, thanks to (1), for $i,j\in\{1,2\}$ such that $i\neq j$:

$$X_{x^2\theta_i} = \frac{1}{2}x^2(\theta_i \frac{d}{dx} + \frac{d}{d\theta_i}) + \theta_i\theta_j x \frac{d}{d\theta_j},$$

the vector field $X_{x^2\theta_i}$ for i=1,2 is further globally defined.

Let us first establish the two following lemmas. Surely, we may have similar results with the vector field $X_{x^2\theta_2}$.

Lemma 3.2. Let $a \in C^{\infty}(S^{1|2})$, thus we have

1)
$$\mathcal{L}_{X_{x^2\theta_1}}^{\lambda,\mu}(a\partial^{\ell}) = \mathcal{L}_{X_{x^2\theta_1}}^{\mu-\lambda-\ell}(a)\partial^{\ell} - \ell(2\lambda+\ell-1)\theta_1 a\partial^{\ell-1} - (-1)^{|a|}\ell x a\partial^{\ell-1}\overline{D}_1$$

$$-(-1)^{|a|}\ell\theta_{1}\theta_{2}a\partial^{\ell-1}\overline{D}_{2} - \frac{(-1)^{|a|}}{2}a\ell(\ell-1)\partial^{\ell-2}\overline{D}_{1}$$

$$2) \qquad \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\lambda,\mu}(a\partial^{\ell}\overline{D}_{1}) = \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\mu-\lambda-\ell-\frac{1}{2}}(a)\partial^{\ell}\overline{D}_{1} + x\theta_{2}a\partial^{\ell}\overline{D}_{2} + (-1)^{|a|}ax(2\lambda+\ell)\partial^{\ell} - (2\lambda\ell+\ell^{2})\theta_{1}a\partial^{\ell-1}\overline{D}_{1} + \theta_{2}a\ell\partial^{\ell-1}\overline{D}_{2} + (-1)^{|a|}\ell\theta_{1}\theta_{2}a\partial^{\ell-1}\overline{D}_{1}\overline{D}_{2} + \frac{(-1)^{|a|}}{2}(\ell(\ell-1)+4\lambda\ell)a\partial^{\ell-1}$$

$$3) \qquad \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\lambda,\mu}(a\partial^{\ell}\overline{D}_{2}) = \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\mu-\lambda-\ell-\frac{1}{2}}(a)\partial^{\ell}\overline{D}_{2} - x\theta_{2}a\partial^{\ell}\overline{D}_{1} + (-1)^{|a|}\theta_{1}\theta_{2}a(2\lambda+\ell)\partial^{\ell} - (2\lambda\ell+\ell^{2})\theta_{1}a\partial^{\ell-1}\overline{D}_{2} - \ell\theta_{2}a\partial^{\ell-1}\overline{D}_{1} - (-1)^{|a|}\ell xa\partial^{\ell-1}\overline{D}_{1}\overline{D}_{2} - \frac{(-1)^{|a|}}{2}\ell(\ell-1)a\partial^{\ell-2}\overline{D}_{1}\overline{D}_{2}$$

$$4) \qquad \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\lambda,\mu}(a\partial^{\ell}\overline{D}_{1}\overline{D}_{2}) = \mathcal{L}_{X_{x^{2}\theta_{1}}}^{\mu-\lambda-\ell-1}(a)\partial^{\ell}\overline{D}_{1}\overline{D}_{2} - (-1)^{|a|}\theta_{1}\theta_{2}a(2\lambda+\ell+1)\partial^{\ell}\overline{D}_{1} + (-1)^{|a|}(2\lambda+\ell+1)xa\partial^{\ell}\overline{D}_{2} - 2\lambda\theta_{2}a\partial^{\ell} - (2\lambda\ell+2\ell+\ell(\ell-1))\theta_{1}a\partial^{\ell-1}\overline{D}_{1}\overline{D}_{2} + (-1)^{|a|}a(2\lambda\ell+\ell+\frac{\ell(\ell-1)}{2})\partial^{\ell-1}\overline{D}_{2}.$$

Proof.

$$\begin{split} 1) \qquad \mathcal{L}_{X_{x^2\theta_1}}^{\lambda,\mu}(a\partial_x^\ell) &= \mathcal{L}_{X_{x^2\theta_1}}^\mu \circ (a\partial_x^\ell) - (-1)^{|a|}(a\partial_x^\ell) \circ \mathcal{L}_{X_{x^2\theta_1}}^\lambda \\ &= x^2\theta_1a'\partial_x^\ell + x^2\theta_1a\partial_x^{\ell+1} + \frac{1}{2}\Big(x^2\overline{D}_1(a)\partial_x^\ell + (-1)^{|a|}x^2a\partial_x^\ell\overline{D}_1 \\ &+ 2\theta_1\theta_2x\overline{D}_2(a)\partial_x^\ell + (-1)^{|a|}2\theta_1\theta_2xa\partial_x^\ell\overline{D}_2 + 2\mu\theta_1xa\partial_x^\ell \Big) \\ &- (-1)^{|a|}a\Big(\partial_x^\ell(x^2\theta_1\partial x + \frac{1}{2}x^2\overline{D}_1 + \theta_1\theta_2x\overline{D}_2 + 2\lambda\theta_1x)\Big) \\ &= \mathcal{L}_{X_{x^2\theta_1}}^{\mu-\lambda-\ell}(a)\partial_x^\ell - \ell(2\lambda + \ell - 1)\theta_1a\partial^{\ell-1} - (-1)^{|a|}lxa\partial^{\ell-1}\overline{D}_1 \\ &- (-1)^{|a|}l\theta_1\theta_2a\partial^{\ell-1}\overline{D}_2 - \frac{(-1)^{|a|}}{2}a\ell(\ell-1)\partial^{\ell-2}\overline{D}_1. \end{split}$$

$$2) \quad \mathcal{L}_{X_{x^2\theta_1}}^{\lambda,\mu}(a\partial_x^\ell\overline{D}_1) = \mathcal{L}_{X_{x^2\theta_1}}^\mu \circ (a\partial_x^\ell\overline{D}_1) - (-1)^{(|a|+1)}a\partial_x^\ell\overline{D}_1 \circ \mathcal{L}_{X_{x^2\theta_1}}^\lambda \\ &= x^2\theta_1\partial_x(a\partial^\ell\overline{D}_1) + \frac{1}{2}\Big(x^2\overline{D}_1(a\partial_x^\ell\overline{D}_1) + 2\theta_1\theta_2x\overline{D}_2(a\partial_x^\ell\overline{D}_1)\Big) \\ &+ 2\mu\theta_1xa\partial_x^\ell\overline{D}_1 + (-1)^{|a|}a\partial_x^\ell\overline{D}_1\Big(x^2\theta_1 + \frac{1}{2}x^2\overline{D}_1 + x\theta_1\theta_2\overline{D}_2 + 2\lambda\theta_1x\Big) \\ &= x^2\theta_1a'\partial_x^\ell\overline{D}_1 + x^2\theta_1a\partial_x^{\ell+1}\overline{D}_1 + \frac{1}{2}\Big(x^2\overline{D}_1(a)\partial^\ell\overline{D}_1 - (-1)^{|a|}x^2a\partial_x^{\ell+1} \\ &+ 2\theta_1\theta_2x\overline{D}_2(a)\partial^\ell\overline{D}_1 - 2(-1)^{|a|}\theta_1\theta_2xa\partial_x^\ell\overline{D}_1\overline{D}_2\Big) + 2\mu\theta_1xa\partial_x^\ell\overline{D}_1 \\ &+ (-1)^{|a|}a\Big(-x^2\theta_1\partial_x^{\ell+1}\overline{D}_1 + \frac{1}{2}x^2\partial^{\ell+1} + x\theta_1\theta_2\partial_x^\ell\overline{D}_1\overline{D}_2 + x\theta_2\partial_x^\ell\overline{D}_2\Big) \end{split}$$

$$\begin{split} &-(2\lambda+2\ell+1)\theta_1x\partial_x^\ell\overline{D}_1+(2\lambda+\ell)x\partial_x^\ell+\ell(2\lambda+\frac{\ell-1}{2})\partial_x^{\ell-1}\\ &-\ell(2\lambda+\ell)\theta_1\partial_x^{\ell-1}\overline{D}_1+\ell\theta_2\partial_x^{\ell-1}\overline{D}_2+\ell\theta_1\theta_2\partial^{\ell-1}\overline{D}_1\overline{D}_2\Big)\\ &=\mathcal{L}_{X_x^2\theta_1}^{\mu-\lambda-\ell-\frac{1}{2}}(a)\partial^\ell\overline{D}_1+x\theta_2a\partial^\ell\overline{D}_2+(-1)^{|a|}ax(2\lambda+\ell)\partial^\ell\\ &-(2\lambda\ell+\ell^2)\theta_1a\partial^{\ell-1}\overline{D}_1+\theta_2a\ell\partial^{\ell-1}\overline{D}_2+(-1)^{|a|}\ell\theta_1\theta_2a\partial^{\ell-1}\overline{D}_1\overline{D}_2\\ &+\frac{(-1)^{|a|}}{2}(\ell(\ell-1)+4\lambda\ell)a\partial^{\ell-1}. \end{split}$$

By an analogous calculation one can easily obtain 3) and 4).

Lemma 3.3. Let $a \in C^{\infty}(S^{1|2})$, thus we have

1)
$$\partial_x^{\ell} \left(\mathcal{L}_{X_x^2 \theta_1}^{\mu - \lambda}(a) \right) = \mathcal{L}_{X_x^2 \theta_1}^{\mu - \lambda + \ell} (\partial^l(a)) + \ell x \partial_x^{\ell - 1} \overline{D}_1(a) + \ell \theta_1 \theta_2 \partial_x^{\ell - 1} \overline{D}_2(a) + \frac{\ell(\ell - 1)}{2} \partial_x^{\ell - 2} \overline{D}_1(a) + \ell(2(\mu - \lambda) + \ell - 1)\theta_1 \partial_x^{\ell - 1}(a).$$

$$2) \qquad \partial_x^{\ell} \overline{D}_1 \Big(\mathcal{L}_{X_x 2\theta_1}^{\mu - \lambda}(a) \Big) = -\mathcal{L}_{X_x 2\theta_1}^{\mu - \lambda + \ell + \frac{1}{2}} (\partial_x^{\ell} \overline{D}_1(a)) + 2(\mu - \lambda) x \partial_x^{\ell}(a) + \theta_2 x \partial_x^{\ell} \overline{D}_2(a)$$

$$+ (2\ell(\mu - \lambda) + \frac{\ell(\ell - 1)}{2}) \partial_x^{\ell - 1}(a) - \ell(2(\mu - \lambda) + \ell) \theta_1 \partial_x^{\ell - 1} \overline{D}_1(a)$$

$$+ \ell \theta_2 \partial_x^{\ell - 1} \overline{D}_2(a) + \ell \theta_1 \theta_2 \partial_x^{\ell - 1} \overline{D}_1 \overline{D}_2(a).$$

3)
$$\partial_x^{\ell} \overline{D}_2 \Big(\mathcal{L}_{X_x^2 \theta_1}^{\mu - \lambda}(a) \Big) = -\mathcal{L}_{X_x^2 \theta_1}^{\mu - \lambda + \ell + \frac{1}{2}} (\partial_x^{\ell} \overline{D}_2(a)) + (2(\mu - \lambda) + \ell) \theta_1 \theta_2 \partial_x^{\ell}(a)$$

$$+ \ell \theta_2 \partial_x^{\ell - 1} \overline{D}_1(a) - \theta_2 x \partial_x^{\ell} \overline{D}_1(a) - \ell (2(\mu - \lambda) + \ell) \theta_1 \partial_x^{\ell - 1} \overline{D}_2(a)$$

$$- \ell x \partial_x^{\ell - 1} \overline{D}_1 \overline{D}_2(a) - \frac{\ell(\ell - 1)}{2} \partial_x^{\ell - 2} \overline{D}_1 \overline{D}_2(a).$$

4)
$$\begin{split} \partial_x^\ell \overline{D}_1 \overline{D}_2 \Big(\mathcal{L}_{X_x \theta_1}^{\mu - \lambda}(a) \Big) &= \mathcal{L}_{X_x \theta_1}^{\mu - \lambda + \ell + 1}(\partial_x^\ell \overline{D}_1 \overline{D}_2(a)) + 2(\mu - \lambda)\theta_2 \partial_x^\ell(a) \\ &\quad + (2(\mu - \lambda) + \ell + 1)\theta_1 \theta_2 \partial_x^\ell \overline{D}_1(a) - (2(\mu - \lambda) + \ell + 1)x \partial_x^\ell \overline{D}_2(a) \\ &\quad + \ell(2(\mu - \lambda) + \ell + 1)\theta_1 \partial_x^{\ell - 1} \overline{D}_1 \overline{D}_2(a) \\ &\quad - \ell(2(\mu - \lambda) + \frac{\ell + 1}{2})\partial_x^{\ell - 1} \overline{D}_2(a). \end{split}$$

Proof.

$$\begin{aligned} 1) \qquad \partial_x^\ell (\mathcal{L}_{X_x 2\theta_1}^{\mu - \lambda}(a)) &= \partial_x^\ell \Big(x^2 \theta_1 a' + \frac{1}{2} x^2 \partial_x^\ell \overline{D}_1(a) + x \theta_1 \theta_2 \overline{D}_2(a) + 2(\mu - \lambda) \theta_1 x a \Big) \\ &= x^2 \theta_1 \partial_x^{\ell + 1}(a) + \frac{1}{2} x^2 \partial_x^\ell \overline{D}_1(a) + x \theta_1 \theta_2 \partial_x^\ell \overline{D}_2(a) \\ &+ 2(\mu - \lambda + \ell) \theta_1 x \partial_x^\ell(a) + l x \partial_x^{\ell - 1} \overline{D}_1(a) + \ell \theta_1 \theta_2 \partial_x^{\ell - 1} \overline{D}_2(a) \\ &+ \frac{\ell(\ell - 1)}{2} \partial_x^{\ell - 2} \overline{D}_1(a) + \ell(2(\mu - \lambda) + \ell - 1) \theta_1 \partial_x^{\ell - 1}(a) \\ &= \mathcal{L}_{X_x 2\theta_1}^{\mu - \lambda + \ell}(\partial^\ell (a)) + \ell x \partial_x^{\ell - 1} \overline{D}_1(a) + \ell \theta_1 \theta_2 \partial_x^{\ell - 1} \overline{D}_2(a) \end{aligned}$$

$$+ \frac{\ell(\ell-1)}{2} \partial_x^{\ell-2} \overline{D}_1(a) + \ell(2(\mu-\lambda) + \ell-1)\theta_1 \partial_x^{\ell-1}(a).$$
2)
$$\partial_x^{\ell} \overline{D}_1(\mathcal{L}_{X_x\theta_1}^{\mu-\lambda}(a)) = \partial_x^{\ell} \overline{D}_1\left(x^2\theta_1 a' + \frac{1}{2}x^2 \overline{D}_1(a) + x\theta_1\theta_2 \overline{D}_2(a) + 2(\mu-\lambda)\theta_1 xa\right)$$

$$= -\mathcal{L}_{X_x^2\theta_1}^{\mu-\lambda+\ell+\frac{1}{2}}(\partial_x^{\ell} \overline{D}_1(a)) + 2(\mu-\lambda)x\partial_x^{\ell}(a) + \theta_2 x\partial_x^{\ell} \overline{D}_2(a)$$

$$+ (2\ell(\mu-\lambda) + \frac{\ell(\ell-1)}{2})\partial_x^{\ell-1}(a) - \ell(2(\mu-\lambda) + \ell)\theta_1 \partial_x^{\ell-1} \overline{D}_1(a)$$

$$+ \ell\theta_2 \partial_x^{\ell-1} \overline{D}_2(a) + \ell\theta_1 \theta_2 \partial_x^{\ell-1} \overline{D}_1 \overline{D}_2(a).$$

By an analogous calculation one can easily obtain 3) and 4). \Box

Now, thanks to Lemmas 3.2 and 3.3, we can impose the invariance under the action of the vector field $X_{x^2\theta_1}$ (respectively $X_{x^2\theta_2}$) to an $\mathfrak{aff}(2|1)$ -invariant linear operator $T: \mathfrak{D}^{2,k}_{\lambda\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda\mu}(S^{1|2})$.

Theorem 3.4. Let $T: \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2}) \to \mathfrak{D}^{2,k}_{\lambda,\mu}(S^{1|2})$ an $\mathfrak{aff}(2|1)$ -invariant linear (local) operator. Then, T commutes with the actions of the vector fields $X_{x^2\theta_i}; i=1,2$ if and only if, for all $k \in \frac{1}{2}\mathbb{N}^*$ there exist scalar constants $\Upsilon^1_s, \cdots, \Upsilon^6_s$ such that

1) $\forall s \text{ such that } 2s+1 \leq 2k \text{ (resp } 2s+1 \leq 2k+1) \text{ and } \forall a_s, b_s \in C^{\infty}_{\mathbb{C}}(S^{1|2})$

$$T(a_s\partial^s\overline{D}_1 + b_s\partial^s\overline{D}_2) = \Upsilon^1_s\left(a_s\partial^s\overline{D}_1 + b_s\partial^s\overline{D}_2\right) + \Upsilon^2_s(a_s\partial^s\overline{D}_2 - b_s\partial^s\overline{D}_1)$$

2) $\forall s \text{ such that } 2s \leq 2k \text{ (resp } 2s \leq 2k+1) \text{ and } \forall c_s, d_s \in C^{\infty}_{\mathbb{C}}(S^{1|2})$

$$T\left(c_s\partial^s + d_s\partial^{s-1}\overline{D}_1\overline{D}_2\right) = \Upsilon_s^3c_s\partial^{s-1}\overline{D}_1\overline{D}_2 + \Upsilon_s^4c_s\partial^s + \Upsilon_s^5d_s\partial^{s-1}\overline{D}_1\overline{D}_2 + \Upsilon_s^6d_s\partial^s,$$
and the scalars $\Upsilon_s^1, \dots, \Upsilon_s^6$ satisfy the following system:

$$\begin{cases} (2\lambda + s)\Upsilon_{s}^{1} - (2\lambda + s)\Upsilon_{s}^{4} = 0, & (2\lambda + s)\Upsilon_{s}^{2} - s\Upsilon_{s}^{6} = 0, \\ s(4\lambda + s - 1)\Upsilon_{s}^{1} - s(4\lambda + s - 1)\Upsilon_{s - 1}^{4} = 0, & s(4\lambda + s - 1)\Upsilon_{s - 1}^{2} = 0, \\ s(2\lambda + s)\Upsilon_{s}^{2} - s(2\lambda + s)\Upsilon_{s - 1}^{2} = 0, & s\Upsilon_{s}^{1} - s\Upsilon_{s - 1}^{1} = 0, \\ s\Upsilon_{s}^{2} - s\Upsilon_{s - 1}^{2} = 0, & s(2\lambda + s)\Upsilon_{s - 1}^{2} = 0, \\ s\Upsilon_{s - 1}^{1} - s\Upsilon_{s - 1}^{5} = 0, & s(2\lambda + s)\Upsilon_{s - 1}^{2} = 0, \\ s\Upsilon_{s - 1}^{2} + (2\lambda + s)\Upsilon_{s - 1}^{3} = 0, & (s + 1)(2\lambda + s)\Upsilon_{s - 1}^{4} = 0, \\ 2\lambda\Upsilon_{s + 1}^{5} - 2\lambda\Upsilon_{s + 1}^{4} = 0, & s(2\lambda + s + 1)\Upsilon_{s - 1}^{6} - (s + 1)(2\lambda + s)\Upsilon_{s + 1}^{4} = 0, \\ s(4\lambda + s + 1)\Upsilon_{s - 1}^{3} - s(4\lambda + s + 1)\Upsilon_{s - 1}^{5} = 0, & s(4\lambda + s + 1)\Upsilon_{s - 1}^{3} + s(s + 1)\Upsilon_{s - 1}^{5} = 0, \\ (s + 1)(2\lambda + s)\Upsilon_{s - 1}^{3} - s(2\lambda + s + 1)\Upsilon_{s + 1}^{3} = 0, & s(2\lambda + s + 1)\Upsilon_{s - 1}^{5} - s(2\lambda + s + 1)\Upsilon_{s + 1}^{5} = 0, \\ (2\lambda + s + 1)\Upsilon_{s + 1}^{3} + (s + 1)\Upsilon_{s - 1}^{2} = 0, & s(4\lambda + s + 1)\Upsilon_{s - 1}^{5} - s(2\lambda + s + 1)\Upsilon_{s + 1}^{5} = 0, \\ (2\lambda + s + 1)\Upsilon_{s + 1}^{4} - (s + 1)\Upsilon_{s - 1}^{1} = 0, & s(s + 1)\Upsilon_{s + 1}^{4} - s(s + 1)\Upsilon_{s - 1}^{5} = 0, \\ (2\lambda + s + 1)\Upsilon_{s + 1}^{5} - (2\lambda + s + 1)\Upsilon_{s - 1}^{1} = 0, & s(s + 1)\Upsilon_{s + 1}^{4} - s(s + 1)\Upsilon_{s + 1}^{5} = 0, \\ (2\lambda + s + 1)\Upsilon_{s + 1}^{5} - (2\lambda + s + 1)\Upsilon_{s - 1}^{1} = 0, & s(s + 1)\Upsilon_{s + 1}^{4} - s(s + 1)\Upsilon_{s + 1}^{6} = 0. \end{cases}$$

Proof. Let $A = a_s \partial^s \overline{D}_1 + b_s \partial^s \overline{D}_2$. Upon using (5) and Theorem 3.1, T(A) reads:

$$\begin{split} T(A) &= \sum_{t=0}^{s-1} \left(T_{s,t}^{(1,0),(1,0),(1,1)} \partial^t \overline{D}_1 \overline{D}_2(a_s) + T_{s,t}^{(1,0),(1,0),(1,1)} \partial^t \overline{D}_1 \overline{D}_2(b_s) \right) \partial^{s-t-1} \overline{D}_1 \\ &+ \left(T_{s,t}^{(1,0),(1,0),(1,1)} \partial^t \overline{D}_1 \overline{D}_2(a_s) + T_{s,t}^{(1,0),(1,0),(1,1)} \partial^t \overline{D}_1 \overline{D}_2(b_s) \right) \partial^{s-t-1} \overline{D}_2 \\ &+ \left(T_{s,t}^{(1,0),(1,1),(1,0)} \partial^t \overline{D}_1(a_s) + T_{s,t}^{(1,0),(1,1),(0,1)} \partial^t \overline{D}_2(a_s) \right. \\ &+ T_{s,t}^{(0,1),(1,1),(1,0)} \partial^t \overline{D}_1(b_s) + T_{s,t}^{(0,1),(1,1),(0,1)} \partial^t \overline{D}_2(b_s) \right) \partial^{s-t-1} \overline{D}_1 \overline{D}_2 \\ &+ \sum_{t=0}^{s} \left(T_{s,t}^{(1,0),(1,0),(0,0)} \partial^t(a_s) + T_{s,t}^{(0,1),(1,0),(0,0)} \partial^t(b_s) \right) \partial^{s-t} \overline{D}_1 \\ &+ \left(T_{s,t}^{(1,0),(1,0),(0,0)} \partial^t(a_s) + T_{s,t}^{(0,1),(1,0),(0,0)} \partial^t(b_s) \right) \partial^{s-t} \overline{D}_2 \\ &+ \left(T_{s,t}^{(1,0),(0,0),(1,0)} \partial^t \overline{D}_1(a_s) + T_{s,t}^{(1,0),(0,0),(0,1)} \partial^t \overline{D}_2(a_s) \right. \\ &+ T_{s,t}^{(0,1),(0,0),(1,0)} \partial^t \overline{D}_1(b_s) + T_{s,t}^{(0,1),(0,0),(0,1)} \partial^t \overline{D}_2(b_s) \right) \partial^{s-t} \end{split}$$

with the additional conditions:

$$\begin{cases} T_{s,t}^{(1,0),(1,0),(1,1)} = -T_{s,t}^{(0,1),(0,1),(1,1)}; & T_{s,t}^{(1,0),(0,1),(1,1)} = T_{s,t}^{(0,1),(1,0),(1,1)}; \\ T_{s,t}^{(1,0),(1,1),(1,0)} = -T_{s,t}^{(0,1),(1,1),(0,1)}; & T_{s,t}^{(1,0),(0,0),(1,0)} = -T_{s,t}^{(0,1),(0,0),(0,1)}; \\ T_{s,t}^{(1,0),(1,1),(0,1)} = T_{s,t}^{(0,1),(1,1),(1,0)}; & T_{s,t}^{(1,0),(0,0),(0,1)} = T_{s,t}^{(0,1),(0,0),(1,0)}; \\ T_{s,t}^{(1,0),(1,0),(0,0)} = -T_{s,t}^{(0,1),(0,1),(0,0)}; & T_{s,t}^{(1,0),(0,1),(0,0)} = T_{s,t}^{(0,1),(0,1),(1,1)}; \end{cases}$$

or with change of notations

$$\begin{split} T(A) &= \sum_{t=0}^{s-1} T_{s,t}^1 \Big(\partial_x^t \overline{D}_1 \overline{D}_2(a_s) \partial^{s-t-1} \overline{D}_1 + \partial_x^t \overline{D}_1 \overline{D}_2(b_s) \partial^{s-t-1} \overline{D}_2 \Big) \\ &+ T_{s,t}^2 \Big(\partial_x^t \overline{D}_1 \overline{D}_2(a_s) \partial^{s-t-1} \overline{D}_2 - \partial_x^t \overline{D}_1 \overline{D}_2(b_s) \partial^{s-t-1} \overline{D}_1 \Big) \\ &+ \sum_{t=0}^{s-1} T_{s,t}^3 \partial_x^t \Big(\overline{D}_1(a_s) + \overline{D}_2(b_s) \Big) \partial^{s-t-1} \overline{D}_1 \overline{D}_2 + \sum_{t=0}^{s} T_{s,t}^4 \partial_x^t \Big(\overline{D}_1(a_s) + \overline{D}_2(b_s) \Big) \partial^{s-t} \\ &+ \sum_{t=0}^{s-1} T_{s,t}^5 \partial_x^t \Big(\overline{D}_2(a_s) - \overline{D}_1(b_s) \Big) \partial^{s-t-1} \overline{D}_1 \overline{D}_2 + \sum_{t=0}^{s} T_{s,t}^6 \partial_x^t \Big(\overline{D}_2(a_s) - \overline{D}_1(b_s) \Big) \partial^{s-t} \\ &+ T_{s,t}^7 \Big(\partial_x^t (a_s) \partial^{s-t} \overline{D}_1 + \partial_x^t (b_s) \partial^{s-t} \overline{D}_2 \Big) + T_{s,t}^8 \Big(\partial_x^t (a_s) \partial^{s-t} \overline{D}_2 - \partial_x^t (b_s) \partial^{s-t} \overline{D}_1 \Big). \end{split}$$

Similarly, if $A = c_{s+1}\partial^{s+1} + d_{s+1}\overline{D}_1\overline{D}_2$ we can write T(A) of the form

$$T(A) = \sum_{t=0}^{s} T_{s+1,t}^{9} \partial_{x}^{s+1,t} \overline{D}_{1} \overline{D}_{2}(c_{s+1}) \partial^{s-t} + \sum_{t=0}^{s-1} T_{s+1,t}^{10} \partial_{x}^{t} \overline{D}_{1} \overline{D}_{2}(c_{s+1}) \partial^{s-t-1} \overline{D}_{1} \overline{D}_{2}$$
$$+ \sum_{t=0}^{s} T_{s+1,t}^{11} \left(\partial_{x}^{t} \overline{D}_{1}(c_{s+1}) \partial^{s-t} \overline{D}_{1} + \partial_{x}^{t} \overline{D}_{2}(c_{s+1}) \partial^{s-t} \overline{D}_{2} \right)$$

$$+ T_{s+1,t}^{12} \left(\partial_x^t \overline{D}_2(c_{s+1}) \partial^{s-t} \overline{D}_1 - \partial_x^t \overline{D}_1(c_{s+1}) \partial^{s-t} \overline{D}_2 \right) + T_{s+1,t}^{13} \partial_x^t(c_{s+1}) \partial^{s-t} \overline{D}_1 \overline{D}_2$$

$$+ \sum_{t=0}^{s+1} T_{s+1,t}^{14} \partial_x^t(c_{s+1}) \partial^{s-t+1} \sum_{t=0}^{s-1} T_{s+1,t}^{15} \partial_x^t \overline{D}_1 \overline{D}_2(d_{s+1}) \partial^{s-t-1} \overline{D}_1 \overline{D}_2$$

$$+ \sum_{t=0}^{s} T_{s+1,t}^{16} \partial_x^t \overline{D}_1 \overline{D}_2(d_{s+1}) \partial^{s-t} + T_{s+1,t}^{17} \left(\partial_x^t \overline{D}_1(d_{s+1}) \partial^{s-t} \overline{D}_1 + \partial_x^t \overline{D}_2(d_{s+1}) \partial^{s-t} \overline{D}_2 \right)$$

$$+ T_{s+1,t}^{18} \left(\partial_x^t \overline{D}_2(d_{s+1}) \partial^{s-t} \overline{D}_1 - \partial_x^t \overline{D}_1(d_{s+1}) \partial^{s-t} \overline{D}_2 \right) + T_{s+1,t}^{19} \partial_x^t(d_{s+1}) \partial^{s-t} \overline{D}_1 \overline{D}_2$$

$$+ \sum_{t=0}^{s+1} T_{s+1,t}^{20} \partial_x^t(d_{s+1}) \partial^{s-t+1}$$

Finally, thanks to Lemmas 3.2 and 3.3, we impose the conditions $[T,\mathcal{L}_{X_{x^2\theta_1}}^{\lambda,\mu}](a_s\partial^s\overline{D}_1+b_s\partial^s\overline{D}_2)=0\quad\text{and}\quad [T,\mathcal{L}_{X_{x^2\theta_1}}^{\lambda,\mu}](c_{s+1}\partial^{s+1}+d_{s+1}\partial^s\overline{D}_1\overline{D}_2)=0.$ By a direct computation the theorem is thus proved.

Now, we are able to compute the dimension of the algebra $\mathcal{K}_{\lambda,\mu}^{2,k}$ for all k in $\frac{1}{2}\mathbb{N}^*$.

THEOREM 3.5. Let
$$k \in \frac{1}{2}\mathbb{N}^*$$
. Then $\dim \left(\mathcal{K}_{\lambda,\mu}^{2,k}\right) = \begin{cases} 2 & \text{if } \lambda = 0\\ 1 & \text{otherwise.} \end{cases}$

Proof. By solving the system (7), we easily obtain that, if $\lambda \in \mathbb{R}^*$, $\Upsilon_s^2 = \Upsilon_s^3 = \Upsilon_s^6 = 0$ for all s and $\Upsilon_s^1 = \Upsilon_s^4 = \Upsilon_s^5$ are constant. In this case, the algebra $\mathcal{K}_{\lambda,\mu}^{2,k}$ is trivial. If $\lambda = 0$, we get $\Upsilon_s^1 = \Upsilon_s^4 = \Upsilon_s^5$, $\Upsilon_s^2 = -\Upsilon_s^3 = \Upsilon_s^6$ and $\Upsilon_s^1, \Upsilon_s^2$ are constant and then $\mathcal{K}_{0,\mu}^{2,k} = \operatorname{Span}(Id, T_0)$ where T_0 is given by:

$$T_0 \left(\alpha \partial^{s+1} + \beta \partial^s \overline{D}_1 \overline{D}_2 \right) = \alpha \partial^s \overline{D}_1 \overline{D}_2 - \beta \partial^{s+1},$$

$$T_0 \left(\alpha \partial^s \overline{D}_1 + \beta \partial^s \overline{D}_2 \right) = \alpha \partial^s \overline{D}_2 - \beta \partial^s \overline{D}_1,$$

 $\forall s \in \mathbb{N}; \forall \alpha, \beta \in C_{\mathbb{C}}^{\infty}(S^{1|2}). \text{ We must prove that } T_0 \text{ is still } \mathcal{K}(2)\text{-invariant. Indeed, Let } X_F, F = f\theta_1 \ (f \in C_{\mathbb{C}}^{\infty}(S^1)) \text{ an odd vector field in } \mathcal{K}(2) \text{ and } A = \alpha \partial^{s+1} + \beta \partial^s \overline{D}_1 \overline{D}_2 \\ (s \in \mathbb{N}, \alpha, \beta \in C_{\mathbb{C}}^{\infty}(S^{1|2})). \text{ Then } \mathfrak{L}_{X_F}^{0,\mu}(A) = \mathfrak{L}_{X_F}^{\mu} \circ A - (-1)^{|A||F|} A \circ \mathfrak{L}_{X_F}^{0}, \text{ where } \mathfrak{L}_{X_F}^{\mu} \circ A = (X_F + \mu F') \circ A$

$$\begin{split} &= \Big(F\partial_x - \frac{1}{2}\sum_{i=1}^2 (-1)^{|F|}\overline{D}_i(F)\overline{D}_i + \mu F'\Big) \circ A \\ &= \Big(F\partial_x + \frac{1}{2}\sum_{i=1}^2 \overline{D}_i(F)\overline{D}_i + \mu F'\Big) \circ A \\ &= \Big(f\theta_1\partial + \frac{1}{2}\Big(f\overline{D}_1 + \theta_1\theta_2f'\overline{D}_2\Big) + \mu f'\theta_1\Big) \circ \Big(\alpha\partial^{s+1} + \beta\partial^s\overline{D}_1\overline{D}_2\Big) \\ &= \theta_1f\alpha'\partial^{s+1} + \theta_1f\alpha\partial^{s+2} + \theta_1f\beta'\partial^s\overline{D}_1\overline{D}_2 + \theta_1f\beta\partial^{s+1}\overline{D}_1\overline{D}_2 \\ &+ \frac{1}{2}\Big(f\overline{D}_1(\alpha)\partial^{s+1} + (-1)^{|\alpha|}f\alpha\partial^{s+1}\overline{D}_1 + f\overline{D}_1(\beta)\partial^s\overline{D}_1\overline{D}_2 - (-1)^{|\beta|}f\beta\partial^{s+1}\overline{D}_2 \\ \end{split}$$

$$+ \theta_1 \theta_2 f' \overline{D}_2(\alpha) \partial^{s+1} + (-1)^{|\alpha|} \theta_1 \theta_2 f' \alpha \partial^{s+1} \overline{D}_2 + \theta_1 \theta_2 f' \overline{D}_2(\beta) \partial^s \overline{D}_1 \overline{D}_2 + (-1)^{|\beta|} \theta_1 \theta_2 f' \beta \partial^{s+1} \overline{D}_1 + \mu \theta_1 f' \alpha \partial^{s+1} + \mu \theta_1 f' \beta \partial^s \overline{D}_1 \overline{D}_2,$$

and

$$\begin{split} A \circ \mathfrak{L}_{X_F}^0 &= A \circ \left(F \partial_x - \frac{1}{2} \sum_{i=1}^2 (-1)^{|F|} \overline{D}_i(F) \overline{D}_i \right) \\ &= \left(\alpha \partial^{s+1} + \beta \partial^s \overline{D}_1 \overline{D}_2 \right) \circ \left(f \theta_1 \partial + \frac{1}{2} \left(f \overline{D}_1 + \theta_1 \theta_2 f' \overline{D}_2 \right) \right) \\ &= \alpha \Big[\sum_{i=0}^{s+1} C_{s+1}^i \Big(\theta_1 f^{(i)} \partial_x^{s+2-i} + \frac{1}{2} f^{(i)} \partial^{s+1-i} \overline{D}_1 + \frac{1}{2} f^{(i+1)} \partial^{s+1-i} \overline{D}_2 \Big) \Big] \\ &+ \beta \Big[\sum_{i=0}^{s} C_s^i \Big(\frac{1}{2} \theta_1 \theta_2 f^{(i+2)} \partial^{s-i} \overline{D}_1 + \frac{1}{2} \theta_1 \theta_2 f^{(i+1)} \partial^{s+1-i} \overline{D}_1 - \frac{1}{2} f^{(i)} \partial^{s+1-i} \overline{D}_2 \\ &- \frac{1}{2} f^{(i+1)} \partial^{s-i} \overline{D}_2 + \theta_1 f^{(i)} \partial^{s+1-i} \overline{D}_1 \overline{D}_2 + \theta_1 f^{(i+1)} \partial^{s-i} \overline{D}_1 \overline{D}_2 \Big) \Big]. \end{split}$$

Therefore

$$\begin{split} \mathfrak{L}_{X_F}^{0,\mu}(A) &= \mathfrak{L}_{X_F}^{\mu-s-1}(\alpha)\partial^{s+1} + \mathfrak{L}_{X_F}^{\mu-s-1}(\beta)\partial^{s}\overline{D}_{1}\overline{D}_{2} \\ &- \Big[\sum_{i=1}^{s} C_{s+1}^{i+1}\theta_{1}f^{(i+1)}\Big((-1)^{|\alpha|}\alpha\partial^{s+1-i} + (-1)^{|\beta|}\beta\partial^{s-i}\overline{D}_{1}\overline{D}_{2}\Big)\Big] \\ &- \frac{1}{2}\Big[\sum_{i=0}^{s} C_{s+1}^{i+1}f^{(i+1)}\Big((-1)^{|\alpha|}\alpha\partial^{s-i}\overline{D}_{1} + (-1)^{|\beta|}\beta\partial^{s-i}\overline{D}_{2}\Big)\Big] \\ &- \frac{1}{2}\Big[\sum_{i=0}^{s} C_{s+1}^{i+1}\theta_{1}\theta_{2}f^{(i+2)}\Big((-1)^{|\alpha|}\alpha\partial^{s-i}\overline{D}_{2} - (-1)^{|\beta|}\beta\partial^{s-i}\overline{D}_{1}\Big)\Big], \end{split}$$

and hence,

$$\begin{split} & \big(T \circ \mathfrak{L}_{X_F}^{0,\mu}\big)(A) = -\mathfrak{L}_{X_F}^{\mu-s-1}(\beta)\partial^{s+1} + \mathfrak{L}_{X_F}^{\mu-s-1}(\alpha)\partial^{s}\overline{D}_{1}\overline{D}_{2} \\ & - \Big[\sum_{i=1}^{s} C_{s+1}^{i+1}\theta_{1}f^{(i+1)}\Big(-(-1)^{|\beta|}\beta\partial^{s+1-i} + (-1)^{|\alpha|}\alpha\partial^{s-i}\overline{D}_{1}\overline{D}_{2}\Big)\Big] \\ & - \frac{1}{2}\Big[\sum_{i=0}^{s} C_{s+1}^{i+1}f^{(i+1)}\Big(-(-1)^{|\beta|}\beta\partial^{s-i}\overline{D}_{1} + (-1)^{|\alpha|}\alpha\partial^{s-i}\overline{D}_{2}\Big)\Big] \\ & - \frac{1}{2}\Big[\sum_{i=0}^{s} C_{s+1}^{i+1}\theta_{1}\theta_{2}f^{(i+2)}\Big(-(-1)^{|\beta|}\beta\partial^{s-i}\overline{D}_{2} - (-1)^{|\alpha|}\alpha\partial^{s-i}\overline{D}_{1}\Big)\Big]. \end{split}$$

On the other hand,

$$\begin{split} \Big(\mathfrak{L}_{X_F}^{0,\mu} \circ T \Big) (A) &= - \mathfrak{L}_{X_F}^{\mu-s-1} (\beta) \partial^{s+1} + \mathfrak{L}_{X_F}^{\mu-s-1} (\alpha) \partial^s \overline{D}_1 \overline{D}_2 \\ &- \Big[\sum_{i=1}^s C_{s+1}^{i+1} \theta_1 f^{(i+1)} \Big(- (-1)^{|\beta|} \beta \partial^{s+1-i} + (-1)^{|\alpha|} \alpha \partial^{s-i} \overline{D}_1 \overline{D}_2 \Big) \Big] \end{split}$$

$$-\frac{1}{2} \Big[\sum_{i=0}^{s} C_{s+1}^{i+1} f^{(i+1)} \Big(-(-1)^{|\beta|} \beta \partial^{s-i} \overline{D}_1 + (-1)^{|\alpha|} \alpha \partial^{s-i} \overline{D}_2 \Big) \Big]$$

$$-\frac{1}{2} \Big[\sum_{i=0}^{s} C_{s+1}^{i+1} \theta_1 \theta_2 f^{(i+2)} \Big(-(-1)^{|\beta|} \beta \partial^{s-i} \overline{D}_2 - (-1)^{|\alpha|} \alpha \partial^{s-i} \overline{D}_1 \Big) \Big].$$

Now, clearly, T_0 is an even linear operator, further more

$$[\mathfrak{L}_{X_F}^{\lambda,\mu},T_0] := \mathfrak{L}_{X_F}^{0,\mu} \circ T_0 - (-1)^{|T_0||F|} T_0 \circ \mathfrak{L}_{X_F}^{0,\mu} = \mathfrak{L}_{X_F}^{0,\mu} \circ T_0 - T_0 \circ \mathfrak{L}_{X_F}^{0,\mu},$$

that gives $[\mathfrak{L}_{X_F}^{\lambda,\mu}, T_0](A) = 0$. By a similar calculation, we obtain the same result if we take $A = \alpha \partial^s \overline{D}_1 + \beta \partial^s \overline{D}_2$, and then consider the case X_F , where $F = f\theta_2$.

References

- [1] N. Belghith, M. Ben Ammar, N. Ben Fraj, Differential Operators on the Weighted Densities on the Supercircle $S^{1|n}$, arXiv:1306.0101v3 [math.DG].
- [2] J. Boujelben, T. Bichr, K. Tounsi, Bilinear differential operators: Projectively equivariant symbol and quantization maps, Tohoku. Math. J., 67(4) (2015), 481–493.
- [3] J. Boujelben, T. Bichr, Z. Saoudi, K. Tounsi, Modules of n-ary differential operators over the orthosymplectic superalgebra osp(1|2), Proc. Indian Acad. Sci. (Math. Sci.), 131(11) (2021), 1-26.
- [4] J. Boujelben , I. Safi, Z. Saoudi, K. Tounsi, Symmetries of modules of differential operators on the supercircle S^{1|n}, Indian. J. Pure. Appl. Math, (2021). https://doi.org/10.1007/s13226-021-00164-y
- [5] C. Duval, V. Ovsienko, Space of second order linear differential operators as a module over the Lie algebra of vector fields, Adv. in Math., 132(2) (1997), 316–333.
- [6] D. Leites, Introduction to the theory of supermanifolds, Usp. Math. Nauk, 35(1) (1980), 3-57.
- [7] H. Gargoubi, P. Monthonet, V. Ovsienko, Symetries of modules of differential operators, J. Nonlinear. Math. Phys., 12 (2005), 348–380.
- [8] H. Gargoubi, Sur la géométrie de l'espace des opérateurs différentiels linéaires sur ℝ, Bull. Soc. Roy. Sci. Liège, 69(1) (2000), 21–47.
- [9] H. Gargoubi, N. Mellouli, V. Ovsienko, Differential operators on supercircle: Conformally equivariant quantization and symbol calculus, Lett. Math. Phys., 79(1) (2007), 51–65.
- [10] H. Gargoubi, V. Ovsienko, Modules of differential operators on the real line, Funct. Anal. Appl., 35(1) (2001), 13–18.
- [11] I. Safi, K. Tounsi, Orthosymplectic supersymmetries of modules of differential operators, Bull. Soc. Roy. Sci. Liège, 83 (2014), 35–48.
- [12] I. Safi, Z. Saoudi, K. Tounsi, Supersymmetries of modules of differential operators, Math. Rep., 21(71), 3, (2019), 311–337.

(received 03.10.2023; in revised form 01.03.2025; available online 30.10.2025)

Département de Mathématiques, Faculté des sciences de Sfax, 3000 Sfax BP 1171, Tunisie E-mail: jamel_boujelben@hotmail.fr

ORCID iD: https://orcid.org/0009-0004-6532-4193

I.P.E.I.S, Route Menzel Chaker, km 0,5, 3018 Sfax BP 1172, Tunisie E-mail: safiimen@yahoo.fr

ORCID iD: https://orcid.org/0009-0000-9564-3057