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Abstract. Let §2 be the space of tensor densities of degree A € C on the supercircle

S'2. We consider the space D%* of k-th order linear differential operators from 32 to Si

A
as a module over the superalgebra K(2) of contact vector fields on S*1? and we compute the
superalgebra ICik of endomorphisms on @?\IZ commuting with the K(2)-action. We prove
that this algebra is trivial except for A = 0.

1. Introduction

Let M be an n-dimensional manifold and Vect(M) the Lie algebra of vector fields on
M. For every A € C, we consider the space Fy(M) of tensor densities of degree A
on M (i.e., the space of sections of the line bundle Ay(M) = [A"T*M|®* over M).
Clearly, Fo(M) = C*(M) as a Vect(M )-module.

Denote Dy (M) := Homdiff (Fx (M), F,(M)) as the space of linear differential
operators from Fy (M) to Fu(M). This space is an associative (and therefore a Lie)
algebra with a filtration by the order of differentiation:

D (M) CDj ,(M)---C D}, (M)C---

The study of these two-parameter Vect(M)-module families, namely the classi-
fication of these modules, has been the subject of several works. Let us cite, for
example, [1-3,5,8,10].

Obviously, the classification of Vect(M)-modules D) ,,(M) is obtained through the
study of the existence of isomorphisms between modules D’)\“’ #(M ), i.e., linear bijective
maps that are invariant under the Vect(M)-action on these spaces. More generally,
one can consider linear operators acting on differential operators (not necessarily
bijective) that commute with the Vect(M)-action (or specifically with the action of a
given subalgebra of Vect(M)), i.e., linear maps T : D’f\yﬂ(M) — Di,p(M) satisfying,
for all X in Vect(M),

(LY, T] = LY o T —To LY" =0,
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where E;‘(”‘ stands for the action of the vector field X on the space Df{)u(M). Such
an operator 7' is called a symmetry of the module D’/{)H(M).

The most important example of symmetries in the case where M = R (or S?) is
the conjugation of differential operators. This map associates to an operator A its
adjoint operator A*. If A € ’D’~C u(R), then A* € Dk - (R), so this map defines a
symmetry if and only if A + p = 1

In [7], the algebra of symmetries of the module D’i#(S 1) was investigated; a
complete description and classification for all integer k& were provided in this paper.

In [4,11,12], we were interested in the study of analogous superstructures. Namely,
we considered the superspace D\, it of linear differential operators A : §x — §,, where
$x and §, are the spaces of tensor densities on the supercircle S L of degree \ and
1, respectively.

Naturally, the Lie superalgebra VectC(S!) acts on D . However, in [11], we
restricted ourselves to the orthosymplectic superalgebra osp(1|2), which can be real-
ized as a subalgebra of VectC(S'"), and we studied what we called the algebra of
orthosymplectic supersymmetries of the module CDIX ., — that is, the algebra of endo-
morphisms of DY , that commute with the osp(1]2)-action.

In [12], we studled the more interesting setting: the algebra ka of contact super-
symmetries. We considered the space D , as a module over the superalgebra K(1)
of contact vector fields on S'*. In this context, we computed the space Q:A, ., of linear
maps on D’f\y ., commuting with the K(1)-action. We established several results similar
to the S case.

A slightly more interesting result, unlike the case of orthosymplectic supersym-
metries, is the stability of the dimension of Q:]f\’ u for £ > 3. This result is due to the

fact that any contact supersymmetry is completely determined by its restriction to
3.5

the subspace of second-order operators. The particular values k = é, 1, 2 2, 2 3 are
investigated. For all (A, ), a complete description of the algebra Q:’f\’ M for these values
of k is provided.

In [4], we considered the general case of the supercircle S 1" n € N*. Naturally,
the Lie superalgebra VectC(S'I") of vector fields on S*I™ — and in particular, the Lie
subalgebra K(n) of contact vector fields on S 1" _ acts on the superspace ®%™\, i of
linear differential operators of order at most k from g% to Sﬁ, where §% and SZ are
the spaces of tensor densities on the supercircle S™ of degree X and y, respectively.

Evidently, computations in this general case are quite involved and complex. Our
main result in this paper was the characterization of aff(n|1)-supersymmetries — that
is, the endomorphisms of ’Df{ﬁ that commute with the aff(n|1)-action, where aff(n|1)

is the affine subalgebra of VectC(S!™), which can be realized as a subalgebra of K(n).
In the present paper, we focus our study on the case of the supercircle S'12. We
consider the superspace @2 o (S 1‘2) of linear differential operators of order at most k
from F? 3 to 52
SM2 of degree A and i, respectively.
Naturally, the Lie superalgebra Vectc(S?) of vector fields on S'12, and its Lie

%> Where 3’2 and 52 ;. are the spaces of tensor densities on the supercircle



J. Boujelben, 1. Safi 3

subalgebra IC(2) of contact vector fields on SU2 act on @ii Using the results
of [4], we are able in this work to compute the algebras ICi”Z, k € %N*, of K(2)-
supersymmetries — i.e., the algebra of linear operators T : @i’Z(S”Z) — @i”;(Sm)
commuting with the K(2)-action on @i”u (S*2). We prove that the algebra Kii is
trivial except when A = 0.

2. Basic definitions and tools

In this section, we recall the main definitions and facts related to the geometry of the
supercircle S'12. For more details see [5,6,9)].

2.1 K(2)-supersymmetries

We consider the supercircle S*? with local coordinates (z,60;,6s), where z is the
even variable and 61,65 are the odd variables, i.e., #:02 = —6#56,. The superalgebra
C2(S'1?) of smooth functions on S'12 consists of elements of the form

2
F = f() + Z Z fi1i2(x)9i10i2a

5=11<i1<i2<2
where fo, fii, € C(S1).
Let us introduce the standard contact structure given by the following 1-form:

2
o = dx + Zeid@-.
=1

On the space C2°(S'1?), we consider the contact bracket
2
1 — —
{F.G} =FG' - F'G - 5(—1)‘}7' > Di(F)-Di(G),
i=1

where D; = % - 91-% and |F| is the parity of F'.
Note that the derivations D; are the generators of 2-extended supersymmetry and

generate the kernel of the form as as a module over the ring of functions.
Let Vect(S'1?) be the superspace of vector fields on S*12:

2
Vect(§11?) = {Foax +Y F0i| F; € 000(51'2)} :
i=1
where 0; = 8%% and 9, = 8%'

We consider the superspace K(2) of contact vector fields on C°°(S11?). That is,
KC(2) is the superspace of vector fields on S'1? preserving the distribution defined by
the 1-form axo:

K(2)= {X € Vect®(SY12) | there exists F' € C™(S'?) such that £x(ag) = Fag},
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where £x denotes the Lie derivative along the vector field X.
The Lie superalgebra IC(2) is spanned by the fields of the form:
2
1 .
Xp=Fd —; > (=D)FID;(F)D;, where F € C®(S'P). (1)
i=1
The function F' is said to be the contact Hamiltonian of the field X . The bracket
in K(2) can be written as: [Xp, X¢] = X(p g}
Note that in the The Lie superalgebra K(2) contains two important subalgebra,
the orthosymlectic Lie superalgebra osp(2]2) C K(2) generated by
05P(2|2) = Span(Xla Xy Xa2, Xy Xoy, Xo,0,, Xuoy Xﬂﬁez)
and the affine superalgebra aff(2|1) which is subalgebra of 0sp(2|2), and then of £(2)
spanned by

aff(2|1) = Spa‘n(X17 Xﬁ?a X91 ) X92a X9192)-

2.2 Weighted densities on S/

For any A € C, we define the space of A-densities on S*1? as §3 = {Fa3 | F' € C*(S'1?)}.
As a vector space, §3 is isomorphic to C&(S 112), The Lie derivative of the density
Gay along the vector field X € K(2) is given by the rule

X, (Gay) = &% (G)ay, with €%, = Xp+\F'.
The space §2 is thus a module over the contact Lie superalgebra K(2). Obviously,

we can easily see that:
1) The adjoint K(2)-module is isomorphic to F2 ;.

2) As a K(1)-module, §5 = 3} @ TI(3},1)-

2.3 Differential operators on weighted densities

We denote by @iu the space of differential operators from §3 to Fu? for any A, u € C.
We can express any element A € @?\7 u in terms of the vector fields D; = 0; — 6,;0,,
i = 1,2. Indeed, since E? = —0, and 0; = Di — 0;D3? for all i = 1,2, we can write
the operator A as a finite sum

A=3"0= (61, 0)bD, D2, 2)

where the coefficients b are smooth functions on S*? and ¢ € N2. That is, for all
F=faye &i,
—0—¢
A(F)= Y b(x,0)D, Dy (f)oh.
0=(0,02)

For k € %N, we denote by CDE\JZ the subspace of :Dg\,u consisting of differential
operators of the form

—l—0y

A= E beDy Dy . (3)
£=(£1,62) ENXN
le|=£y + 25 <2k
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The superspace @i’; is then a K(2)-module for the natural action:
SNE(A) = 2%, 0 A— (-)AIFl A0Sy | XpeK().
Thus, clearly, we have the filtration:
1 3 1
D} coyi oy, codyic coy T co

Note that we can write the operator A in (3) uniquely in the form

2k
A=>" > a?. .05, Dy D2,

m=0 (s,e1,ep)ENX{0,1}2
2s+teyteg=m

where the coefficients a™s, € are smooth functions on S*2. We will adopt this notation
in the sequel.

2.4 K(2)-supersymmetries
A linear operator

T: 93" (S'?) - 238 (5') (4)
is said to be local if it preserves the supports of its arguments: Supp(T(A)) C
Supp(4), for all A € @i’,Z(Sm). That is, for every open subset U C S*2, we have

Ay =0=T(A)y =0;YA € D3N (S'P).

The map T is non-local if there exists some A € @i’];(S 112) vanishing on an open

subset U C S'1? such that T(A) does not vanish on U.

In [7], it has been proven that, in the S'-case, the large class of symmetries of the
modules @’/{7”(51) — that is, linear operators T' : ©§7lt(51) — @’;7”(51) commuting
with the Vect(S') action on @’j\"#(Sl) is given by local operators. Indeed, the only
non-local linear operator T' commuting with the Vect(S!)-action might exist when
(A, 1) = (0,1) and is given by

(X)) = ([ aww)oa

=0
where d is the de Rham differential.
Thus, we focus our study in this work on the large class of linear local operators
T: @?\’72(51‘2) — @i’f;(Sl‘z) commuting with the K(2)-action on @i;’;(sl\z), which
we call K(2)-supersymmetries of the modules 93\”“(5”2). The superalgebra of such

operators will be denoted by ICE\];

Thanks to the renowned Peetre theorem in classical differential geometry, if T is
a local operator as in (4), then for all (¢,€1,¢€2) € N x {0,1}? and for all (s, €}, ¢)) €
N x {0, 1}2, the operator that associates to the function a € C*(S*1?) the component

with respect to a@?ﬁ? of T(aal 5?ﬁ;2) is a local operator acting between super-
functions. Hence, the coefficients of the operator T(a@l 5?5;2) appear as derivations
of the function a.
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That is, for all 0 < m < 2k and for all (¢,€1,e2) € Nx {0,1 }2 such that 20+ ¢, +
€2 = m, there exist an integer M,, and some functions T;z’el <2 ¢ C>(S"12) such

€ 62
that

(Y a0 DYDY = (5)

(s,e1,60)ENX{0,1}2
Zste)feg=m

ro 11 ’ /
€1,€2,€1,€5,€1 ;€5 NSy 62 ( ) s1 €1 TyE2
E E E T5751,82 8z D D2 Qg JE€1,€2 aac Dl D2
(s,e1,62)ENX{0,1}2 (s1,¢),e5)ENX{0,1}2 (sg,¢f/ e )ENX{0,1}2
2s+eyteg=m 251 +ef+eh<m 2sg+ef/ +el) <M,

3. The algebra lCiZ

In [4], we have computed, for all k € lN the superalgebra of aff(2|1)-supersymmetries,
i.e., the set of (local) endomorphisms 7T : @2 iy (81‘2) — @?\’];(5”2) commuting with
the aff(2|1)-action on 333\2(5’”2), that is

(e, T) = &yt o T — (—1)/TIFIT o g3k =0,  Xp € aff(21).

Let us recall this result

2k
THEOREM 3.1. Let A= > al., .05 D' Dy’ € DY (S'2) and T(A)

m=0 (s,e1,e2))ENX{0,1}2
2s4€]+eg=m

as in (5). Then the operator T commutes with the aff(2|1)-action on DY k(S”Q) if
and only if T(A) reads as

2k
M=0 (s,e1,e2))ENx{0,1}2 (t,e} el e}/ el )ENX {0,1}4

2stepteg=m 2t+el+62+5/1/+e”<7n

e1teg—ej—eh—el/—elfe2z

Tselt,ez,el,eQ,el L€ atD Dgg (a&el762)8;+§(61+6275’1765275’1’,%',75)??'15;'2, (6)
where Tyl are constant scalars satisfying the following conditions:
1) TN 20 f (61, 2), (€], 6h) € {(1,1), (0,0)}, (€, ¢§) € {(1,0), (0,1)}

(re‘gpethely (e1,€2), (€7, €5) € {(1,1),(0,0)}, (€}, ¢€5) € {(1,0),(0,1)},
respectively (61762), (ef,e5) € {(1, 1)7 (0,0)}, (e1,€2) € {(1,0),(0,1)}).

9) Ty Im R S g e GRS i (g,6) € {(1,1),0,0), (6.6) =
(0, 1) (51762) (1, 0) (€1a€2) (1 0), (61752) ( )

(respectively Ty =G4 o prpe@lm G i (g gy e {(1,1),(0,0)),
(e1,€2) = (O 1) (61,62) = (1, 0) or (61,62) = (1,0), (¢}, €4) = (0,1), respectively
L, TG E o poe S i (o ((1,1),(0,0)), ((e1,e2) = (0,1),
(€], €h) = (1,0) o (61762) (1,0), (e1,€3) = (0,1)).
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§) Tyt A d o e DG g (4 6) € {(1,1),(0,0)), (¢, ¢h) =
(¢f,€5) = (1,0) or (e}, €5) = (¢/, &) = (0,1)

(respectively Tslvt_el’1_62’6/1’6/2’6/1/’6/2/ = —T;lt’ez’e/l’6/2’1_6/1/’1_6/2/ if (€1,€5) € {(1,1),(0,0)},
(61362) = (6/1/76/2/) = (170/) /OT//(G}/7€2) = (6/1/76/2/) /: (07/1)/; .

respectively T37t_61’1_62’61’62’51’62 = —T:lt’el’l_el’l_ez’el 2 if (e, €y) € {(1,1),(0,0)},

(61362) = (6/136/2) = (170) or (61762) = (6,17612) = (Ov 1))
4) T:,lt’m’éll’5/2’176,1,’1765 =0 if (e1,€2) = (€1, €3) = (€7, €5) = (1,0) or (1,0).
5) T:lt,eg,e/l,eé,l—e,l/,l—sg _

if (e1,€2) = (1,0), (€}, ¢b) = (€, ¢h) = (0,1) or (er,€2) = (0,1), (¢}, ) = (€}, ¢h) =
(1,0).

’ ’ " "
6) T€1762761762,1—61 A—ey
s,t

’ ’ no_rn ’ ’ " 1"
_2T1—61,1—52,1—el,1—62,61 R _2T1—61,1—62,el,62,1—51 ,1—ey
s,t s,t

Eel,e);) = (c},éy) = (1,0), (e}, éy) = (0,1) or (e1,2) = (¢}, ¢h) = (0,1), (e}, ¢4) =
1,0).

’ ’ 1" " 7 ! 1" 1" ’ !’ 1" 1"
7) T61,62,61,62,1761,1762 _ _2T17€1,1762,1761,1762,61 €y _2T61,62,1761,1762,1761,1762
s,t - s,t - s,t

E’f <e;§e2> = (el ef) = (1,0), (¢}, ) = (0,1) or (er,e2) = (&f,€) = (0,1), (¢}, ¢h) =
1,0).

_2Tslt—61,1—62,6/,1—6'1/,1—6/2' _2T861t,62,1—6/171—6/2,1—6/1/71—6/2/ Zf

Now, since [Xy,, Xo, 7] = X¢,Vf € C>(S'), as a superalgebra, K(2) is generated
by the set of odd vector fields Xy, ¢, f € C*°(S'), i = 1,2 and by a classical argument
we can just consider “polynomial vector fields”, i.e., of the form X ng,,n € N, i =1, 2.
Starting with an aff(2|1)-invariant linear operator T : Qi’wk (SH2) — @i’j(sm) and
given that, for i = 1,2, [Xug,, Xu0,] = X2 and [X1, Xo2p | = Xug,, for the aff(2|1)-
invariant linear operator 7', the invariance of T" with respect to X4, and X, holds as
soon as the invariance with respect to X,24, is. Thus, in our approach, the next step is
to impose the invariance with respect the contact vectors fields X,2¢,,7 = 1,2. More-
over, it is well known that, if we identify S* with RP' with homogeneous coordinates
4 A d
dx’ dx dx
are globally defined and correspond to the standard projective structure on RP'. In

d d d
this adapted coordinate the action of the algebra sl(2) = Span (, x 2) is

(21 : 2) and choose the affine coordinate x = x1 /x4, the vector fields T

de “dr ¥ dx
well defined. Thus, in the corresponding adapted coordinate (x, 61, 65) of S'1?, thanks
to (1), for 4,5 € {1,2} such that i # j:

szgi = %Z2(91% + diel) —+ 920]50(;;]7
the vector field X, 24, for i = 1,2 is further globally defined.
Let us first establish the two following lemmas. Surely, we may have similar results
with the vector field X, 2q,.

LEMMA 3.2. Let a € C*(S'1?), thus we have
1) LY (ad) = LA Ha)d" = LA+ 0 = 1)61a0 ™" — (=1)!*!(zad ' Dy
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_ _1)lal
_ (—1)'“'69192a8€_1D2 _ &

aﬁ(ﬁ — 1)86_2E1
2) LY (a0'Dy) = L5 (@) Dy + 26200 Dy + (—1)laz (21 + 0"

— (2M 4+ £2)0,a0° YDy + 0200 Dy + (—1)19100,0,00 " D, D,

—1)lal
+ ( 2) (00 — 1) 4 4\)ad*?
3) LY (a0'Dy) = Ly ()0 Dy — 20200 Dy + (—1)\6162a(2) + 0)0°
— (2M + £2)0,a0° " Dy — 10200 Dy — (=1)1%10zad* 1D, Dy

_1)lal _
_{ 12) (0 —1)ad*?D, D,

4) .ciy;s (ad'D1Dy) = c/;;js—f—l(a)a@jg — (=1)l*9,05a(2)\ 4+ £ +1)0'D,
+ (=Dl @)\ + £ + 1)2ad" Dy — 2)002a0"
— (2M 4+ 20+ £(¢ —1))0,a0" " D1 Dy

o6 —1)
2

+ (=D)lela(2nt + ¢ + )01 D,.

Proof.
)Ly, (@) = L, o (add) — (1) (@dh) 0 Lk,
= 226,d'9° + 2%0,00° + %(ﬁﬁl (@) + (1) 22ad! D,
+ 201923332(@3:; + (—1)'“'29192%@5;52 + Z,uﬁlamaﬁ)
— (—1)‘a|a(8£(w2918w + %x2bl + 601052Dy + 2)\91x))
= L5 (@)@, — (A + £ = 1)f1a0 " — (=1)*12ad" "' D,

— (=1)!%10,6,a0" ' D, — (_12)‘(1‘ al(f —1)0'2D;.

2) £§55291 (a0, D1) = Ly , o (ad,Dy) - (-1 VadiDy o Lk,
= 220,0,(ad' D) + %(ﬁbl(aaﬁn) + 29102@2(@0@1))
+ 2ﬂ91maaﬁ51 + (—1)'“‘a6£ﬁ1 <x201 + %xzﬁl + 26,0,D4 + 2)\01x>
= 2%0,d'0 Dy + 220,001 Dy + %(ﬁﬁl (a)d*Dy — (—1)\ 220+
+26,652D5(a)8'D; — 2(—1)‘@'9192ma@1@) + 2061200 D,

_ 1 _ _
+ (4)‘%( — 220,07'D, + §x2a‘+1 + 2610205 D1 Dy + 2050 Dy
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— (2N + 204+ 1)01295 Dy + (2\ + )20 + £(2X + %)aﬁ—l
— 02X\ 4 00,05 D + £020° " Dy + 00,0,0' " D1 Dy
- c‘;(:je‘l‘*‘% (@)0"Dy + 20500 Da + (—1)az(2) + £)0*
— (2M 4 0%)0,a0" "' Dy + 02a00' ' Dy 4 (—1)1940,0,a0" " D, D,
+ (_17)‘6”(6(4 —1) +4\)ad" L.

2
By an analogous calculation one can easily obtain 3) and 4). U

LEMMA 3.3. Let a € C*=(S'1?), thus we have

1) 0" (cggjgl (a)) = L4 20" (@) + d T Di(a) + 06,050, Do)
+ @3472E1(a) F 02— A+ £ — 1)610  (a).
PR— _ A e 2 PR—
2)  ODi(L52 (@) = —L5 204D (0)) + 201 — N)adk(a) + 0200 Ds(a)
(-1

+ QU=+ = )0E Y (a) — (2( — N) 4 £)0,05 Dy (a)
+ 00,05 Dy(a) + £010:0° 1D, Dy(a).

3)  9Da(L5) (@) = —L5 T ODa(a)) + (20 = ) + 001620%(a)
+ 00,0571 Dy (a) — 02205 D1 (a) — £(2( — \) 4 £)0,05 Dy (a)

- Zx@ﬁ’lﬁlﬁg(a) ( )8Z 2.D D2( )
1) DDy (L) () = ﬁ’;{jj“%aiﬁlﬁz(a)) +2(5 = N)6304 ()
+(2( = A) + £ +1)0,020 D1 (a) — (2( — N) + £ + 1)29: Da(a)

+02(p — A) + £+ 1)0,057 D1 Do(a)

—t(2(n— N + 1o Do),

Proof.
) ONLAT) (a) =8 <x291a’ + %ajaﬁﬁl(a) + 260105 Ds(a) + 2(p — A)Gwa)

1 — _
= 220,01 (a) + §x28ﬁD1(a) + 260,020 Dy (a)

+2(p — A+ 0)0120% (a) + 1207 D1 (a) + 06,6205 Da(a)
+ Lé; 1)8Z_251(a) +02(p — X) + £ —1)0,05(a)

= L j“(al( ) + £z0- " Dy (a) + 001050 Da(a)
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%%}Q%*bﬂ@+w@m—A»+ﬂ—D%%“@*

o _ 1 . _
2) aﬁDl(E’;(I:l (a)) = 8°D, (3326‘1(1’ + foDl(a) + 26102 Do(a) + 2(pn — )\)Hlxa)

_|_

@3+ )01 a) — b2 - 3 + 06,057 D0

+ gagai_lbz ((l) + f@l 928ﬁ_1ﬁ152 (a)

By an analogous calculation one can easily obtain 3) and 4). 0

Now, thanks to Lemmas 3.2 and 3.3, we can impose the invariance under the
action of the vector field X2, (respectively X,z2g,) to an aff(2|1)-invariant linear
operator T : @?\”]Z(Sm) — Z‘Di”];(S”z).

THEOREM 3.4. Let T : D% Z(Sm) — 2‘32 k (Sl|2) an aff(2|1)-invariant linear (local)

operator. Then, T commutes with the actzons of the vector ﬁelds X293t =1,24f and

only if, for all k € 1N* there exist scalar constants Y1, --- Y5 such that

1) Vs such that 2s + 1 < 2k (resp 2s + 1 < 2k + 1) and Yas, b, € CZ(S'1?)
T(as0°Dy + b;0°Dy) = T (asaSbl + bsasm) + Y2(a,0°Ds — bs0°Dy)

2) Vs such that 2s < 2k (resp 25 < 2k + 1) and Ve,,ds € C(S'1?)

T(csas + dsas—lﬁlbz) = 13¢,0° 1D, Dy + Te,0° + Y3d,0° "D, Dy + T8d, 0%,

and the scalars Y1,--- Y8 satisfy the following system:
(2A+8)TI—(2\+5)YE =0, (22 48)T2—5T8 = 0,
s(AA+s—1)TL—s(dA+s—1)T2_; =0, s(4AA+s—1)T2—5(s—1)TS_; =0,
s(2A48)Y2—s(2A+5)T2_, =0, sTl-sT! | =0,
sY2—sY2_, =0, s(2A+8)T2—5(2X45)Y2_, =0,
sYi—sY5 =0, s(s—1)Ti-s(s—1)T3_, =0,
sY2_1+(20+8)T3 =0, (5+1)(2A+8) Yi—(s+1)(2A+5) Y5, =0,
223 1 —2AT2 =0, s(2A+s+1)YE—(s+1)(2A+8)Y8y =0,  (7)
S(AM+s+1)Y3+s(s+1)Y2_; =0, 2072 =0,
s(AM s DY —s(AAFs+1)T3, =0, s(AAFs+1)T3, 1 +s(s4+1)T2_; =0,
(s4+1)(2A+8) T2 —s(2A+s+1)Y3,, =0,  s(2A+s+1) T2 —s(20A+s+1)Y3,, = 0,
(2/\+s+1)T§+1+(s+1)T2 =0, s(4AA+s+1)T2_ —s(s—1)Y8,; =0,
(s+1)Ti 1 —(s+1)T: =0, s(s+ )Y —s(s+1)Yi_; =0,
A Fs+1)T3, 1 —(2A+s+1)TE =0, (2A+s+1)T2—(s+1)T8,, = 0.
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Proof. Let A = as0°D; + bs0°Da. Upon using (5) and Theorem 3.1, T(A) reads:
s—1

T(A) — Z (T(lvo)v(lvo)7(171)atﬁlb2(as) + Ts(’lt’o)7(170)7(171)82551E2(bs)>as—t—lﬁl
=0

(T( ,0),(1, 0)7(1»1)8tblﬁ2(as) T(l 0),(1,0),(1, 1)atD D2( ))as t— 1D2
(T(l ODMDG P (g,) +T(§71t’°)’(1’1)’(0’”8t52(as)

+ T(O 1),(1,1),(1 0)8t ( ) + Ts(f)t,l)’(l,l),(ovl)atﬁz(bs))8s—t—1ﬁlﬁz

- 0),(0,0 0,1),(1,0),(0,0 et
+Z<Ts(, ,0),(1,0),( )at( )+Ts(,t1)( 0),( )8t(bs))as tDl

t=0

+

+

+ (T( tvo)i(l’o)’(oﬁo)at (as) + Ts(g’l)’(l’())’(o’())at (bs))as_tEQ

n (Ts(’lt70)a(070)7(170)8tb1(as) i T§71t70)7(070),(071>8t§2(as)

+ Ts(gal)7(070)’(170)atﬁl (bs) + Ts(galL(OvO)v(OJ)atﬁQ(bs))857t
with the additional conditions:
7(1,0),(1,0),(1,1) _ (0 1),(0,1),(1, ) T(l 0),(0,1),(1,1) _ T(O 1),(1,0),(1, 1)
s,t it
T(l 0),(1,1),(1,0) _ T(O 1),(1,1),(0, 1) T(l 0),(0,0),(1,0) _ T(O 1),(0,0),(0, 1).
T(l 0),(1,1),(0,1) _ T(O 1) (1,1),(1, 0) T(l 0),(0,0),(0,1) _ T(O 1) (0,0),(1, 0)
T(l 0),(1,0),(0,0) _ T(O 1),(0,1),(0, 0) T(l 0),(0,1),(0,0) _ T(O 1),(0,1),(1, 1)

) s,t s,t ’
or with change of notations
s—1
=371, (0:D1 Dala)9* ' D1 +0: D1 Da(b,)0* ' D3 )
t=0

+T2t(6 D, Ds(a S)@H*ﬁgfa;EEQ(bS)aH*IE)

N iTit o (51 (4)+ D (bs)) oD Dot Y T2, (El(as)+ﬁg(bs))@s_t
t=0 t=0
s—1 s

+ 30 (Dofan)=Da6) )07~ DuDi 3 T2,2% (Do) ~Di (b))

+T7t(at(as)a* “Dy+0L(b)0* tD2)+T8t<8t(as)89 "Dy—0L(b,)0" "Dy ).

Similarly, if A = c,110°! + ds1D1 Do we can write T(A) of the form

s s—1
T(A) =Y T, 057" D1 Da(cey1)0 " + Y T, ,0.D1Ds(cs41)0* "' D1 Dy
t=0 t=0

+ 3T (92D (041)0" "D + i Ds(es11)9* D2 )
t=0
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+ Tsl—&z-l,t (a;ﬁ2(63+1)657tﬁ1 — 6;ﬁ1(03+1)887t32) + T s+1, tB (CS+1)6 D1D2

s+1 s—1
Z S0k (coqr)O° T Z T, 105 D1Do(dsy1)0° "' Dy Dy
t=0

+ Z T18 1 4105 D1Da(dsy1)0* " + T, 4 (@iﬁl(dsﬂ)as_tﬁl + 3352(ds+1)35_t52)
t=0

+ T8, (a;ﬁ2(ds+1)as—tbl — 0Dy (dyy1)0*" tDQ) + T2, 0 (dy41)0* Dy Dy
s+1
+ Y T2, 0h(dern)0

Finally, thanks to Lemmas 3.2 and 3.3, we impose the conditions
(7. £%",, Wa:0°D1 +b,0°D2) =0 and [T, L3", (10" +duy10°D1Dy) = 0.

By a direct computation the theorem is thus proved. O
Now, we are able to compute the dimension of the algebra Ki’; for all k in %N *,

2 ifA=0

THEOREM 3.5. Let k € 3N*. Then dim (K3} ) = ,
ks 1 otherwise.

Proof. By solving the system (7), we easily obtain that, if A\ € R*, T2 = T?’ =Y%=0
for all s and Y1 = T? = T are constant. In this case, the algebra IC . is trivial. If
A=0,weget T =7T?=73 7T2=-_3=7%and Y., T? are Constant and then
K(Q):ﬁ = Span(Id, Tp) where Ty is given by:

Ty (aaS“ T 56531@) — ad*Dy Dy — BO°H,
Ty (aaSE + 58852) — a®°Dy — BO°Dy,

Vs € N;Va, 8 € C2°(S1?). We must prove that Ty is still K(2)-invariant. Indeed, Let
Xp,F = f60, ( f€C&(S)) an odd vector field in K£(2) and A = ad**! 4+ 36°D1 D
(s €N,a, 8 € C2(S'?)). Then £ (A) = &4, 0 A — (—-1)I4IF1 40 5, where

L 0oA=(Xp+puF')oA

Fo, — ~V)\FID,(F)D; + uF’) oA

Mw ul\gﬂi;

(
i=1

EZ(F)ﬁZ—i-/,LF/) oA
=1

M| —

K2

(
(F@w +
= (

£610+ = (fD1 + 0102/ D2) + 161 ) o (a0 + 30°Di Dy )
=6, fo aé“ + 0, fad* T2 4+ 0,f8'0° DDy + 0, fB0°T 1D D,
+ %(fbl(@)as+1 + (=1 fad* ™Dy + fD1(8)9°D1Ds — (—1)\°1 f BT D,
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+ 0192f’bg(0&)88+1 + (71)|a|0102f/0188+152 + 9102f'ﬁg(ﬂ)8551§2
4 (=1)%19,0, f’ﬁaS“E) F b1 f'ad Y + by f30° D Do,

and
2
1 _ _
Aogh, = Ao (Fo, - > S (-)FD,(F)D))
=1
s+1 sSTY. T 1 Y /52
- (aa + 89 D1D2) o (f918 + 5 (/D1 + 01621 Dg))
s+1 1 1
_ i (i) gs+2—i | L £(i) gs+1—iTy L e(i41) gs+1—iy
a[gcsﬂ(elf 05 4 S DDy 4 S Dg)}
+ ﬂ |: ZS: Ci (10102f(i+2)8s_i51 + 10192f(i+1)as+1—ib1 _ lf(i)as-l-l—iEQ
= \2 2 2
1 . R ) R, . R
_ 5Jc(z+l)as—zD2 + elf(i)as+1—zD1D2 + elf(1+l)6s—zD1D2):| )
Therefore,
E(A) = 477 (@) + 25 0T (B)0° D1 Ds
=[S citlo fe (<) lag = 4 (<) Flgo* Dy Dy ) |
=1
Lrx i i —i7y s—i7Y,
= [>- e (—nlad Dy + (-1)180° Dy ) |
=0
1M~ , o -
— 5|22 C1010. £ (—1)1ad Dy — (—1)1g0° =Dy )|
=0
and hence,

(T 85)(A) = ~ 24,7 (8)0" + 24, ()0 D Dy
_ [Z Citlg, fitD ( — (~1)lBlggsHi-i 4 (*U‘ala@“iﬁlEQﬂ
=1

S

_ %[Z C;ﬁf(iﬂ) ( _ (_1)\/5\535451 + (_1)|a\aasfiﬁ2)}

=0

| > Citn02s 0 (= (<1)186° "Dy — (-1)*lad* =Dy )|
i=0
On the other hand,

(SR o T)(4) =~ 71 (B0 + 24 ()0 D D

DN =

- [fj CiEn D (= (—1)P10 1 4 (<110 =D D, ) |

i=1
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S

("t (= (-1)P180°= Dy + (-1)lad" =D, )]

=0

— [0 i1 — (1) 155D, — (—1)olap D).
=0

N |~

Now, clearly, Tg is an even linear operator, further more
A, 0, 0, 0, 0,
(&1, Tp) i= £ o Ty — (1)1 IFIT 0 €5 = €5 o Ty — Ty 0 £},

that gives [sé(‘; ,To](A) = 0. By a similar calculation, we obtain the same result if we
take A = a0°D; + 80° D5, and then consider the case X, where F = f6. O
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