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ON THE PÓLYA FIELDS OF SOME REAL BIQUADRATIC FIELDS

Said El Madrari

Abstract. Let OK be the ring of integers of a number field K, and let Int(OK) =
{R ∈ K[X] | R(OK) ⊂ OK}. The Pólya group is the group generated by the classes of the
products of the prime ideals with the same norm. The Pólya group PO(K) is trivial if and
only if the OK-module Int(OK) has a regular basis if and only if K is a Pólya field. In this
paper, we give the structure of the first cohomology group of units of the real biquadratic
number fields K = Q(

√
d1,

√
d2), where d1 > 1 and d2 > 1 are two square-free integers with

(d1, d2) = 1 and the prime 2 is not totally ramified in K/Q. We then determine the Pólya
groups and the Pólya fields of K.

1. Introduction

Let Int(OK) = {R ∈ K[X] | R(OK) ⊂ OK} be the ring of integer-valued polynomials
on OK . In 1919 Pólya [11] and Ostrowski [10] were interested in whether the OK-
module Int(OK) has a regular basis. According to Pólya, a basis (gn)n∈N of Int(OK)
is said to be a regular basis if the deg(gn) = n for each polynomial gn. In 1982
Zantema [16] called field K for which the OK-module Int(OK) has a regular basis,
Pólya-field.

Let K = Q(
√
d1,

√
d2) be the real biquadratic number field such that d1 and d2

are square-free integers with (d1, d2) = 1. Let H1(GK , EK) be the first cohomology
group of the units of K. The studies on the Pólya groups and the Pólya fields of K
started in 1982 by Zantema [16], who gave a result on Pólya real biquadratic fields
using H1(GK , EK) (see Theorem 3.2 and Proposition 3.6 below). In 2011 Leriche [7]
studied the real biquadratic fields K. She gave some Pólya fields of K by using the
capitulation. In [4] characterized some Pólya groups and Pólya fields ofK based on the
structure of H1(GK , EK). In 2020, Tougma [14] also used H1(GK , EK) to determine
some non-Pólya real biquadratic fields. In 2021 Maarefparvar [8] characterized the
Pólya groups of some real biquadratic fields also with H1(GK , EK).
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It is clear that the structure of the first cohomology group of the units of K plays
an important role in providing results on Pólya groups and Pólya fields of K. In
this paper, we characterize H1(GK , EK), the first cohomology group of the units of
K = Q(

√
d1,

√
d2), where (d1, d2) = 1 and the prime 2 is not totally ramified in K/Q.

We therefore specify the Pólya groups of K in order to determine the Pólya fields
of K.

2. Notations

In this work, we accept the following notations:
1. d1 > 1 and d2 > 1 are two square-free integers where (d1, d2) = 1.

2. d3 = d1d2.

3. K = Q(
√
d1,

√
d2): a real biquadratic number field.

4. OK : the ring of integers of K.

5. ki = Q(
√
di): the quadratic subfields of K for i = 1, 2, 3.

6. ϵi = xi + yi
√
di: the fundamental unit of Q(

√
di), for i = 1, 2, 3.

7. N(γi) = Ni(γi) = Normki/Q(γi) where γi ∈ ki, for i = 1, 2, 3.

8. EK : the unit group of K over Q.

9. GK : the Galois group of K over Q.

10. αi = N(ϵi + 1) = 2(xi + 1) ∈ Q if Nϵi = 1 otherwise αi = 1, for i = 1, 2, 3.

11. [αi] : the class of αi in Q∗/Q∗2, for i = 1, 2, 3.

12. [di] : the class of di in Q∗/Q∗2, for i = 1, 2, 3.

13. H̃ : the subgroup of Q∗/Q∗2 generated by the images of d1, d2, d3, α1, α2 and α3.

14. H1(GK , EK): the first cohomology group of units of K.

15. ep: the ramification index of a prime number p in K/Q.

16. dK : the discriminant of K over Q.

17. t: the number of the prime divisors of dK .

18. En = (Z/2Z)n, n ∈ N.

3. Preliminaries

Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such that (d1, d2) = 1.

Let k1 = Q(
√
d1), k2 = Q(

√
d2) and k3 = Q(

√
d3) with d3 = d1d2.
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By [3, 15] we have when (d1, d2) ≡ (1, 1) (mod 4), then dK = (d1d2)
2 (note that

in this case we have the prime 2 is not dividing neither the discriminant of k1, k2
nor k3). When (d1, d2) ≡ (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) (mod 4), so dK = (4d1d2)

2

(note that here the prime 2 is dividing the discriminant of two subfield of K). When
(d1, d2) ≡ (2, 3), (3, 2) (mod 4) then dK = (8d1d2)

2 (note that the prime 2 is dividing
both the discriminant of k1 and k2 and k3). Let e2 be the ramification index of the
prime number 2 in K/Q. The prime 2 is the only prime can be totally ramified
in K/Q.

Remark 3.1. When we say that e2 = 4 = [K : Q], the prime 2 is totally ramified
in K/Q, so we have (d1, d2) ≡ (2, 3), (3, 2) (mod 4) and thus Nϵ1 ̸= Nϵ2 = Nϵ3 = 1,
Nϵ2 ̸= Nϵ1 = Nϵ3 = 1 or Nϵ1 = Nϵ2 = Nϵ3 = 1.

When we say that e2 ̸= 4, the prime 2 is not totally ramified in K/Q, so we have
either e2 = 1 or 2 and hence (d1, d2) ≡ (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) (mod 4),
therefore we have the following possibilities : Nϵ1 = Nϵ2 = Nϵ3 = −1, Nϵ1 = Nϵ2 =
−1 ̸= Nϵ3 = 1, Nϵ1 = Nϵ2 = 1 ̸= Nϵ3 = −1, Nϵj = 1 ̸= Nϵk = Nϵ3 = −1,
Nϵj = −1 ̸= Nϵk = Nϵ3 = 1, j ̸= k ∈ {1, 2} or Nϵ1 = Nϵ2 = Nϵ3 = 1.

Let K = Q(
√
d1,

√
d2), k1 = Q(

√
d1), k2 = Q(

√
d2) and k3 = Q(

√
d3) where d3 =

d1d2. Let ϵ1 = x1+y1
√
d1, ϵ2 = x2+y2

√
d2 and ϵ3 = x3+y3

√
d3 be the fundamental

unit of k1, k2 and k3 respectively. Let H1(GK , EK) be the first cohomology group of
units of K. Recall αi ∈ Q such that αi = N(ϵi + 1) = 2(xi + 1) when Nϵi = 1 else

αi = 1, for i = 1, 2, 3. H̃ is the subgroup of Q∗/Q∗2 generated by the images of d1,
d2, d3, α1, α2 and α3 with d3 = d1d2. Setzer [13] gave the following theorem which
gives the structure of the first cohomology group of units of K. Keep in mind that
Zantema stated the following theorem (see [16, Section 4]).

Theorem 3.2 ([13, Theorems 4 and 5]). H̃ ≃ H1(GK , EK), except for the next two

cases in which H̃ is canonically isomorphic to a subgroup of index 2 of H1(GK , EK):
1. the prime 2 is totally ramified in K/Q, and there exists integral zi ∈ ki, i ∈ {1, 2, 3}
such that N1(z1) = N2(z2) = N3(z3) = ±2,

2. all the quadratic subfields ki contain units of norm −1 and EK = Ek1
Ek2

Ek3
.

The theorem above follows directly from the proofs of [13, Theorems 4 and 5].
The theorem above is also stated in [4, Theorem 1.6].

Proposition 3.3 ([6, Satz 1]). Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free

integers, so we have the following eight possibilities for a system of fundamental units
of EK :
1. ϵu, ϵv, ϵw;

2.
√
ϵu, ϵv, ϵw with Nϵu = 1;

3.
√
ϵu,

√
ϵv, ϵw such that Nϵu = Nϵv = 1;

4.
√
ϵuϵv, ϵv, ϵw such that Nϵu = Nϵv = 1;

5.
√
ϵuϵv,

√
ϵw, ϵv where Nϵu = Nϵv = Nϵw = 1;



4 On the Pólya fields of some real biquadratic fields

6.
√
ϵuϵv,

√
ϵvϵw,

√
ϵwϵu where Nϵu = Nϵv = Nϵw = 1;

7.
√
ϵuϵvϵw, ϵv, ϵw where Nϵu = Nϵv = Nϵw = 1;

8.
√
ϵuϵvϵw, ϵv, ϵw with Nϵu = Nϵv = Nϵw = −1 where {ϵu, ϵv, ϵw} = {ϵ3, ϵ1, ϵ2}.

It is worth mentioning that the proposition mentioned above was stated by Ben-
jamin et al. [1].

The following definition is a well known definition in the Pólya group theory. We
refer the reader to [2, Definition II.3.8 and Proposition II.3.9]. The reader can also
consult [9, Definition 1.2], as well as [7, Definition 2.2].

Definition 3.4 ([2, Definition II.3.8]). Let
∏

q(K) be the product of all prime ideals
of OK with the norm q ≥ 2. The Pólya group PO(K) of a number field K is the
subgroup of the class group generated by the classes of the ideals

∏
q(K).

The proposition below is a famous result about the notion of Pólya field and
group of a number field K which is mentioned in [7, Proposition 2.3] (also consult [16,
Theorem 2.3]).

Proposition 3.5. The group PO(K) is trivial if and only if one of the following
assertions is satisfied:
1. the field K is a Pólya field;

2. all the ideals
∏

q(K) are principal;

3. the OK-module Int(OK) admits a regular basis.

The following proposition mentioned by many authors in the field, we refer the
reader to [9, Proposition 1.4] and [4, Proposition 1.3].

Proposition 3.6 ([16, Section 3]). Let K/Q be a Galois extension and dK be its
discriminant. Denote by ep the ramification index of a prime number p in K. Then,
the following sequence is exact 1 → H1(GK , EK) → ⊕p/dK

Z/epZ → PO(K) → 1. In
particular, | H1(GK , EK) || PO(K) |=

∏
p|dK

ep.

And thus we have the following corollary.

Corollary 3.7. K is a Pólya field if and only if | H1(GK , EK) |=
∏

p|dK
ep.

The proposition below is stated in [9, Proposition 1.3].

Proposition 3.8 ([5, Theorem 106]). Let k = Q(
√
d) be a quadratic number field,

where d is a square-free integer, and let ϵ be the fundamental unit of k. Let z be the
number of ramified prime in the extension k/Q. Then,

PO(k) ≃

{
Ez−2 if k is real and N(ϵ) = 1,

Ez−1 otherwise.

Note that we can identify all quadratic Pólya fields based on the characterization
provided in the proposition above.
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Proposition 3.9 ([16, Example 3.3]). Let k = Q(
√
d) be a quadratic number field,

where d is a square-free integer, and let ϵ be the fundamental unit of k. Let p and q
be two distinct odd prime numbers. Then, k is a Pólya field if and only if one of the
following assertions is satisfied:
1. d = −2, or −1, or 2, or −p with p ≡ 3 (mod 4), or p.

2. d = 2p and either p ≡ 3 (mod 4) or p ≡ 1 (mod 4) and N(ϵ) = 1.

3. d = pq and either p, q ≡ 3 (mod 4) or p, q ≡ 1 (mod 4) and N(ϵ) = 1.

The proposition above stated in [4, Proposition 1.4]. The reader may also find
helpful [2, Proposition 3.1].

In this paper we use a result of Setzer [13] (Theorem 3.2) and a result of Kubota [6]
(Proposition 3.3), to obtain the first cohomology group of units of real biquadratic
number fields K = Q(

√
d1,

√
d2), where d1 and d2 are two square-free integers with

(d1, d2) = 1 and e2 ̸= 4. Then we use the result of Zantema [16] (Proposition 3.6) to
give the Pólya groups of K. Finally, we derive the Pólya fields of K.

4. The first cohomology group of units of K = Q(
√
d1,

√
d2) where

(d1, d2) = 1 and e2 ̸= 4

We start this section by giving the following proposition.

Proposition 4.1 ([6]). Let k = Q(
√
d) such that Nϵ = 1 and let m denote the square-

free part of the positive integer N(ϵ+ 1). Then m > 1, m divides the discriminant of
k, m ̸= d, and

√
mϵ ∈ k.

Let K = Q(
√
d1,

√
d2) such that (d1, d2) = 1 and d3 = d1d2. Let ϵi be the

fundamental unit of Q(
√
di) for i = 1, 2, 3. Recall that [di] be the class of di in

Q∗/Q∗2, for i = 1, 2, 3. Note that [mi] is the class of the squarefree part mi of
N(ϵi + 1) in Q∗/Q∗2 such that Nϵi = 1 for i = 1, 2, 3.

Proposition 4.2. Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such

that (d1, d2) = 1. Let ϵi be the fundamental unit of Q(
√
di) where Nϵi = 1 for

i = 1, 2, 3 and we let mi, i = 1, 2, 3 as we have in the Proposition 4.1. Then, we have
the following results.
1.

√
ϵ3 ∈ K if and only if either m3 = d1 or d2.

2.
√
ϵ1ϵ2 ∈ K if and only if m1 = m2 = 2.

3.
√
ϵjϵ3 ∈ K for j = 1 or 2 if and only if either ([mjm3] = [d1], [d2] or [d3] with

j = 1 or 2) or (mj = m3 for j = 1 or 2).

4.
√
ϵ1ϵ2ϵ3 ∈ K if and only if either ([m1m2m3]=[d1], [d2] or [d3]) or ([m1m2]=[m3]).

Proof. Let ki = Q(
√
di) such that Nϵi = 1 for i = 1, 2, 3 and let mi be the squarefree

part of the positive integer N(ϵi + 1) for i ∈ {1, 2, 3}.
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1. ( =⇒ ) we use the contrapositive. We suppose that m3 ̸= d1 and d2. Since we
have

√
m3ϵ3 ∈ k3, then we get that

√
ϵ3 /∈ K. Let m3 = d1 or d2, and since we have√

m3ϵ3 ∈ k3 so
√
ϵ3 ∈ K.

2. Suppose that m1 ̸= 2 or m2 ̸= 2, we have
√
m1ϵ1 ∈ k1 and

√
m2ϵ2 ∈ k2 and thus

we get that
√
m1ϵ1m2ϵ2 ∈ K. Therefore, we get that

√
ϵ1ϵ2 /∈ K since m1 ̸= 2 or

m2 ̸= 2, (we recall that mj > 1, mj divides the discriminant of kj , mj ̸= dj for
j = 1, 2 and (d1, d2) = 1). Now let m1 = m2 = 2, since

√
m1ϵ1 ∈ k1 and

√
m2ϵ2 ∈ k2

then
√
ϵ1ϵ2 ∈ K.

3. We suppose that [mjm3] ̸= [d1], [d2] and [d3], and mj ̸= m3 with j ∈ {1, 2}. We
know that

√
mjϵj ∈ kj with j = 1 or 2 and

√
m3ϵ3 ∈ k3 (see the Proposition 4.1),

so
√
mjm3ϵjϵ3 ∈ K and since [mjm3] ̸= [d1], [d2] and [d3], and mj ̸= m3. Then,√

ϵjϵ3 /∈ K for j = 1, 2. Reciprocally, we suppose either [mjm3] = [d1], [d2] or [d3],
or mj = m3, and since we have

√
mjϵj ∈ kj with j = 1 or 2 and

√
m3ϵ3 ∈ k3. So,√

mjϵj
√
m3ϵ3 ∈ K and thus we get that

√
ϵjϵ3 ∈ K for j = 1, 2.

4. Assuming that [m1m2m3] ̸= [d1], [d2], [d3], and [m1m2] ̸= [m3]. Since
√
m1ϵ1 ∈ k1,√

m2ϵ2 ∈ k2, and
√
m3ϵ3 ∈ k3, so

√
m1ϵ1m2ϵ2m3ϵ3 ∈ K and therefore

√
ϵ1ϵ2ϵ3 /∈ K.

Now, suppose either [m1m2m3] = [d1], [d2] or [d3], or [m1m2] = [m3]. As
√
m1ϵ1 ∈ k1

and
√
m2ϵ2 ∈ k2 and then

√
m3ϵ3 ∈ k3, thus we get that

√
ϵ1ϵ2ϵ3 ∈ K.

Example 4.3. LetK = Q(
√
7,
√
55) where d1 = 7, d2 = 5·11 = 55 and d3 = 7·5·11 =

385. The fundamental units are ϵ1 = 8 + 3
√
7, ϵ2 = 89 + 12

√
55 and ϵ3 = 95831 +

4884
√
385 such that Nϵ1 = Nϵ2 = Nϵ3 = 1. So, α1 = 2(x1 + 1) = 2(8 + 1) = 2 · 32,

α2 = 2(x2+1) = 2(89+1) = 22 ·32 ·5 and α3 = 2(x3+1) = 2(95831+1) = 24 ·32 ·113.
We have m1 = 2, m2 = 5 and m3 = 11, so m2m3 = 5 · 11 = d2 which means that√
ϵ2ϵ3 ∈ K.

In the following lemma we give in all cases the first cohomology group of units of
K = Q(

√
d1,

√
d2) where (d1, d2) = 1 and e2 ̸= 4.

Lemma 4.4. Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such that

(d1, d2) = 1. Then
1. H1(GK , EK) ≃ E2. If

(i) Nϵ1 = Nϵ2 = Nϵ3 = −1 and
√
ϵ1ϵ2ϵ3 ∈ K or

(ii) Nϵ1 = Nϵ2 = −1, Nϵ3 = 1 and
√
ϵ3 ∈ K.

2. H1(GK , EK) ≃ E3. When

(i) Nϵ1 = Nϵ2 = Nϵ3 = −1 and
√
ϵ1ϵ2ϵ3 /∈ K,

(ii) Nϵ1 = Nϵ2 = −1, Nϵ3 = 1 and
√
ϵ3 /∈ K,

(iii) Nϵj ̸= Nϵk = Nϵ3 = −1 with j ̸= k = 1, 2,

(iv) Nϵj ̸= Nϵk = Nϵ3 = 1 and either
√
ϵ3 ∈ K or

√
ϵkϵ3 ∈ K where e2 ̸= 4 and

j ̸= k = 1, 2 or

(v) Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ1ϵ2 ∈ K and

√
ϵ1ϵ3 ∈ K and

√
ϵ2ϵ3 ∈ K where

e2 ̸= 4.
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3. H1(GK , EK) ≃ E4. If

(i) Nϵ1 = Nϵ2 = 1, Nϵ3 = −1,

(ii) Nϵj ̸= Nϵk = Nϵ3 = 1,
√
ϵ3 /∈ K and

√
ϵkϵ3 /∈ K where e2 ̸= 4 and j ̸= k = 1, 2

or

(iii) Nϵ1 = Nϵ2 = Nϵ3 = 1 and either
√
ϵ3 ∈ K or

√
ϵ1ϵ2 ∈ K or

√
ϵ1ϵ3 ∈ K or√

ϵ2ϵ3 ∈ K or
√
ϵ1ϵ2ϵ3 ∈ K where e2 ̸= 4.

4. H1(GK , EK) ≃ E5. When

(i) Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ3 /∈ K and

√
ϵ1ϵ2 /∈ K and

√
ϵ1ϵ3 /∈ K and√

ϵ2ϵ3 /∈ K and
√
ϵ1ϵ2ϵ3 /∈ K where e2 ̸= 4.

Proof. Recall that αi = N(ϵi + 1) = 2(xi + 1) ∈ Q if Nϵi = 1 otherwise αi = 1,
for i = 1, 2, 3, also [αi] is the class of αi in Q∗/Q∗2, for i = 1, 2, 3. According to
Proposition 3.3, we have mi is the squarefree part of N(ϵi + 1) where Nϵi = 1 for
i = 1, 2, 3 with mi > 1, mi | dki and mi ̸= di for i = 1, 2, 3. Therefore, αi = miw

2 =
N(ϵi + 1) = 2(xi + 1) where Nϵi = 1 for i = 1, 2, 3. As a result, we obtain that
[αi] = [miw

2] = [mi][w
2] = [mi] taking into account that Nϵi = 1 for i = 1, 2, 3.

We know that H̃ is the subgroup of Q∗/Q∗2 generated by the images of d1, d2, d3,
α1, α2 and α3 with d3 = d1d2. In the following we study in Q∗/Q∗2 whether [d1], [d2],
[d3], [α1], [α2], and [α3] are linearly independents. Note that [d3] = [d1d2] belongs to
the subgroup generated by [d1] and [d2] in Q∗/Q∗2, in other words [d3] ∈ ⟨[d1], [d2]⟩.
1. When Nϵ1 = Nϵ2 = Nϵ3 = −1, then [α1] = [α2] = [α3] = 1. So, H̃ = ⟨[d1], [d2]⟩
i.e. H̃ ≃ E2. As Nϵ1 = Nϵ2 = Nϵ3 = −1, then we have to distinguish the two
following cases

(i) when
√
ϵ1ϵ2ϵ3 ∈ K, i.e. EK = ⟨−1, ϵ1, ϵ2,

√
ϵ1ϵ2ϵ3⟩ so by Theorem 3.2, we get

that H̃ ≃ H1(GK , EK) ≃ E2.

(ii) otherwise, i.e.
√
ϵ1ϵ2ϵ3 /∈ K and thus EK = ⟨−1, ϵ1, ϵ2, ϵ3⟩ = Ek1Ek2Ek3 where

Ek1 = ⟨−1, ϵ1⟩, Ek2 = ⟨−1, ϵ2⟩, and Ek3 = ⟨−1, ϵ3⟩. Thus, by using the Theorem 3.2,
we get that H1(GK , EK) ≃ E3.

2. If Nϵ1 = Nϵ2 = −1 and Nϵ3 = 1, then [α1] = [α2] = 1. Since Nϵ3 = 1, then we
have the two following cases:

(i)
√
ϵ3 ∈ K (in other words EK = ⟨−1, ϵ1, ϵ2,

√
ϵ3⟩), so according to Proposi-

tion 4.2, [α3] = [m3] = [d1] or [d2] so [α3] ∈ ⟨[d1], [d2]⟩ i.e. H̃ = ⟨[d1], [d2]⟩. Thus, we

get that H̃ ≃ H1(GK , EK) ≃ E2.

(ii) Otherwise,
√
ϵ3 /∈ K and thus we have m3 ̸= d1 and d2 then [α3] = [m3] /∈

⟨[d1], [d2]⟩, i.e. [d1], [d2] and [α3] are linearly independents. So, H̃ = ⟨[d1], [d2], [α3]⟩
and thus we get that H̃ ≃ H1(GK , EK) ≃ E3.

3. When Nϵj ̸= Nϵk = Nϵ3 = −1 such that j ̸= k = 1, 2. Then, [αk] = [α3] = 1
and [αj ] = [mj ] /∈ ⟨[d1], [d2]⟩ (since mj > 1 and mj divides the discriminant of kj ,

mj ̸= dj for j = 1, 2) and thus H̃ = ⟨[d1], [d2], [αj ]⟩. So, H̃ ≃ H1(GK , EK) ≃ E3.
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4. If Nϵ1 = Nϵ2 = 1 and Nϵ3 = −1, then [α3] = 1. As Nϵ3 = −1 therefore
(d1, d2) ≡ (1, 2) or (2, 1) (mod 4). To say that

√
ϵ1ϵ2 ∈ K we must have 2 | dk1

and 2 | dk2
which is not our case. So

√
ϵ1ϵ2 /∈ K, then [αk] /∈ ⟨[d1], [d2], [αj ]⟩ with

j ̸= k = 1, 2. Hence, H1(GK , EK) ≃ H̃ = ⟨[d1], [d2], [α1], [α2]⟩ ≃ E4.

5. We assume Nϵj ̸= Nϵk = Nϵ3 = 1 where e2 ̸= 4 and j ̸= k = 1, 2. Then, [αj ] = 1
and since Nϵk = Nϵ3 = 1, then we have to distinguish the three following cases.

(i) If
√
ϵ3 ∈ K. So, by Proposition 4.2, we have [α3] = [m3] = [d1] or [d2] hence

[α3] ∈ ⟨[d1], [d2]⟩. On the other hand, we have [αk] = [mk] /∈ ⟨[d1], [d2]⟩ ( recall
that mk > 1 and mk divides the discriminant of Q(

√
dk), mk ̸= dk for k = 1, 2

see the Proposition 4.1). Thence, H̃ = ⟨[d1], [d2], [αk]⟩ and as a result we get that

H̃ ≃ H1(GK , EK) ≃ E3.

(ii) When
√
ϵkϵ3 ∈ K for k = 1 or 2. As stated in Proposition 4.2, we get that

[mkm3] = [d1], [d2] or [d3], or mk = m3 and thus we get that [α3] ∈ ⟨[d1], [d2], [αk]⟩ so
H̃ = ⟨[d1], [d2], [αk]⟩. Thus, we have H̃ ≃ H1(GK , EK) ≃ E3.

(iii) Otherwise, i.e.
√
ϵkϵ3 /∈ K, for k = 1, 2 and

√
ϵ3 /∈ K then we have [mkm3] ̸=

[d1], [d2] and [d3], and mk ̸= m3, and then m3 ̸= d1 and d2. Therefore, [α3] /∈
⟨[d1], [d2], [αk]⟩ and thus H̃ = ⟨[d1], [d2], [αk], [α3]⟩ such that k = 1, 2. Consequently,

we get that H̃ ≃ H1(GK , EK) ≃ E4.

6. If Nϵ1 = Nϵ2 = Nϵ3 = 1 where e2 ̸= 4, then we have the following cases.

(i) If
√
ϵ3 ∈ K, then we have [α3] ∈ ⟨[d1], [d2]⟩. We mention here that

√
ϵ1ϵ2 /∈ K

(since in this case we have EK = ⟨−1, ϵ1, ϵ2,
√
ϵ3⟩). Therefore, [αk] /∈ ⟨[d1], [d2], [αj ]⟩

with j ̸= k = 1, 2 i.e. [d1], [d2], [α1] and [α2] are linearly independents. According to

Theorem 3.2, we have H̃ ≃ H1(GK , EK) ≃ E4.

(ii) If
√
ϵjϵ3 ∈ K, j = 1, 2 then we have [α3] ∈ ⟨[d1], [d2], [αj ]⟩. On the other

hand, we have
√
ϵkϵj /∈ K with j ̸= k = 1, 2 ( since in this case we have EK =

⟨−1, ϵ1, ϵ2,
√
ϵjϵ3⟩), so [αk] /∈ ⟨[d1], [d2], [αj ]⟩, j ̸= k = 1, 2. So, H̃ = ⟨[d1], [d2], [αk], [αj ]⟩,

j ̸= k = 1, 2. Therefore, we have H̃ ≃ H1(GK , EK) ≃ E4.

(iii) When
√
ϵ1ϵ2 ∈ K, then we get that [α1] = [α2] = [2]. Note that

√
ϵkϵ3 /∈ K for

k = 1, 2, which means that [α3] /∈ ⟨[d1], [d2], [αk]⟩. Therefore, H̃ = ⟨[d1], [d2], [αk], [α3]⟩
where k = 1, 2. Thus, we get that H̃ ≃ H1(GK , EK) ≃ E4.

(iv) If
√
ϵ1ϵ2ϵ3 ∈ K, so we have ([α1α2α3] = [d1], [d2] or [d3]) or ([α1α2] = [α3]). We

know that, [α1], [α2] [α3] /∈ ⟨[d1], [d2]⟩. Note that
√
ϵ3 /∈ K,

√
ϵ1ϵ2 /∈ K,

√
ϵ1ϵ3 /∈ K

and
√
ϵ2ϵ3 /∈ K (since EK = ⟨−1, ϵ1, ϵ2,

√
ϵ1ϵ2ϵ3⟩), hence [α3] /∈ ⟨[d1], [d2], [αk]⟩ with

k ∈ {1, 2}, but [α3] ∈ ⟨[d1], [d2], [α1], [α2]⟩. So, H1(GK , EK) ≃ H̃ ≃ E4.

(v) Otherwise, i.e.
√
ϵ3 /∈ K,

√
ϵ1ϵ2 /∈ K,

√
ϵ1ϵ3 /∈ K,

√
ϵ2ϵ3 /∈ K and

√
ϵ1ϵ2ϵ3 /∈ K.

Then, we get that H̃ ≃ H1(GK , EK) ≃ E5.

7. If Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ1ϵ2 ∈ K and

√
ϵ1ϵ3 ∈ K and

√
ϵ2ϵ3 ∈ K

where e2 ̸= 4, note that in this case we have EK = ⟨−1,
√
ϵ1ϵ2,

√
ϵ2ϵ3,

√
ϵ1ϵ3⟩. When
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√
ϵ1ϵ2 ∈ K, then [αk] ∈ ⟨[d1], [d2], [αj ]⟩ with j ̸= k = 1, 2 and when

√
ϵjϵ3 ∈ K so

[α3] ∈ ⟨[d1], [d2], [αj ]⟩, j = 1, 2. So, H1(GK , EK) ≃ H̃ ≃ E3.

We end this section by giving examples of the first cohomology group of units of
some fields K = Q(

√
d1,

√
d2) where (d1, d2) = 1 and e2 ̸= 4.

Example 4.5. Let K = Q(
√
29,

√
65) such that d1 = 29, d2 = 5 · 13 = 65 and

d3 = 29 · 65 = 1885. The fundamental units are ϵ1 = 1
2 (5 +

√
29), ϵ2 = 8 +

√
65 and

ϵ3 = 521 + 12
√
1885 where Nϵ1 = Nϵ2 = −1 and Nϵ3 = 1. So, we have α1 = α2 = 1

and α3 = 2(521 + 1) = 2 · 522 = 22 · 32 · 29. Since we have m3, the squarefree part of
the integer N(ϵ3 + 1) = 2(x3 + 1) = α3 = 29 = d1, then

√
ϵ3 ∈ K. Therefore, we get

that H1(GK , EK) ≃ H̃ = ⟨[29], [65]⟩, i.e. H1(GK , EK) ≃ Z/2Z× Z/2Z.

Example 4.6. Put K = Q(
√
65,

√
38) such that d1 = 5 · 13 = 65, d2 = 2 · 19 = 38

and d3 = 65 · 38 = 2470. We have ϵ1 = 8 +
√
65, ϵ2 = 37 + 6

√
38 and ϵ3 =

2426111 + 48816
√
2470 such that Nϵ1 = −1 and Nϵ2 = Nϵ3 = 1. So, α1 = 1,

α2 = 2(37 + 1) = 22 · 19 and α3 = 2(2426111 + 1) = 28 · 36 · 2 · 13. Note that m2, the
squarefree part of α2 is 19 and m3 = 2 · 13. Therefore, we get that both √

ϵ3 /∈ K and√
ϵ2ϵ3 /∈ K since m3 = 2 · 13 ̸= (65 = d1 and 38 = d2), also 2 · 13 · 19 ̸= (65, 38 and

2470). Hence, H1(GK , EK) ≃ H̃ = ⟨[5 · 13], [2 · 19], [19], [2 · 13]⟩ ≃ E4.

Example 4.7. Let K = Q(
√
35,

√
23) such that d1 = 5 · 7 = 35, d2 = 23 and d3 =

35 · 23 = 805. So, we have ϵ1 = 6+
√
35, ϵ2 = 24+ 5

√
23 and ϵ3 = 1

2 (1447 + 51
√
805)

such that Nϵ1 = Nϵ2 = Nϵ3 = 1. And thus we get that α1 = 2(6 + 1) = 2 · 7,
α2 = 2(24 + 1) = 2 · 52, and α3 = 2(14472 + 1) = 1449 = 32 · 7 · 23. Therefore, we get
that m1 = 2 · 7, m2 = 2, and m3 = 7 · 23, and thus m1m2m3 = (2 · 7)2 · 23, hence
[m1m2m3] = [d2] = [23], which means that we have

√
ϵ1ϵ2ϵ3 ∈ K. Therefore, we get

that H1(GK , EK) ≃ H̃ = ⟨[5 · 7], [23], [2 · 7], [2]⟩ ≃ E4.

5. The Pólya groups of the real biquadratic fields K = Q(
√
d1,

√
d2)

where (d1, d2) = 1 and e2 ̸= 4

Theorem 5.1. Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such that

(d1, d2) = 1. Let t be the number of the prime divisors of dK . Then
1. PO(K) ≃ Et−2. When

(i) Nϵ1 = Nϵ2 = Nϵ3 = −1 and
√
ϵ1ϵ2ϵ3 ∈ K or

(ii) Nϵ1 = Nϵ2 = −1, Nϵ3 = 1 and
√
ϵ3 ∈ K.

2. PO(K) ≃ Et−3. When

(i) Nϵ1 = Nϵ2 = Nϵ3 = −1 and
√
ϵ1ϵ2ϵ3 /∈ K,

(ii) Nϵ1 = Nϵ2 = −1, Nϵ3 = 1 and
√
ϵ3 /∈ K,

(iii) Nϵj ̸= Nϵk = Nϵ3 = −1 with j ̸= k = 1, 2,
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(iv) Nϵj ̸= Nϵk = Nϵ3 = 1 and either
√
ϵ3 ∈ K or

√
ϵkϵ3 ∈ K where e2 ̸= 4 and

j ̸= k = 1, 2 or

(v) Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ1ϵ2 ∈ K and

√
ϵ1ϵ3 ∈ K and

√
ϵ2ϵ3 ∈ K where

e2 ̸= 4.

3. PO(K) ≃ Et−4. When

(i) Nϵ1 = Nϵ2 = 1, Nϵ3 = −1,

(ii) Nϵj ̸= Nϵk = Nϵ3 = 1,
√
ϵ3 /∈ K and

√
ϵkϵ3 /∈ K where e2 ̸= 4 and j ̸= k = 1, 2

or

(iii) Nϵ1 = Nϵ2 = Nϵ3 = 1 and either
√
ϵ3 ∈ K,

√
ϵ1ϵ2 ∈ K,

√
ϵ1ϵ3 ∈ K,√

ϵ2ϵ3 ∈ K or
√
ϵ1ϵ2ϵ3 ∈ K where e2 ̸= 4.

4. PO(K) ≃ Et−5. When

(i) Nϵ1 = Nϵ2 = Nϵ3 = 1,
√
ϵ3 /∈ K,

√
ϵ1ϵ2 /∈ K,

√
ϵ1ϵ3 /∈ K,

√
ϵ2ϵ3 /∈ K and√

ϵ1ϵ2ϵ3 /∈ K where e2 ̸= 4.

Proof. As the prime 2 is not totally ramified in K/Q and since K/Q is a Galois
extension and dK is its discriminant. So, according to Proposition 3.6, we have
| H1(GK , EK) || PO(K) |=

∏
p|dK

ep where ep is the ramification index of the prime

number p in K/Q. Thus, we get that | PO(K) |=
∏

p|dK
ep

|H1(GK ,EK)| . Hence, PO(K) ≃ Et−s

where s satisfies Es ≃ H1(GK , EK) and
∏

p|dK
ep = 2t with t is the number of prime

numbers dividing dK . By Lemma 4.4, we have when Nϵ1 = Nϵ2 = Nϵ3 = −1 and√
ϵ1ϵ2ϵ3 ∈ K or Nϵ1 = Nϵ2 = −1, Nϵ3 = 1 and

√
ϵ3 ∈ K, then H1(GK , EK) ≃ E2.

Therefore, PO(K) ≃ Et−2. Similarly, we get the other results of the theorem. □

6. The real biquadratic Pólya fields

Recall that in [3, 15] the discriminant dK of K = Q(
√
d1,

√
d2) over Q is explicitly

determined by:
1. dK = (d1d2)

2 when (d1, d2) ≡ (1, 1) (mod 4).

2. dK = (4d1d2)
2 when (di, dj) ≡ (1, 2), (1, 3) or (3, 3) (mod 4) with i ̸= j = 1, 2.

Let p, p1, p2, p3, p4 and p′ be prime integers congruent to 1 (mod 4). Let q, q1, q2,
q3 and q4 be prime integers congruent to 3 (mod 4).

Now, we determine the real biquadratic Pólya fields and we start by the case of
Nϵ1 = Nϵ2 = Nϵ3 = −1.

Theorem 6.1. Let K = Q(
√
d1,

√
d2), where d1 and d2 are two square-free integers

such that (d1, d2) = 1. We assume Nϵ1 = Nϵ2 = Nϵ3 = −1 and put i ̸= j ∈ {1, 2}.
Then, K is a Pólya field if and only if one of the following assertions is satisfied:
1. di = p1 dj = p2,

2. di = p1 dj = 2,
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3.
√
ϵ1ϵ2ϵ3 ̸∈ K and either di = p1 dj = p2p3, or di = p1p2 dj = 2, or di = p1 dj = 2p2.

Proof. We have Nϵ1 = Nϵ2 = Nϵ3 = −1, so by the Theorem 5.1, we have the two
following cases:
1. When

√
ϵ1ϵ2ϵ3 ∈ K, then PO(K) ≃ Et−2, where t is the number of prime divisors

of dK . So, K is a Pólya field if and only if t = 2. Thus, we get either di = p1 dj = p2
or di = p1 dj = 2. As stated in [12],

√
ϵ1ϵ2ϵ3 ∈ K is always verifying whenever we

have one of the two first items of the theorem.

2. When
√
ϵ1ϵ2ϵ3 /∈ K, then PO(K) ≃ Et−3. So, K is a Pólya field if and only if t = 3.

(i) Assuming (di, dj) ≡ (1, 1) (mod 4). Then, K is a Pólya field if and only if
di = p1 dj = p2p3.

(ii) Now we assume that (di, dj) ≡ (1, 2) (mod 4). So, we have either di = p1p2
dj = 2 or di = p1 dj = 2p2.

Theorem 6.2. Let K = Q(
√
d1,

√
d2) where d1 and d2 are two square-free integers

such that (d1, d2) = 1. Assuming Nϵj ̸= Nϵi = Nϵ3 = −1 such that i ̸= j = 1, 2. So,
K is a Pólya field if and only if one of the following assertions is satisfied:
(i) di = p1 dj = p2p3, (ii) di = p1 dj = 2p2, (iii) di = 2 dj = p1p2.

We assume Nϵ1 = Nϵ2 = 1 and Nϵ3 = −1. Then, K is a Pólya field if and only if
one of the following assertions is satisfied:
(i) di = p1p2 dj = p3p4, (ii) di = 2p1 dj = p2p3.

Proof. We have K = Q(
√
d1,

√
d2) such that d1 and d2 are two square-free integers

such that (d1, d2) = 1.
1. As Nϵj ̸= Nϵi = Nϵ3 = −1 such that i ̸= j = 1, 2. So, by Theorem 5.1, we have
PO(K) ≃ Et−3. Then, K is a Pólya field if and only if t = 3.

(i) We suppose (di, dj) ≡ (1, 1) (mod 4). Thus, by K.S. Williams [15], we get
dK = (p1p2p3)

2. So, K is a Pólya field if and only if di = p1 dj = p2p3.

(ii) Now we assume (di, dj) ≡ (1, 2) (mod 4). Then, K is a Pólya field if and only
if di = p1 dj = 2p2.

(iii) And when (di, dj) ≡ (2, 1) (mod 4) we get that di = 2 dj = p1p2.

2. Assuming Nϵ1 = Nϵ2 = 1 and Nϵ3 = −1, so we have PO(K) ≃ Et−4. Then,
K is a Pólya field if and only if t = 4. So, we get either di = p1p2 dj = p3p4, or
di = 2p1 dj = p2p3.

Theorem 6.3. Let K = Q(
√
d1,

√
d2), where d1 and d2 are two square-free integers

such that (d1, d2) = 1. Put i ̸= j = 1, 2. We assume that Nϵ1 = Nϵ2 = −1 and
Nϵ3 = 1. When

√
ϵ3 ∈ K, then K is a Pólya field if and only if one of the following

conditions holds:
(i) di = p1 dj = p2, (ii) di = p1 dj = 2.

And when
√
ϵ3 /∈ K, then K is a Pólya field if and only if one of the following

conditions holds:
(i) di = p1p2 dj = p3, (ii) di = p1p2 dj = 2, (iii) di = p1 dj = 2p2.
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Proof. As Nϵ1 = Nϵ2 = −1 and Nϵ3 = 1. Then, we have to distinguish the following
cases.
1. If

√
ϵ3 ∈ K, then according to Theorem 5.1, we get that PO(K) ≃ Et−2. Thence,

K is a Pólya field if and only if t = 2.

(i) We assume (di, dj) ≡ (1, 1) (mod 4). Then, we get that di = p1 dj = p2.

(ii) Now we suppose that (di, dj) ≡ (1, 2) (mod 4). Then, di = p1 dj = 2.

2. Otherwise i.e.
√
ϵ3 /∈ K then as stated in Theorem 5.1, we get that PO(K) ≃ Et−3.

So, K is a Pólya field if and only if t = 3.

(i) Assuming (di, dj) ≡ (1, 1) (mod 4), so we get that di = p1p2 dj = p3.

(ii) When (di, dj) ≡ (1, 2) (mod 4). Then, K is a Pólya field if and only if either
di = p1p2 dj = 2 or di = p1 dj = 2p2.

Remark 6.4. Building upon the results proven in the three previous theorems, we
note that we give the Pólya fields in each case without mentioning that e2 ̸= 4.
Moreover, all the cases studied were Nϵ1 = Nϵ2 = Nϵ3 = −1, Nϵ1 = Nϵ2 = −1 ̸=
Nϵ3 = 1, Nϵ1 = 1 ̸= Nϵ2 = Nϵ3 = −1, Nϵ2 = 1 ̸= Nϵ1 = Nϵ3 = −1, and
Nϵ1 = Nϵ2 = 1 ̸= Nϵ3 = −1. We mention that, there is no need to add the condition
of e2 ̸= 4 since it is implicitly we have that e2 ̸= 4, which means that the prime
2 is not totally ramified in K/Q in all mentioned cases above. We recommend the
reader to refer to the beginning of the preliminaries section, as well as Remark 3.1,
for further details.

On the other hand, we would like to mention that in the upcoming theorems, we
are going to determine the Pólya fields in the following cases: Nϵj ̸= Nϵi = Nϵ3 = 1
where i ̸= j = 1, 2 and Nϵ1 = Nϵ2 = Nϵ3 = 1. Note that in these cases we can have
either e2 = 4 or e2 ̸= 4. As we are specifically interested in the case where the prime
2 is not totally ramified in K/Q, so it is necessary to add the condition e2 ̸= 4.

Theorem 6.5. Let K = Q(
√
d1,

√
d2), where d1 and d2 are two square-free integers

such that (d1, d2) = 1, and let Nϵj ̸= Nϵi = Nϵ3 = 1 where e2 ̸= 4 and i ̸= j = 1, 2.
Assuming either

√
ϵ3 ∈ K or

√
ϵiϵ3 ∈ K. So, K is a Pólya field if and only if one

of the following assertions is satisfied:
(i) di = q dj = p,

(ii) di = p1p2, q1q2 dj = p,

(iii) di = p1p2, q1q2 dj = 2,

(iv) di = 2p1, 2q1 dj = p.

Now we assume
√
ϵ3 /∈ K and

√
ϵiϵ3 /∈ K. Then, K is a Pólya field if and only if

one of the following conditions holds:
(i) di = q1p1 dj = p2,

(ii) di = q1 dj = p1p2,

(iii) di = p1p2, q1q2 dj = pp′,

(iv) di = p1p2p3, q1q2p
′ dj = p,

(v) di = p1p2, q1q2 dj = 2p,

(vi) di = p1p2p3, q1q2p dj = 2,

(vii) di = 2p1p2, 2p1q1, 2q1q2 dj = p,

(viii) di = 2p, 2q dj = p1p2.

Proof. As Nϵj ̸= Nϵi = Nϵ3 = 1 and e2 ̸= 4 with i ̸= j = 1, 2. Then, we have the
two following cases.
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1. When either
√
ϵ3 ∈ K or

√
ϵiϵ3 ∈ K for i ∈ {1, 2}, so according to the Theorem 5.1,

we get that PO(K) ≃ Et−3. Thence, K is a Pólya field if and only if t = 3. Therefore,
we have the following cases:

(i) (di, dj)≡(1, 1) (mod 4), then K is a Pólya field if and only if di=p1p2, q1q2 dj=p.

(ii) (di, dj)≡(1, 2) (mod 4). So, di=p1p2, q1q2 dj=2.

(iii) (di, dj)≡(2, 1) (mod 4). Then, we get that di=2p1, 2q1 dj=p.

(iv) (di, dj)≡(3, 1) (mod 4). Therefore, K is a Pólya field if and only if di=q dj=p.

2. And when both
√
ϵ3 and

√
ϵiϵ3 /∈ K with i ̸= j=1, 2. By the Theorem 5.1, we get

that PO(K) ≃ Et−4. So, K is a Pólya field if and only if t=4.

(i) We put (di, dj)≡(1, 1) (mod 4). Then, K is a Pólya field if and only if either
di=p1p2, q1q2 dj=pp′ or di=p1p2p3, q1q2p

′ dj=p.

(ii) When (di, dj)≡(1, 2) (mod 4). Thus, we get that either di=p1p2, q1q2 dj=2p or
di=p1p2p3, q1q2p dj=2.

(iii) Let (di, dj)≡(2, 1) (mod 4). Then, we have either di=2p1p2, 2p1q1, 2q1q2 dj=p
or di=2p, 2q dj=p1p2.

(iv) When (di, dj)≡(3, 1) (mod 4), so we get that K is a Pólya field if and only if
either di=q1p1 dj=p2, or di=q1 dj=p1p2.

In the following theorem we give the Pólya fields ofK such that Nϵ1=Nϵ2=Nϵ3=1
and

√
ϵ1ϵ2 ∈ K and

√
ϵ1ϵ3 ∈ K and

√
ϵ2ϵ3 ∈ K (i.e. EK=⟨−1,

√
ϵ1ϵ2,

√
ϵ2ϵ3,

√
ϵ1ϵ3⟩)

where e2 ̸= 4.

Theorem 6.6. Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such

that (d1, d2) = 1 and let Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ1ϵ2 ∈ K and

√
ϵ1ϵ3 ∈ K and√

ϵ2ϵ3 ∈ K where e2 ̸= 4. Then, K is a Pólya field if and only if d1 = q1 and d2 = q2.

Proof. Since Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ1ϵ2 ∈ K and

√
ϵ2ϵ3 ∈ K and

√
ϵ1ϵ3 ∈ K

such that e2 ̸= 4, so by Theorem 5.1 we have PO(K) ≃ Et−3. Therefore, K is a field
of Pólya if and only if t = 3. If (di, dj) ≡ (3, 3) (mod 4) with i ̸= j = 1, 2 therefore
dK = (4d1d2)

2 then we find that d1 = q1 and d2 = q2. If (di, dj) ≡ (1, 1) (mod 4), we
know that dK = (d1d2)

2 and since we have t = 3 and Nϵ1 = Nϵ2 = Nϵ3 = 1 then we
find that this case can not occur. Similarly for the cases of (di, dj) ≡ (1, 2) (mod 4)
and (di, dj) ≡ (1, 3) (mod 4) with i ̸= j ∈ {1.2}. □

In the following theorem we give the Pólya fields of K in the two following cases:
1. Nϵ1 = Nϵ2 = Nϵ3 = 1 and

√
ϵ3 ∈ K or

√
ϵ1ϵ2 ∈ K or

√
ϵ2ϵ3 ∈ K or

√
ϵ1ϵ3 ∈ K

or
√
ϵ1ϵ2ϵ3 ∈ K where e2 ̸= 4, in other words Nϵ1 = Nϵ2 = Nϵ3 = 1 and EK =

⟨−1, ϵ1, ϵ2,
√
ϵ3⟩ or EK = ⟨−1,

√
ϵ1ϵ2, ϵ2, ϵ3⟩ or EK = ⟨−1, ϵ1, ϵ2,

√
ϵ2ϵ3⟩ or EK =

⟨−1, ϵ1, ϵ2,
√
ϵ1ϵ3⟩ or EK = ⟨−1, ϵ1, ϵ2,

√
ϵ1ϵ2ϵ3⟩ respectively.

2. Nϵ1 = Nϵ2 = Nϵ3 = 1 and
√
ϵ3 /∈ K and

√
ϵ1ϵ2 /∈ K and

√
ϵ1ϵ3 /∈ K and√

ϵ2ϵ3 /∈ K and
√
ϵ1ϵ2ϵ3 /∈ K, i.e. Nϵ1 = Nϵ2 = Nϵ3 = 1 and EK = ⟨−1, ϵ1, ϵ2, ϵ3⟩.

Theorem 6.7. Let K = Q(
√
d1,

√
d2), d1 and d2 be two square-free integers such that

(d1, d2) = 1 and let Nϵ1 = Nϵ2 = Nϵ3 = 1 and then e2 ̸= 4.
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We suppose either
√
ϵ3 ∈ K or

√
ϵ1ϵ2 ∈ K or

√
ϵ1ϵ3 ∈ K or

√
ϵ2ϵ3 ∈ K or√

ϵ1ϵ2ϵ3 ∈ K. Then, K is a Pólya field if and only if one of the following conditions
holds:

1. di = p1q1 dj = q2

2. di = p1p2 dj = q1

3. di = p1p2 dj = p3p4, q1q2

4. di = q1q2 dj = p1p2, q3q4

5. di = p1p2 dj = 2p, 2q

6. di = q1q2 dj = 2p, 2q.

Now we assume that
√
ϵ3 /∈ K and

√
ϵ1ϵ2 /∈ K and

√
ϵ1ϵ3 /∈ K and

√
ϵ2ϵ3 /∈ K

and
√
ϵ1ϵ2ϵ3 /∈ K. So, K is a Pólya field if and only if one of the following conditions

holds:

1. di = p1p2 dj = p3p4p5, q1q2p

2. di = q1q2 dj = p1p2p3, q3q4p

3. di = p1p2 dj = 2p3p4, 2q1q2, 2pq

4. di = q1q2 dj = 2p1p2, 2q3q4, 2pq

5. di = p1p2p3 dj = 2p, 2q

6. di = q1q2p1 dj = 2p, 2q

7. di = p1q1 dj = p2q2

8. di = q1 dj = p1p2q2, q2q3q4

9. di = p1p2, q1q2 dj = pq

10. di = p1p2p3, q1q2p dj = q.

Proof. As Nϵ1 = Nϵ2 = Nϵ3 = 1 and e2 ̸= 4. Then, we have to distinguish the two
following cases :

1. We assume either
√
ϵ3 ∈ K,

√
ϵ1ϵ2 ∈ K or

√
ϵ1ϵ3 ∈ K or

√
ϵ2ϵ3 ∈ K or

√
ϵ1ϵ2ϵ3 ∈

K. So, as stated in Theorem 5.1, we get that PO(K) ≃ Et−4. Then, K is a Pólya
field if and only if t = 4. Then, we have the following cases :

(i) (di, dj) ≡ (1, 1) (mod 4). Then, K is a Pólya field if and only if either di =
q1q2 dj = p1p2, q3q4 or the third item.

(ii) (di, dj) ≡ (1, 2) (mod 4). Thus, we get the items 5. and 6.

(iii) (di, dj) ≡ (3, 3) (mod 4). Then, we have dK = (4didj)
2, so di = p1q1 dj = q2.

(iv) (di, dj) ≡ (1, 3) (mod 4), then dK = (4didj)
2. Consequently, we get that K is

a Pólya field if and only if di = p1p2 dj = q1.

2. Now we assume
√
ϵ3 /∈ K and

√
ϵ1ϵ2 /∈ K and

√
ϵ1ϵ3 /∈ K and

√
ϵ2ϵ3 /∈ K and√

ϵ1ϵ2ϵ3 /∈ K. Again, by Theorem 5.1, we get that PO(K) ≃ Et−5. Thus, K is a
Pólya field if and only if t = 5. We distinguish the following cases.

(i) We suppose that (di, dj) ≡ (1, 1) (mod 4). Then, K is a Pólya field if and only
if di = p1p2 dj = p3p4p5, q1q2p, or di = q1q2 dj = p1p2p3, q3q4p

(ii) When (di, dj) ≡ (1, 2) (mod 4). Thus, we get either di = q1q2 dj = 2p1p2, 2q3q4, 2pq
or the items 3., 5. and 6.

(iii) We assume (di, dj) ≡ (3, 3) (mod 4). So, we get that K is a Pólya field if and
only if either di = p1q1 dj = p2q2 or di = q1 dj = p1p2q2, q2q3q4.

(iv) If (di, dj) ≡ (1, 3) (mod 4), then dK = (4didj)
2. Therefore, we getK is a Pólya

field if and only if either di = p1p2, q1q2 dj = pq or di = p1p2p3, q1q2p dj = q.
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7. Conclusion

Let K = Q(
√
d1,

√
d2), where d1 > 1 and d2 > 1 are two square-free integers with

(d1, d2) = 1 and d3 = d1d2. Let k1 = Q(
√
d1), k2 = Q(

√
d2) and k3 = Q(

√
d3) be

three quadratic subfields of K = k1k2 = Q(
√
d1)Q(

√
d2) = Q(

√
d1,

√
d2).

As a conclusion, we can say that in each case where k1 and k2 are Pólya fields,
then K = k1k2 is a Pólya field taking into account that, it is not necessary that k3
must be a Pólya field.

As an example: k1 = Q(
√
p1p2) and k2 = Q(

√
q1) where Nϵ1 = Nϵ2 = 1 are Pólya

fields (see Proposition 3.9), but k3 = Q(
√
p1p2q1) with Nϵ3 = 1 is not a Pólya field.

From the head of the prevoius theorem it follows that K = Q(
√
p1p2,

√
q1) such that

d1 = p1p2 and d2 = q1 with Nϵ1 = Nϵ2 = Nϵ3 = 1 is a Pólya field.
We mention that we can establish that k1 or k2 is not a Pólya field, and that both

k1 and k2 are not Pólya fields, but K = k1k2 is a Pólya field.
As an example: k1 = Q(

√
p1q1) is not a Pólya field and k2 = Q(

√
q2) is a Pólya

field (see Proposition 3.9). According to the above theorem, K = Q(
√
p1q1,

√
q2) such

that d1 = p1q1 and d2 = q2 with Nϵ1 = Nϵ2 = Nϵ3 = 1 is a Pólya field.
Another example: k1 = Q(

√
p1q1) and k2 = Q(

√
p2q2) are not Pólya fields. But it

follows from the above theorem that K = Q(
√
p1q1,

√
p2q2) such that d1 = p1q1 and

d2 = q2 with Nϵ1 = Nϵ2 = Nϵ3 = 1 is a Pólya field.
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