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ON THE POLYA FIELDS OF SOME REAL BIQUADRATIC FIELDS

Said El Madrari

Abstract. Let Og be the ring of integers of a number field K, and let Int(Ox) =
{R € K[X] | R(Ok) C Ok}. The Pdlya group is the group generated by the classes of the
products of the prime ideals with the same norm. The Pélya group Po(K) is trivial if and
only if the Og-module Int(Ox) has a regular basis if and only if K is a Pélya field. In this
paper, we give the structure of the first cohomology group of units of the real biquadratic
number fields K = Q(\/al, \/Eg), where d; > 1 and d2 > 1 are two square-free integers with
(di,d2) = 1 and the prime 2 is not totally ramified in K/Q. We then determine the Pélya
groups and the Pdlya fields of K.

1. Introduction

Let Int(Ok) = {R € K[X] | R(Ok) C Ok} be the ring of integer-valued polynomials
on Og. In 1919 Pélya [11] and Ostrowski [10] were interested in whether the O-
module Int(O) has a regular basis. According to Pélya, a basis (¢, )nen of Int(Ok)
is said to be a regular basis if the deg(g,) = m for each polynomial g,. In 1982
Zantema [16] called field K for which the Og-module Int(Ok) has a regular basis,
Pdlya-field.

Let K = Q(V/dy,Vds) be the real biquadratic number field such that d; and dp
are square-free integers with (di,ds) = 1. Let H'(Gk, Ex) be the first cohomology
group of the units of K. The studies on the Pdlya groups and the Pdlya fields of K
started in 1982 by Zantema [16], who gave a result on Pdlya real biquadratic fields
using H*(Gk, Ex) (see Theorem 3.2 and Proposition 3.6 below). In 2011 Leriche [7]
studied the real biquadratic fields K. She gave some Podlya fields of K by using the
capitulation. In [4] characterized some Pélya groups and Pélya fields of K based on the
structure of H' (G, E). In 2020, Tougma [14] also used H!(Gk, Ex) to determine
some non-Pdlya real biquadratic fields. In 2021 Maarefparvar [8] characterized the
Pélya groups of some real biquadratic fields also with H* (G, Ex).
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On the Pdlya fields of some real biquadratic fields

It is clear that the structure of the first cohomology group of the units of K plays

an important role in providing results on Pdlya groups and Poélya fields of K. In
this paper, we characterize H'(Gx, Fr), the first cohomology group of the units of

K = Q(Vdy,Vds), where (dy,dy) = 1 and the prime 2 is not totally ramified in K/Q.
We therefore specify the Pélya groups of K in order to determine the Poélya fields
of K.
2. Notations
In this work, we accept the following notations:
1. dy > 1 and do > 1 are two square-free integers where (d1,ds) = 1.
2. ds = dids.
3. K = Q(V/dy,Vdy): a real biquadratic number field.
4. Ogk: the ring of integers of K.
5. k; = Q(\/d;): the quadratic subfields of K for i =1,2,3.
6. €, = x; + y;1/d;: the fundamental unit of Q(v/d;), for i = 1,2,3.
7. N(vi) = Ni(vi) = Normy, jo(7:) where ; € k;, for i =1,2,3.
8. Ek: the unit group of K over Q.
9. Gg: the Galois group of K over Q.
10. a; = N(e;+1) =2(z; +1) € Q if Ne¢; = 1 otherwise o; = 1, for i = 1,2, 3.
11. [ay] @ the class of ; in Q*/Q*2, for i = 1,2,3.
12. [d;] : the class of d; in Q*/Q*2, for i = 1,2,3.
13. H : the subgroup of Q*/Q*? generated by the images of d, da, d3, a1, az and as.
14. HY(Gg, Ex): the first cohomology group of units of K.
15. ep: the ramification index of a prime number p in K/Q.
16. dx: the discriminant of K over Q.
17. t: the number of the prime divisors of dg.
18. B, =(Z/2Z)", n € N.

3. Preliminaries

Let K = Q(\/al, \/&g), dy and dy be two square-free integers such that (di,ds) = 1.
Let kl = Q(\/(Tl), kg = Q(\/@) and ]€3 = Q(\/@) with d3 = dldg.
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By [3,15] we have when (d;,ds) = (1,1) (mod 4), then dx = (dids)? (note that
in this case we have the prime 2 is not dividing neither the discriminant of ki, ks
nor k3). When (dy,d2) = (1,2),(2,1),(1,3),(3,1),(3,3) (mod 4), so dr = (4dyd2)?
(note that here the prime 2 is dividing the discriminant of two subfield of K). When
(dy,d2) = (2,3),(3,2) (mod 4) then di = (8d1d2)? (note that the prime 2 is dividing
both the discriminant of k; and ko and k3). Let es be the ramification index of the
prime number 2 in K/Q. The prime 2 is the only prime can be totally ramified
in K/Q.

REMARK 3.1. When we say that e = 4 = [K : Q)], the prime 2 is totally ramified
in K/Q, so we have (dy,d2) = (2,3),(3,2) (mod 4) and thus Ne; # Nea = Neg = 1,
NGQ#NGl :N€3 =1lor N€1 :N62 :N63:1

When we say that e; # 4, the prime 2 is not totally ramified in K/Q, so we have
either e = 1 or 2 and hence (dy,d2) = (1,1),(1,2),(2,1),(1,3),(3,1),(3,3) (mod 4),
therefore we have the following possibilities : Ne; = Nes = Neg = —1, Ney = Neg =
—1 # Nez =1, Negy = Neag =1 # Neg = —1, Ne; = 1 # Nep = Neg -1,
Nej=—-1# Ney=Nes=1,j# k€ {1,2} or Ney = Neg = Neg = 1.

Let K = Q(Vd1,Vdy), k1 = Q(v/d1), k2 = Q(v/d3) and ks = Q(v/d3) where ds =
dids. Let €1 = x1 4+ 1y1V/d1, €2 = T2 +1y2+/ds and €3 = 23 +y31/d3 be the fundamental
unit of k1, ko and k3 respectively. Let H'(G g, Ex) be the first cohomology group of
units of K. Recall a; € Q such that a; = N(e; +1) = 2(x; + 1) when Ne; = 1 else
a; =1, fori=1,2,3. H is the subgroup of Q*/Q*? generated by the images of dy,
da, ds, a1, as and a3 with d3 = dyds. Setzer [13] gave the following theorem which
gives the structure of the first cohomology group of units of K. Keep in mind that
Zantema stated the following theorem (see [16, Section 4]).

THEOREM 3.2 ([13, Theorems 4 and 5]). H ~ H (G, Ex), except for the next two
cases in which H is canonically isomorphic to a subgroup of index 2 of H (Gx, Er):
1. the prime 2 is totally ramified in K/Q, and there exists integral z; € k;, i € {1,2,3}
such that Ni(z1) = Na(22) = N3(z3) = £2,

2. all the quadratic subfields k; contain units of norm —1 and Ex = Ej, Ex, Ey,.

The theorem above follows directly from the proofs of [13, Theorems 4 and 5].
The theorem above is also stated in [4, Theorem 1.6].

PROPOSITION 3.3 ([6, Satz 1]). Let K = Q(v/dy,V/ds), di and dy be two square-free
integers, so we have the following eight possibilities for a system of fundamental units
Of EK :

1. €y, €y, €Ew;

2. \/€u, €, €0 with Ne, = 1;

3. \/€u,\/€v,€w such that Ne, = Ne, = 1;

4. \/€u€u, €u, €y such that Ne, = Ne, = 1;

5. \/€u€v,\/€w, €, where Ne, = Ne, = Ney, = 1;
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6. \/€u€us\/€v€w,/€wEu where Ne, = Ne, = Ne, = 1;
7. \/€u€v€w, €v, € where Ne, = Ne, = Ney, = 1;
8. \/€u€puw, €y, €y With Ne, = Ne, = Ney, = —1 where {€y, €, €4} = {€3,€1,€2}.
It is worth mentioning that the proposition mentioned above was stated by Ben-
jamin et al. [1].
The following definition is a well known definition in the Pdlya group theory. We

refer the reader to [2, Definition I1.3.8 and Proposition I1.3.9]. The reader can also
consult [9, Definition 1.2], as well as [7, Definition 2.2].

DEFINITION 3.4 ([2, Definition I1.3.8]). Let [, (K) be the product of all prime ideals
of Ok with the norm ¢ > 2. The Pdlya group Po(K) of a number field K is the
subgroup of the class group generated by the classes of the ideals [] (K).

The proposition below is a famous result about the notion of Pdlya field and
group of a number field K which is mentioned in [7, Proposition 2.3] (also consult [16,
Theorem 2.3]).

PROPOSITION 3.5. The group Po(K) is trivial if and only if one of the following
assertions is satisfied:
1. the field K is a Pdlya field;

2. all the ideals Hq (K) are principal;

3. the Og-module Int(Ok) admits a regular basis.

The following proposition mentioned by many authors in the field, we refer the
reader to [9, Proposition 1.4] and [4, Proposition 1.3].

PROPOSITION 3.6 ([16, Section 3]). Let K/Q be a Galois extension and dx be its
discriminant. Denote by e, the ramification index of a prime number p in K. Then,
the following sequence is ezact 1 - H' (G, Ex) — ®pjaL/epZ — Po(K) — 1. In
particular, | H*(Gk, Ex) || Po(K) |=I 1 €p-

And thus we have the following corollary.
COROLLARY 3.7. K is a Pélya field if and only if | H* (G, Ex) |= ledK €p.
The proposition below is stated in [9, Proposition 1.3].

PROPOSITION 3.8 ([5, Theorem 106]). Let k = Q(v/d) be a quadratic number field,
where d is a square-free integer, and let € be the fundamental unit of k. Let z be the
number of ramified prime in the extension k/Q. Then,

Polk) ~ {EZ_Q if k is real and N(e) =1,

E._1 otherwise.

Note that we can identify all quadratic Polya fields based on the characterization
provided in the proposition above.
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PROPOSITION 3.9 ([16, Example 3.3]). Let k = Q(v/d) be a quadratic number field,
where d is a square-free integer, and let € be the fundamental unit of k. Let p and q
be two distinct odd prime numbers. Then, k is a Pélya field if and only if one of the
following assertions is satisfied:

1. d= -2, or —1, or 2, or —p with p =3 (mod 4), or p.

2. d=2p and either p=3 (mod 4) orp=1 (mod 4) and N(e) = 1.
3. d = pq and either p,q =3 (mod 4) or p,¢ =1 (mod 4) and N(e) = 1.

The proposition above stated in [4, Proposition 1.4]. The reader may also find
helpful [2, Proposition 3.1].

In this paper we use a result of Setzer [13] (Theorem 3.2) and a result of Kubota [6]
(Proposition 3.3), to obtain the first cohomology group of units of real biquadratic
number fields K = Q(v/dy,V/ds), where d; and dy are two square-free integers with
(d1,d2) =1 and ez # 4. Then we use the result of Zantema [16] (Proposition 3.6) to
give the Pdélya groups of K. Finally, we derive the Pdlya fields of K.

4. The first cohomology group of units of K = Q(+/dy,v/dz) where
(dl,dz) =1 and €2 # 4

We start this section by giving the following proposition.

PROPOSITION 4.1 ([6]). Let k = Q(v/d) such that Ne = 1 and let m denote the square-
free part of the positive integer N(e +1). Then m > 1, m divides the discriminant of
k, m #d, and \/me € k.

Let K = Q(vdi,Vds) such that (dy,dy) = 1 and d3 = didy. Let ¢; be the
fundamental unit of Q(v/d;) for i = 1,2,3. Recall that [d;] be the class of d; in
Q*/Q*2, for i = 1,2,3. Note that [m;] is the class of the squarefree part m; of
N(e; + 1) in Q*/Q*? such that Ne; = 1 for i = 1,2, 3.

PROPOSITION 4.2. Let K = Q(\/&l, \/g2)7 di and dy be two square-free integers such
that (dy,d2) = 1. Let ¢; be the fundamental unit of Q(v/d;) where Ne; = 1 for
i=1,2,3 and we let m;, i = 1,2,3 as we have in the Proposition 4.1. Then, we have
the following results.

1. \/e3 € K if and only if either m3 = dy or ds.

2. \Je1€2 € K if and only if m; = mo = 2.

3. JEi€s € K for j =1 or 2 if and only if either ([m;jms] = [d1], [d2] or [d3] with
j=1o0r2) or (m; =ms for j=1 or2).

4. \J€1€2€3 € K if and only if either ([mimoms|=[d1], [d2] or [d3]) or ([mima]=[ms]).

Proof. Let k; = Q(+/d;) such that Ne; = 1 for i = 1,2, 3 and let m; be the squarefree
part of the positive integer N(e; + 1) for i € {1,2,3}.
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1. ( = ) we use the contrapositive. We suppose that ms # d; and ds. Since we
have \/mge3 € k3, then we get that /e5 ¢ K. Let mz = d; or da, and since we have
Vmsez € k3 so \Jez € K.
2. Suppose that m; # 2 or mg # 2, we have \/mi€1 € k1 and /maoea € ko and thus
we get that \/mie;maes € K. Therefore, we get that ,/ejex ¢ K since my # 2 or
mo # 2, (we recall that m; > 1, m; divides the discriminant of k;, m; # d; for
Jj=1,2and (d,dz) = 1). Now let m; = my = 2, since \/mi€; € k; and \/ma€; € ko
then /€162 € K.
3. We suppose that [mjmg] # [di], [d2] and [d3], and m; # ms with j € {1,2}. We
know that \/mje; € k; with j = 1 or 2 and /m3e3 € k3 (see the Proposition 4.1),
m;ms€;jes € K and since [mjmg] # [di],[d2] and [d3], and m; # mg. Then,
V€€ ¢ K for j = 1,2. Reciprocally, we suppose either [m;ms] = [di], [d2] or [d3],
or m; = mg, and since we have \/mj€¢; € k; with j = 1 or 2 and \/mze3 € k3. So,
VMj€jy/mzes € K and thus we get that | /eje3 € K for j =1,2.
4. Assuming that [mimeoma] # [d1], [d2], [ds], and [m1mg] # [ms]. Since \/mi€; € ki,
VM2€s € ky, and \/mses € k3, so \/miermaeamzes € K and therefore |/e1ezes ¢ K.

Now, suppose either [mimaoms] = [d1], [d2] or [d3], or [mims] = [ms]. As /mi€1 € k1
and /mao€y € ko and then /mges € k3, thus we get that \/ejesez € K. O

EXAMPLE 4.3. Let K = Q(v/7,v/55) where dy = 7, dy = 5-11 = 55 and d3 = 7-5-11 =
385. The fundamental units are ¢; = 8 + 3\ﬁ, €5 = 89 + 124/55 and e3 = 95831 +
4884+/385 such that Ne; = Ney = Nez = 1. So, oy = 2(z1 +1) = 2(8 +1) = 2- 32,
ag =2(z2+1) =2(89+1) =22-32.5 and a3 = 2(z3+1) = 2(95831+1) = 2¢.32.113.
We have m; = 2, mo = 5 and m3 = 11, so mams = 5 - 11 = dy which means that

Veses € K.

In the following lemma we give in all cases the first cohomology group of units of
K = Q(\/ﬁh \/EQ) where (d1,d2) = 1 and eq # 4.

LEMMA 4.4. Let K = Q(\dy,V/dy), dy and dy be two square-free integers such that
(dl,dg) =1. Then
1. Hl(GK,EK) ’:EQ. If

(i) Ney = Neg = Neg = —1 and \/erezez € K or

(ii) Ne1 = Neg = —1, Nez =1 and \/e3 € K.
2. HY (G, Ex) ~ E3. When

(i) Ney = Neg = Neg = —1 and \[fe1eze3 ¢ K,

(ii) Ne1 = Neg = —1, Nezs =1 and \/e3 ¢ K,

(1)) Nej # Nepy = Nes = —1 with j # k=1, 2,

(iv) Nej # Nep = Neg = 1 and either \Jes € K or \/eyes € K where ex # 4 and
j#£k=1,2o0r

(v) Ney = Nea = Nes = 1 and Je1e5 € K and Je1es € K and \/ézes € K where
€9 754
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3. HY(Gk,Ek) ~ E4. If

(i) Ne; = Nea =1, Neg = —1,

(i) Nej # Nep, = Nes = 1, \Je3 ¢ K and \/exes ¢ K wherees #4 andj #k = 1,2
or

(i) Ne; = Nea = Neg = 1 and either \/e3 € K or \/e1ea € K or \/e1e3 € K or
Vexes € K or \/ereges € K where ey # 4.
4. HY Gk, Ex) ~ E5. When

(i) Net = Neg = Neg = 1 and Je3 ¢ K and \Je1e; ¢ K and \Je1e3 ¢ K and
Véaes ¢ K and \Jereaes ¢ K where eq # 4.

Proof. Recall that a; = N(e; +1) = 2(z; + 1) € Q if Ne; = 1 otherwise a; = 1,
for i = 1,2,3, also [y] is the class of a; in Q*/Q*2, for i = 1,2,3. According to
Proposition 3.3, we have m; is the squarefree part of N(e; + 1) where Ne; = 1 for
i=1,2,3 with m; > 1, m; | dg, and m; # d; for i = 1,2,3. Therefore, a; = m;w? =
N(e; +1) = 2(x; + 1) where Ne; = 1 for ¢ = 1,2,3. As a result, we obtain that
[o;] = [msw?] = [m;][w?] = [m;] taking into account that Ne; = 1 for i = 1,2, 3.

We know that H is the subgroup of Q* /Q*? generated by the images of dy, do, d3,
a1, as and az with d3 = dyds. In the following we study in Q*/Q*2 whether [dy], [d2],
[d3], [a1], [e2], and [ag] are linearly independents. Note that [d3] = [d1dz] belongs to
the subgroup generated by [d1] and [d2] in Q*/Q*?, in other words [d3] € ([d1], [d2])-
1. When Ne; = Ney = Neg = —1, then [ay] = [as] = [as] = 1. So, H = ([d4], [d2])
iie. H ~ Fy. As Ney = Neg = Neg = —1, then we have to distinguish the two
following cases

(i) when /erezez € K, ie. Ex = (—1,¢€1,¢€2,/€1€2€3) so by Theorem 3.2, we get
that H ~ H'(Gg, Ex) ~ En.

(ii) otherwise, i.e. \/e1eze3 ¢ K and thus Ex = (—1, €1, €9,€3) = Ey, B, B, where
Ex, = (—1,€e1), Fx, = (—1,€2), and Ej, = (—1,€e3). Thus, by using the Theorem 3.2,
we get that H' (G, Fi) ~ Fj3.

2. If Neg = Neg = —1 and Neg = 1, then [a] = [ag] = 1. Since Neg = 1, then we
have the two following cases:

(i) /€3 € K (in other words Ex = (—1,€1,€2,,/€3)), so according to Proposi-
tion 4.2, [as] = [ms] = [di] or [da] so [as] € ([d], [d2]) ie. H = ([d1],[d2]). Thus, we
get that H ~ H' (G, Ex) =~ Es.

(ii) Otherwise, \/e3 ¢ K and thus we have ms # di and dy then [as] = [m3] ¢
([d1],[d2]), i-e. [di],[d2] and [a3] are linearly independents. So, H = ([d1], [d2], [a3])

and thus we get that H ~ H' (G, Ex) ~ Es.

3. When Ne¢; # Nep = Neg = —1 such that j # k£ = 1,2. Then, [ax] = [az] =1
and [o] = [m;] ¢ ([d1],[dz]) (since m; > 1 and m; divides the discriminant of k;,
m; # dj for j = 1,2) and thus H = ([d1], [da], [o;]). So, H ~ H'(Gk, Ex) ~ Es.
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4. If Ney = Neg = 1 and Nes = —1, then [az] = 1. As Nes = —1 therefore
(d1,d2) = (1,2) or (2,1) (mod 4). To say that \/ejez € K we must have 2 | dj,
and 2 | di, which is not our case. So /erez ¢ K, then [ai] ¢ ([di],[d2], [;]) with
j ;ﬁ k = 1,2 HBHCE}7 Hl(GK,EK) ~ H = <[d1}, [dg], [041], [042]> ~ E4.

5. We assume Ne; # Ne, = Neg = 1 where eg # 4 and j # k = 1,2. Then, [a;] =1
and since Nep = Neg = 1, then we have to distinguish the three following cases.

(i) If \/es € K. So, by Proposition 4.2, we have [a3] = [ms] = [d1] or [d2] hence
[as] € ([di],]d2]). On the other hand, we have [ag] = [mg] ¢ ([d1],[d2]) ( recall
that my > 1 and my, divides the discriminant of Q(v/dy), my # dj for k = 1,2
see the Proposition 4.1). Thence, H = ([d1], [d2], [a]) and as a result we get that
H~ HY(Gg,Eg) ~ Es.

(ii) When /exe3 € K for k = 1 or 2. As stated in Proposition 4.2, we get that
[mrms] = [d1], [d2] or [d3], or my = mg3 and thus we get that [as] € ([d1], [da], [ax]) so

H = ([d1],[d3], [ox]). Thus, we have H ~ H (G, Ex) ~ Es.

(iii) Otherwise, i.e. \/exez ¢ K, for k = 1,2 and /e ¢ K then we have [myms] #
[d1],[d2] and [d3], and m; # ms, and then mg # d; and dy. Therefore, [a3] ¢
([d4], [d2], [o]) and thus H = ([d1], [da], [o], [@vs]) such that k& = 1,2. Consequently,
we get that H ~ H' (G, Ex) ~ E,.

6. If Ney = Neg = Neg = 1 where ey # 4, then we have the following cases.

(i) If \/e3 € K, then we have [a3] € ([d1],[d2]). We mention here that /€16 ¢ K
(since in this case we have Ex = (—1,¢€1, €2, /€3)). Therefore, [ax] ¢ ([d1], [d2], [o])
with j # k = 1,2 ie. [di],[dz], [@1] and [az] are linearly independents. According to
Theorem 3.2, we have H ~ H' (G, Ex) ~ E,.

(i) If \/ejes € K, j = 1,2 then we have [ag] € ([di],[d2], [c]). On the other
hand, we have /ex€; ¢ K with j # k = 1,2 ( since in this case we have Ex =
(=1 1, €2, \/€63)), s0 [a] ¢ ([dn], [do], [as]), 5 # k= 1,2. So, H = ([d], [da], [ewe], [e5]),
j # k =1,2. Therefore, we have H ~ H' (G, Ex) ~ Ej4.

(iii) When ,/€1e5 € K, then we get that [a1] = [aa] = [2]. Note that |/exes ¢ K for
k = 1,2, which means that [ag] ¢ ([d1], [d2], [ox]). Therefore, H = ([d1], [d2], [k, [cs])

where k = 1,2. Thus, we get that H ~ H'(Gg, Fx) ~ Ej.

(iv) If \/ereze3 € K, so we have ([ayazag] = [di], [da] or [d3]) or ([aras] = [as]). We
know that, [a], [a2] [as] & {[di],[da]). Note that & ¢ K, v/ére; ¢ K, yae ¢ K
and /eze3 ¢ K (since Ex = (—1,€1,€2, (/€1€2€3)), hence [as] ~<[ 1], [da2], [ag]) with
k € {1,2}, but [as] € ([d1], [da], [a1], [a2]). So, HY (G, Ex) ~ H ~ Ej.

(v) Otherwise, i.ei Ve & K, \Jae ¢ K, \Jeres ¢ K, \Jezez ¢ K and (/e1eze3 ¢ K.
Then, we get that H ~ H'(Gk, Ex) ~ Es.

7. If Ne; = Ney = Nes = 1 and /e165 € K and /fere3 € K and /ezes € K
where es # 4, note that in this case we have Ex = (—1, \/€1€2, \/€2€3, \/€1€3). When

=8
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Veirea € K, then [ag] € ([di], [d2], [y]) with j # k = 1,2 and when /€jé3 € K so
[Ozg,} S <[d1], [dg}, [Otj]), j=1,2. So, Hl(GK,EK) ~ H ~ FEj. O

We end this section by giving examples of the first cohomology group of units of
some fields K = Q(v/dy,v/dy) where (dy,ds) =1 and ey # 4.

ExaMmPLE 4.5. Let K = Q(+/29,v65) such that d; = 29, do = 5-13 = 65 and
ds = 29 - 65 = 1885. The fundamental units are ¢; = %(5 +/29), €2 = 8 + /65 and
€3 = 521 + 124/1885 where Ne; = Neg = —1 and Ne3 = 1. So, we have ay = ap = 1
and ag = 2(521+ 1) = 2522 = 22.32.29. Since we have mg3, the squarefree part of
the integer N(e3 4+ 1) = 2(x3 + 1) = a3 = 29 = d;, then /€3 € K. Therefore, we get
that H (G, Ex) ~ H = ([29],[65]), i.e. H'(Gx, Ex) ~ Z/2Z x 72L.

EXAMPLE 4.6. Put K = Q(v/65,/38) such that d; = 5-13 = 65, dp = 2-19 = 38
and d3 = 65-38 = 2470. We have ¢, = 8 + V65, €2 = 37 + 6138 and €3 =
2426111 + 48816+/2470 such that Ney = —1 and Nes = Nes = 1. So, a7 = 1,
as =2(37+1) =2%-19 and a3 = 2(2426111 + 1) = 28 - 3% - 2. 13. Note that mo, the
squarefree part of ap is 19 and mg3 = 2-13. Therefore, we get that both /€3 ¢ K and
Vezes ¢ K since m3 = 2-13 # (65 = d; and 38 = dy), also 2- 13 - 19 # (65,38 and

2470). Hence, H' (G, Ex) ~ H = ([5-13],[2 - 19], [19], [2 - 13]) ~ Ej.

EXAMPLE 4.7. Let K = Q(v/35,v/23) such that dy = 5-7 = 35, dy = 23 and d3 =
35-23 = 805. So, we have e; = 6+ /35, e = 24 4+ 51/23 and €3 = £ (1447 + 51/805)
such that Ne; = Negs = Neg = 1. And thus we get that o1 = 2(6 +1) = 27,
az =2(24+1)=2-5% and a3 = 2(% +1) = 1449 = 32 - 7. 23. Therefore, we get
that m; = 2-7, mo = 2, and m3 = 7 - 23, and thus mymams = (2-7)? - 23, hence
[mimamg] = [da] = [23], which means that we have \/€1€2€5 € K. Therefore, we get

that H'(Gx, Ex) ~ H = ([5-7],[23],12- 7], [2]) ~ E..

5. The Pélya groups of the real biquadratic fields K = Q(+/d;,v/dz)
where (d1,d2) =1 and ez # 4

THEOREM 5.1. Let K = Q(vdy,Vdy), di and dy be two square-free integers such that
(d1,d3) = 1. Let t be the number of the prime divisors of di. Then
1. Po(K)~ E;_o. When
(i) Ney = Nea = Nez = —1 and /erezez € K or
(ii) Ney = Neg = —1, Nez =1 and /e3 € K.
2. Po(K) ~ Ey_3. When
(1) Net = Neg = Neg = —1 and \/ereze3 ¢ K,
(ii) Ne1 = Neg = —1, Nez =1 and \/e3 ¢ K,
(iii) Ne; # New = Nes = —1 with j # k= 1,2,
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(iv) Nej # Nep = Nez = 1 and either \Je3 € K or \/epes € K where e; # 4 and
j#k=1,2or

(v) Ney = Nea = Nez =1 and Je1é2 € K and \Jé1e5 € K and \/éze5 € K where
62754.
3. Po(K) ~ E;_4. When

(Z) N61 :N€2 = 1, N€3 = 71,

(ii)) Nej # Nep, = Nes =1, \Je3 ¢ K and \/eres ¢ K whereea # 4 andj #k =1,2
or

(iii) Ney = Nea = Neg = 1 and either \Je5 € K, [ € K, \Jeje3 € K,
eéxes € K or \Jfe1ezez € K where eq # 4.
4. Po(K) ~ E;_5. When

(i) Ney = Neg = Ne3 = 1, \Jes & K, \Jerea ¢ K, \Je1e3 ¢ K, \Jezes ¢ K and
Vereaes & K where eg # 4.

Proof. As the prime 2 is not totally ramified in K/Q and since K/Q is a Galois
extension and dy is its discriminant. So, according to Proposition 3.6, we have
| HY(Gk, Ex) || Po(K) |= [1,)a, €p Where €, is the ramification index of the prime
number p in K/Q. Thus, we get that | Po(K) |= % Hence, Po(K) ~ F;_
where s satisfies E; ~ H' (G, Ex) and I 0 = 2! with ¢ is the number of prime
numbers dividing dx. By Lemma 4.4, we have when Ne; = Nes = Neg = —1 and
Veéiezes € K or Ney = Neo = —1, Neg = 1 and /e3 € K, then H'(Gk, Ex) ~ E».
Therefore, Po(K) ~ E;_s. Similarly, we get the other results of the theorem.

6. The real biquadratic Pélya fields

Recall that in [3,15] the discriminant dx of K = Q(v/dy,Vdy) over Q is explicitly
determined by:
1. dg = (did2)? when (dy,ds) = (1,1) (mod 4).

2. dg = (4d1ds)? when (d;,d;) = (1,2), (1,3) or (3,3) (mod 4) with i # j =1,2.
Let p, p1, p2, p3, p4 and p’ be prime integers congruent to 1 (mod 4). Let ¢, ¢1, g2,
g3 and g4 be prime integers congruent to 3 (mod 4).

Now, we determine the real biquadratic Pélya fields and we start by the case of
NEl =N€2 = N€3 =—-1.

THEOREM 6.1. Let K = Q(\/gl, \/&2), where dy and do are two square-free integers
such that (d1,d3) = 1. We assume Ney; = Neg = Neg = —1 and put i # j € {1,2}.
Then, K is a Pdlya field if and only if one of the following assertions is satisfied:

1. d; =p1 dj = pa,

2. dz:pl dj:2,



S. El Madrari 11

3. \/€1€2€3 ¢ K and eitherdi =D1 dj = P2ps3, OTdi = P1P2 dj = 2, OTdi = P1 dj = 2p2.

Proof. We have Ne; = Nes = Neg = —1, so by the Theorem 5.1, we have the two
following cases:

1. When /e1eze3 € K, then Po(K) ~ E;_5, where t is the number of prime divisors
of di. So, K is a Pdlya field if and only if ¢ = 2. Thus, we get either d; =p1  d; = p»
ord; =p1 dj =2. As stated in [12], \/e1e2€5 € K is always verifying whenever we
have one of the two first items of the theorem.

2. When /€1éz¢3 ¢ K, then Pp(K) ~ E;_3. So, K is a Pdlya field if and only if ¢ = 3.
(1) Assuming (d;,d;) = (1,1) (mod 4). Then, K is a Pdlya field if and only if
d; = p1 dj = paps.

(ii) Now we assume that (d;,d;) = (1,2) (mod 4). So, we have either d; = pip2
dj:20rdi=p1dj:2p2. O

THEOREM 6.2. Let K = Q(\/&l, \/&2) where dy and dy are two square-free integers
such that (di,d2) = 1. Assuming Nej # Ne; = Neg = —1 such that i # j = 1,2. So,
K is a Pdélya field if and only if one of the following assertions is satisfied:

(i) di=p1 dj =paps, (i) di=p1 dj=2ps, (iii) d;=2 dj =pips.
We assume Ney = Neg =1 and Nes = —1. Then, K is a Pdlya field if and only if
one of the following assertions is satisfied:

(i) di = pip2  dj = p3ps, (i) di =2p1 d;j = pap3.

Proof. We have K = Q(\/&l, \/&2) such that d; and dy are two square-free integers
such that (dq,ds) = 1.
1. As Nej # Ne; = Neg = —1 such that ¢ # j = 1,2. So, by Theorem 5.1, we have
Po(K) ~ E;_3. Then, K is a Pdlya field if and only if ¢ = 3.

(i) We suppose (d;,d;) = (1,1) (mod 4). Thus, by K.S. Williams [15], we get
di = (p1p2p3)?. So, K is a Pélya field if and only if d; =p1  d; = paps.

(ii) Now we assume (d;,d;) = (1,2) (mod 4). Then, K is a Pélya field if and only
if dz =D1 dj = 2p2.

(i) And when (d;,d;) = (2,1) (mod 4) we get that d; =2 d; = p1p.

2. Assuming Ne; = Neg = 1 and Neg = —1, so we have Po(K) ~ E;_4. Then,
K is a Podlya field if and only if ¢ = 4. So, we get either d; = pip2 d; = papa, or
d; =2p1 dj = paps. O

THEOREM 6.3. Let K = Q(\/&l, \/gg), where dy and dy are two square-free integers
such that (di,do) = 1. Puti # j = 1,2. We assume that Ne; = Neg = —1 and
Nez = 1. When \/e5 € K, then K is a Pélya field if and only if one of the following
conditions holds:

(Z) di:pl dj = P2, (ZZ) di:pl dj:2,
And when (/e3 ¢ K, then K is a Pdlya field if and only if one of the following
conditions holds:

(i) di =pip2 dj =ps, (i) di=pip2 dj =2, (iii) di=p1 d; =2ps.
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Proof. As Ne; = Nea = —1 and Nez = 1. Then, we have to distinguish the following
cases.

1. If \/e3 € K, then according to Theorem 5.1, we get that Po(K) ~ E;_5. Thence,
K is a Pdlya field if and only if ¢t = 2.

(i) We assume (d;,d;) = (1,1) (mod 4). Then, we get that d; =p1  d; = pa.
(ii) Now we suppose that (d;,d;) = (1,2) (mod 4). Then, d; =p1 d; =2.

2. Otherwise i.e. \/e3 ¢ K then as stated in Theorem 5.1, we get that Po(K) ~ E;_3.
So, K is a Pélya field if and only if ¢t = 3.

(i) Assuming (d;,d;) = (1,1) (mod 4), so we get that d; = pip2  d; = ps.
(ii) When (d;,d;) = (1,2) (mod 4). Then, K is a Pélya field if and only if either
dizplpg dj:201‘ dizpl dj=2p2. O

REMARK 6.4. Building upon the results proven in the three previous theorems, we
note that we give the Podlya fields in each case without mentioning that ey # 4.
Moreover, all the cases studied were Ne; = Nea = Neg = —1, Ne; = Neo = —1 #
Neg = 1, Negy = 1 # Neg = Nes = —1, Nes = 1 # Ney = Neg = —1, and
Ney = Neg =1 # Neg = —1. We mention that, there is no need to add the condition
of es # 4 since it is implicitly we have that e; # 4, which means that the prime
2 is not totally ramified in K/Q in all mentioned cases above. We recommend the
reader to refer to the beginning of the preliminaries section, as well as Remark 3.1,
for further details.

On the other hand, we would like to mention that in the upcoming theorems, we
are going to determine the Pélya fields in the following cases: Ne;j # Ne; = Nez =1
where 7 # j = 1,2 and Ne; = Nes = Neg = 1. Note that in these cases we can have
either eo = 4 or e # 4. As we are specifically interested in the case where the prime
2 is not totally ramified in K/Q, so it is necessary to add the condition eg # 4.

THEOREM 6.5. Let K = Q(\/gh \/&g), where dy and do are two square-free integers
such that (di,d2) =1, and let Nej # Ne; = Neg =1 where ea # 4 and i # j =1,2.

Assuming either \/e3 € K or \/ejez € K. So, K is a Pélya field if and only if one
of the following assertions is satisfied:

(i) di=q dj=p, (i) d; = pip2, q1q2  dj =2,

(it) di = pip2,q1q2  dj = p, (w) d;i =2p1, 2¢1 dj = p.

Now we assume /€3 ¢ K and \/e;e5 ¢ K. Then, K is a Pdlya field if and only if
one of the following conditions holds:

(i) di = qip1 dj = p2, (v) di = p1p2, q1qa dj = 2p,

(i) di = q1 dj = p1pa, (vi) d; = pipaps, Qqep dj =2,

(ii) di = p1p2, q1q2 dj = pp’, (vii) d; = 2p1p2, 2p1q1, 2q1q2 d; = p,
(iv) di = pipaps, 1q2p" dj = p, (viti) d; = 2p, 2q dj = p1ps.

Proof. As Nej # Ne; = Neg = 1 and ey # 4 with ¢ # j = 1,2. Then, we have the
two following cases.
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1. When either,/e3 € K or \/€;e5 € K for i € {1,2}, so according to the Theorem 5.1,

we get that Po(K) ~ E;_3. Thence, K is a Pdlya field if and only if ¢ = 3. Therefore,

we have the following cases:

(1) (di,d;)=(1,1) (mod 4), then K is a Pdlya field if and only if d;=pi1p2, ¢1¢2 d;=p.

(ii) (ds,dj)=(1,2) (mod 4). So, di=p1p2, qi1g2 d;=2.

(iii) (ds,d;)=(2,1) (mod 4). Then, we get that d;=2p1, 2¢1 d;=p.

(iv) (di,d;)=(3,1) (mod 4). Therefore, K is a Pélya field if and only if d;=q d;=p.

2. And when both /€5 and \/€;e3 ¢ K with i # j=1,2. By the Theorem 5.1, we get

that Po(K) ~ F;_4. So, K is a Pdlya field if and only if t=4.

(i) We put (di,d;)=(1,1) (mod 4). Then, K is a Pdlya field if and only if either

di=p1p2, q1q2 dj=pp’ or d;=p1pap3, q1q2p’ d;j=p.

(ii) When (d;,d;)=(1,2) (mod 4). Thus, we get that either d;=p1p2, ¢i1g2 d;=2p or

di=p1p2p3, q1g2p d;=2.

(ili) Let (di,d;)=(2,1) (mod 4). Then, we have either d;=2p1p2, 2p1q1, 2q1q2 d;=p

or d;=2p, 2q d;j=p1p2.

(iv) When (d;,d;)=(3,1) (mod 4), so we get that K is a Pélya field if and only if

either d;=q1p1 d;j=p2, or d;=q1 d;=p1p2. O
In the following theorem we give the Pdlya fields of K such that Ne;=Nes=Ne3=1

and /e1e; € K and /e1€3 € K and \/eze3 € K (i.e. Ex=(—1, /€162, \/2€3,\/€1€3))

where eg # 4.

THEOREM 6.6. Let K = Q(Vdy,V/ds), di and do be two square-free integers such
that (di,d2) =1 and let Ne; = Nea = Nes = 1 and \/e1é2 € K and \/é1eé3 € K and
Vez€e3 € K where ex # 4. Then, K is a Pdlya field if and only if di = q1 and do = ¢o.

Proof. Since Ne; = Nea = Neg = 1 and /€162 € K and /eze3 € K and /eje3 € K
such that e # 4, so by Theorem 5.1 we have Po(K) ~ E;_3. Therefore, K is a field
of Pélya if and only if ¢ = 3. If (d;,d;) = (3,3) (mod 4) with ¢ # j = 1,2 therefore
dg = (4d1d2)? then we find that d; = ¢1 and ds = ¢2. If (d;,d;) = (1,1) (mod 4), we
know that dx = (d1d2)? and since we have t = 3 and Ne; = Nea = Neg = 1 then we
find that this case can not occur. Similarly for the cases of (d;,d;) = (1,2) (mod 4)
and (d;,d;) = (1,3) (mod 4) with ¢ # j € {1.2}. O
In the following theorem we give the Pdlya fields of K in the two following cases:
1. Negy = Nea = Neg = 1 and /e € K or \/erea € K or \/eaez € K or (fere3 € K
or \/ejeze3 € K where ez # 4, in other words Ne; = Nez = Nez = 1 and Ex =
(—1,€1,€2, /€3) or Ex = (—1,\/€1€2,€2,€3) or Ex = (—1,€1,€2, /€2€3) or B =
(—1,€1,€2, /€1€3) or Ex = (—1, €1, €2, \/€1€2€3) respectively.
2. Ney = Neg = Neg = 1 and (/fe3 ¢ K and (/e1ea ¢ K and /eje3 ¢ K and
\/% ¢ K and \/@¢ K, i.e. N61 = NEQ = N€3 =1 and EK = <71,61,62,63>.

THEOREM 6.7. Let K = Q(v/dy,Vds), di and dy be two square-free integers such that
(di,d2) =1 and let Ney = Neg = Neg = 1 and then eq # 4.
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We suppose either \/e3 € K or \ferea € K or \Jete3 € K or \/eae3 € K or
Vereses € K. Then, K is a Pdlya field if and only if one of the following conditions
holds:

1. di=piq1 dj=q 4. di = qq2  dj = p1p2,q3q4
2.di=pip2 dj=q 5. di =pip2 dj =2p,2q
3. di = p1ip2  dj = p3pa, q1q2 6. di =qiq2 d; = 2p,2q.

Now we assume that \/e3 ¢ K and \/ejez ¢ K and \fejez ¢ K and \/eze3 ¢ K
and \/erezez ¢ K. So, K is a Pdlya field if and only if one of the following conditions
holds:

1. di =pip2  dj = p3paPs, Q142D 6. di = qiqap1  dj = 2p,2q

2. di = qiq2  dj = p1p2p3, q3qap 7. di=piq1 dj =pag

8. di = p1p2  dj = 2p3pa, 2q1G2, 2pq 8. di=q dj =p1p2g2,q2q3q4
4. di = q1q2  dj = 2p1p2, 24344, 2pq 9. di =p1p2,1q2  dj =pq

5. di =pipeps dj =2p,2q 10. d; = p1paps, q1qep  dj = q.

Proof. As Ne; = Neg = Neg = 1 and ey # 4. Then, we have to distinguish the two
following cases :

1. We assume either \/e3 € K, \/e1€2 € K or /ere3 € K or (/eze3 € K or /e1eze3 €
K. So, as stated in Theorem 5.1, we get that Po(K) ~ E;_4. Then, K is a Pélya

field if and only if t = 4. Then, we have the following cases :

(i) (di,d;) = (1,1) (mod 4). Then, K is a Pdlya field if and only if either d; =
q1q2 dj = p1p2,q3qs or the third item.

(i) (di,d;) = (1,2) (mod 4). Thus, we get the items 5. and 6.

(iii) (d;,d;j) = (3,3) (mod 4). Then, we have di = (4d;d;)?,sod; = p1q1  dj = ¢o.

(iv) (di,d;) = (1,3) (mod 4), then dx = (4d;d;)?. Consequently, we get that K is
a Pélya field if and only if d; = p1ip2 dj = ¢1.
2. Now we assume /e3 ¢ K and /eje; ¢ K and /eje3 ¢ K and /eze3 ¢ K and
Vereaes ¢ K. Again, by Theorem 5.1, we get that Po(K) ~ E;_5. Thus, K is a
Pélya field if and only if ¢ = 5. We distinguish the following cases.

(i) We suppose that (d;,d;) = (1,1) (mod 4). Then, K is a Pélya field if and only
if di = pip2  dj = pspaps, q1aep, or di = q1q2  d;j = p1P2ps; G3¢4p

(ii) When (d;,d;) = (1,2) (mod 4). Thus, we get either d; = q1¢2 d; = 2p1p2, 2¢3q4, 2pgq
or the items 3., 5. and 6.

(ili) We assume (d;,d;) = (3,3) (mod 4). So, we get that K is a Pélya field if and
only if either d; = p1q1  dj = paq2 or d; = q1  dj = P1P2G2, G2G394-

(iv) If (d;,d;) = (1,3) (mod 4), then dx = (4d;d;)?. Therefore, we get K is a Pélya
field if and only if either d; = p1p2,q1q2  dj = pq or d; = p1paps, qiqep d; =¢q. O
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7. Conclusion

Let K = Q(vdy,Vds), where d; > 1 and dy > 1 are two square-free integers with
(dl,dg) =1 and dg = dldg. Let kl = @(\/(Tl), kQ = Q(\/@) and ]{)3 = Q(\/@) be
three quadratic subfields of K = kiky = Q(vd)Q(Vd2) = Q(Vd1, Vdy).

As a conclusion, we can say that in each case where k; and ko are Pdlya fields,
then K = k1ks is a Pdlya field taking into account that, it is not necessary that k3
must be a Pdélya field.

As an example: k; = Q(y/p1p2) and k2 = Q(,/qr) where Ne; = Neg = 1 are Pélya
fields (see Proposition 3.9), but k3 = Q(y/p1p2q1) with Neg = 1 is not a Pdlya field.
From the head of the prevoius theorem it follows that K = Q(y/p1pz,/q1) such that
d1 = p1p2 and dy = ¢1 with Ne; = Neg = Neg = 1 is a Pdélya field.

We mention that we can establish that k; or ks is not a Pdlya field, and that both
k1 and ko are not Poélya fields, but K = kiks is a Pdlya field.

As an example: k; = Q(y/p1q1) is not a Pélya field and ko = Q(,/q2) is a Pédlya
field (see Proposition 3.9). According to the above theorem, K = Q(,/p1q1, /q2) such
that di = p1q1 and dy = o with Ne; = Nega = Neg = 1 is a Polya field.

Another example: k; = Q(y/p1q1) and ky = Q(,/p2gz2) are not Pélya fields. But it
follows from the above theorem that K = Q(,/p1q1,/P2¢z) such that d; = p1q1 and
d2 = qQq2 with N61 = N62 = N63 =1lisa Pélya field.
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