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Anton Vikhrov

Abstract. This paper investigates the proper class of all metric spaces considered up
to isometry, equipped with the Gromov–Hausdorff distance. There constructed a pair of
complete metric spaces, X and Y such that they have no metric spaces at zero distance, no
optimal correspondence between X and Y , and therefore no linear geodesics joining them,
but there exists a geodesic between them of a different type. There also described everywhere
dense subclass of the Gromov–Hausdorff class such that any two points at finite distance
within this subclass can be connected by a linear geodesic.

1. Introduction

A symmetric mapping d : X ×X → [0,∞], equal zero on the diagonal and satisfying
the triangle inequality, is called a generalized pseudometric. If, in addition, the func-
tion d vanishes only on the diagonal, it is called a generalized metric, and if it does
not take infinite values, it is called a metric.

The Gromov–Hausdorff distance measures the degree of difference between two
metric spaces. This distance was introduced by Gromov in 1981 [8] and was defined
as the smallest Hausdorff distance between isometric images of the considered spaces.
Later, an equivalent definition of this distance was given using correspondences.

In this work, we use the system of axioms introduced by von Neumann, Bernays,
and Gödel, within which classes and proper classes are considered, generalizing the
concept of a set. The proper class consisting of all metric spaces considered up to
isometry is denoted as GH. The notion of generalized pseudometric is naturally
defined on this proper class.

In the work [11], the optimal correspondence between finite metric spaces was
used to construct a geodesic between arbitrary compact metric spaces. Later, almost
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2 Linear and nonlinear geodesics

simultaneously in [7] and [10], the existence of optimal correspondence between com-
pact metric spaces was proved, and as a consequence, a geodesic between these spaces
generated by the optimal correspondence. Such geodesics are called linear ones. How-
ever, it is still unknown whether any pair of metric spaces at a finite distance from
each other can be connected by some geodesic.

In [12], a special class of spaces called spaces in general position was studied, and
it was shown that for any metric space S from this class, there exists a neighborhood
Uε(S)(S) ⊂ GH such that for any Y ∈ Uε(S)(S), there exists an optimal correspon-
dence R ∈ R(S, Y ) and, as a result, a linear geodesic joining S and Y . Such spaces
in general position are everywhere dense in GH, as demonstrated in [13]. The both
results hold for more wide class (see Remark 2.22) of spaces in generalized general
position (see Definition 2.20). Thus, the possibility of connecting every space in gen-
eralized general position with sufficiently close metric space by a linear geodesic is
shown. Is it true that there is a linear geodesic between each space in generalized
general position and any other metric space?

We construct in this work a pair of a complete metric spaces X and Y in general-
ized general position such that they have no metric spaces at zero distance; there is
no optimal correspondence between X and Y , and hence no linear geodesic. However,
we found a geodesic of a different type between these metric spaces.

The similar result was obtained by Hansen, see [9]. However, his spaces X, Y have
spaces X ′ and Y ′ on zero distance from the former ones (dGH(X,X ′) = dGH(Y, Y ′) =
0) with a linear geodesic between X ′ and Y ′.

Moreover, we construct a subclass of metric spaces in generalized general position
that is everywhere dense in GH and possesses the following property: for any two
metric spaces A, B from this class at finite distance from each other, there exists an
optimal correspondence R ∈ R(A,B) and, therefore, a linear geodesic.

Finally, in this paper we construct a pair of proper non-isometric bounded metric
spaces at zero Gromov–Hausdorff distance. The similar result but for unbounded
metric space was obtained in [1].

2. Main definitions and preliminary results

First we introduce some basic notation. We denote by R≥0 the set of non-negative
real numbers, and by R+ the set of positive real numbers. Let (X, ρ) be an arbitrary
metric space, and x, y ∈ X. The distance between the points x and y is denoted by
|xy| = ρ(x, y) = dX(x, y). Let Uε(a) be an open ball with center a of radius ε, and
Uε(A) =

⋃
a∈A Uε(a) be a ε-neighborhood of a non-empty subset A, and Sε(a) is a

sphere of radius ε centered at the point a. We denote by #X the cardinality of X,
and for any a ∈ R≥0 and metric space X we put aX = (X, a dX).

Definition 2.1. Let A,B be non-empty subsets of a metric space X. The Hausdorff

distance is the value dH(A,B) = inf
{
r : A ⊂ Ur(B) &B ⊂ Ur(A)

}
.
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Definition 2.2. Let A,B,X be metric spaces. If A is isometric to Ã and B is
isometric to B̃, where Ã and B̃ are subspaces of X, then we call the triple (Ã, B̃,X)
a realization of the pair (A,B).

Definition 2.3. The Gromov–Hausdorff distance between two metric spaces A, B is
the infimum of the Hausdorff distances among all realizations of the pair (A,B). In
other words,

dGH(A,B) = inf
{
r : there is a realization (Ã, B̃,X) of the pair (A,B)

such that dH(Ã, B̃) ≤ r
}
.

Definition 2.4. A correspondence between two sets A and B is a subset R ⊂ A×B
such that for any a ∈ A and b ∈ B there exist ã ∈ A and b̃ ∈ B for which (a, b̃), (ã, b)
belong to R.

Further, aRb means that a and b are in correspondence R, and the set of all
correspondences between metric spaces A, B is denoted as R(A,B).

Definition 2.5. Let R be a correspondence between metric spaces A, B. Its distor-

tion is given by: disR = sup
{∣∣dX(a, a′) − dY (b, b′)

∣∣ : aRb and a′Rb′
}

.

Proposition 2.6 ([5]). For any metric spaces A and B, the following equality holds:
2 dGH(A,B) = infR∈R(A,B) disR.

Remark 2.7. If we define the distance between pseudometric spaces A′ and B′ in
the same way as before: 2 dGH(A′, B′) = infR∈R(A′,B′) disR, then it coincides with
the distance between metric spaces A, B obtained by factoring the spaces A′, B′ with
respect to zero distances.

Remark 2.8. In what follows, when we deal with a pseudometric space, we automat-
ically identify this space with the metric one by factorizing the space with respect to
zero distances.

Definition 2.9. If the distortion of the correspondence R is minimal in terms of
inclusion among all correspondences R(A,B), then it is called irreducible. If dis(R) =
2 dGH(A,B) < ∞, then such a correspondence is called optimal. The set of optimal
correspondences between metric spaces A,B is denoted as Ropt(A,B).

Definition 2.10. Let R1 ∈ R(A,B) and R2 ∈ R(B,C). Then R2 ◦ R1 = {(a, c) |
there exists b such that aR1b, bR2c}.

Lemma 2.11. The distortion of the composition of correspondences is no more than
the sum of their distortions.

Indeed, for arbitrary (a, c) and (a′, c′) ∈ R2 ◦R1, we found arbitrary b and b′ ∈ B
such that aR1b, a

′R1b
′, bR2c, b

′R2c
′:

∣∣|aa′| − |cc′|
∣∣ ≤ ∣∣|aa′| − |bb′|

∣∣ +
∣∣|bb′| − |cc′|

∣∣ ≤
dis(R1) + dis(R2). Taking the supremum of both sides yields the desired result.

We call the shortest curves geodesics.
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Theorem 2.12 ([10]). If R is an optimal correspondence between metric spaces A
and B, then the curve γ : [0, 1] → GH, where γ(t) = (R, dt) and dt((a, b), (a

′, b′)) =
(1 − t)dA(a, a′) + tdB(b, b′), is a geodesic connecting metric spaces A, B.

We call such geodesics as linear.

Definition 2.13. The Gromov–Hausdorff class GH is the proper class (in the sense
of von Neumann–Bernays–Gödel set theory) of all metric spaces considered up to
isometry.

Theorem 2.14 ([5]). The Gromov–Hausdorff distance is a generalized pseudometric
on GH.

Denote by △n an n-point simplex, that is, a metric space of cardinality n such that
the distances between its different points are equal to 1. The diameter of a metric
space X is given by diam(X) = supx,x′∈XdX(x, x′).

Definition 2.15. Metric space Z is called a 0-modification of a metric space X if
dGH(Z,X) = 0 and X ̸= Z.

The following result, presented as an exercise in [5], we provide its proof here for
completeness.

Theorem 2.16. A space Y is a 0-modification of a compact metric space X if and
only if Y = X, where Y is the completion of the metric space Y .

Proof. The only if statement is trivial. Choose arbitrary finite ε/2-net Kε/2 ⊆ X and
let R ∈ R(X,Y ) with dis(R) < ε/2. For each x ∈ Kε/2, select one y from R(x) and
denote the resulting set as K ′. We will prove K ′ is an ε-net for the space Y .

For any y ∈ Y , we find some x ∈ X such that xRy. Let kx ∈ Kε/2 and ky ∈ K ′

such that kxRky and |xkx| ≤ ε/2. Then |yky| ≤
∣∣|yky| − |xkx|

∣∣ + |xkx| ≤ dis(R) +
|xkx| < ε.

Therefore, Y is pre-compact metric space, than the completeness of Y is compact
metric space. Distance dGH is metric on the collection of metric spaces considered up
to isometry (see [5]), so Y = X. Thus, the proposition is proven. □

Note that if the completion of a metric space X is finite, then the space X is also
finite.

Corollary 2.17. Finite metric spaces have no 0-modifications.

Definition 2.18. Let X ∈ GH. Let S(X) denote the set of all bijective mappings
from X to itself. We introduce the following notations:

s(X) = inf {|xx′| | x ̸= x′; x, x′ ∈ X} ,
t(X) = inf {|xx′| + |x′x′′| − |xx′′| | x ̸= x′ ̸= x′′ ̸= x;x, x′, x′′ ∈ X} ,
e(X) = inf {dis(f) | f ∈ S(X), f ̸= id} ,

e′(X) = inf {dis(f) | f ∈ S(X) \ ISO(X)} .
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Definition 2.19. A space in general position is a metric space X in which s(X),
t(X), e(X) are positive.

Definition 2.20. A space in generalized general position is a metric space X in which
s(X), e′(X) are positive.

Theorem 2.21 ( [12]). If a space M satisfies e(M) > 0 and s(M) > 0, then choose
ε > 0 such that ε < s(M)/4, ε < e(M)/4, and if a metric space X and a correspon-
dence R ∈ R(M,X) satisfy dis(R) < 2ε, then R is an optimal correspondence.

Remark 2.22. Theorem 2.21 remains true if we consider e′(M) instead of e(M).
To prove this, it is sufficient to notice that correspondences differ by an isometry of
the space M have the same distortion. Thus, the condition of being separated from
the identity for all non-identity mappings can be replaced by the condition of being
separated from an isometry, which coincides with the condition e′(M) > 0.

Definition 2.23. The spectrum of a metric space is the set of all distances between
points (including zero).

2.1 Canonical projection

Recall [2] how to construct a pseudometric space from a connected weighted graph.
Everywhere below, graphs are assumed to be simple, connected, and weighted, and
the edge weight function ω (given on the edges of the graph) is non-negative. The
set of the vertices of the graphs and the set of edges can be infinite. The vertices of
the graphs are sometimes called their points. The edge connecting x and y is denoted
by xy or {x, y}. Everywhere below it is assumed that ω(xx) = 0 for every graph’s
vertice, despite there are no edges xx.

Definition 2.24. A generalized path L in a graph G connecting its points x and y is
a finite sequence x1x2 . . . xN with x1 = x and xN = y such that either xixi+1 is an
edge or xi = xi+1, all edges are distinct and if two points from this sequence coincides,
then all intermediate points coincides with them. An edge of a generalized path is an
edge connecting consecutive distinct points of this path. The length of the path L is
defined as ω(L) =

∑N−1
i=1 ω(xixi+1). The set of generalized paths connecting x and y

is denoted by  L(x, y).

In this paper, a generalized path is simply called a path.

Definition 2.25. For every weighted graph (V,E, ω), we define a metric dω on V
by dω(y1, y2) = inf

{
ω(L) | L ∈  L(y1, y2)

}
. This distance is called the weighted path

metric (see [2]). The mapping π : (V,E, ω) → (V, dω) is called the canonical projection.
Since the weight function need not satisfy the triangle inequality, one can obtain

dω(y1, y2) < ω(y1y2), in particular, if the length of some L ∈  L(y1, y2) is less than
ω(y1y2). We say that the projection π preserves the edge weights if ω(xy) = dω(x, y)
for any xy ∈ E.

It is well known (see [2]), that (Y, dω) is a pseudometric space.
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Lemma 2.26. Let X = (V,E, ω) be a graph. If there exists C > 0 such that ω(e) ≥ C
for all e ∈ E, then π(X) is a metric space.

Definition 2.27. Let X be a weighted graph and z1z2 its edge. Then the poly-
gon inequality for the lower base z1z2 and the path L ∈  L(z1, z2) is the inequality
ω(z1z2) ≤ ω(L).

Lemma 2.28. The canonical projection preserves edge weights if and only if all polygon
inequalities hold for all lower bases xy ∈ E and any L ∈  L(x, y).

Proof. Note that inf
{
ω(L) : L ∈  L(x, y)

}
≤ ω(xy) because xy ∈  L(x, y). Due to

the polygon inequality with the lower base xy, we have ω(xy) ≤ ω(L) for every
L ∈  L(x, y).

If the polygon inequality does not hold for at least one pair of points x, y, i.e.,
there is a path L ∈  L(x, y) such that ω(xy) > ω(L), then dω(x, y) < ω(xy). □

2.2 Subdivision of a metric space

Here is a generalization of the notion of graph subdivision.

Construction 2.29. Consider an arbitrary metric space X as a weighted complete
graph G′ with the weight function ω equal to the distance between the points. For
each pair of points {u, v}, assign arbitrary index set I(u, v) (this set might be empty)
and add points αu,v

i , i ∈ I(u, v). Connect each αu,v
i to each αu,v

j , and connect the
points u, v to all αu,v

i . To the added edges we assign arbitrarily weights in such a way
that the triangle inequalities hold in all the subgraphs Gu,v generated by {u, v, αu,v

i :
i ∈ I(u, v)} (actually, Gu,v is a pseudometric space, if you consider these weights as
distances). We denote the obtained graph by G.

We put Z = π(G), and the points obtained from X is denoted in the same way as
in X. Here we write some properties of the space Z.

Lemma 2.30. For connected weighted graph G = (U, V, ω) obtained by Construction 2.29,
we have

1. The projection π preserves the weights of all edges.

2. The dZ distance between points x, y located in Gu,v and Gu′,v′ , respectively, where
uv ̸= u′v′ and x, y /∈ X, is equal to the minimal length of the following paths:

(a) L1 = xuu′y, (b) L2 = xuv′y, (c) L3 = xvu′y, (d) L4 = xvv′y.

3. The distance from a point x of Gu,v, where v ̸= x ̸= u, to u′ ∈ X, where v ̸= u′ ̸= u
is equal to the minimal length of the following paths:

(a) L1 = xuu′, (b) L2 = xvu′.

In this work, we consider the simplest case #I = 1.
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2.3 Metric preserving functions

Metric preserving functions are studied in [4] and their applications to the Gromov–
Hausdorff class are studied in [6]. Here are some necessary properties and new theorem
of their connection with Gromov–Hausdorff distance.

Definition 2.31. We call f : R≥0 → R≥0 metric preserving if and only if for every
metric space (X, dX), the space (X, f ◦ dX) is metric.

Theorem 2.32 ([4]). A function f : R≥0 → R≥0 is metric preserving if and only if
f(x) = 0 for only x = 0, and for arbitrary non-negative a, b, c such that |b− c| ≤ a ≤
b + c, the inequality f(a) ≤ f(b) + f(c) holds.

Applying the definition twice, we get that the composition of metric preserving
functions is metric preserving as well. By f(X) denote the metric space (X, f ◦ dX).
For a non-empty subset A ⊂ R≥0, we put ||f ||A = sup

{
|f(x)| : x ∈ A}.

Theorem 2.33 ([4]). A function f : R≥0 → R≥0 is metric preserving if and only if
f(x) = 0 only for x = 0, and for any non-negative a, b, c satisfying |b− c| ≤ a ≤ b+ c,
the inequality f(a) ≤ f(b) + f(c) holds.

Applying the definition twice, we get that the composition of metric preserving
functions is metric preserving as well. By f(X) denote the metric space (X, f ◦ dX).
For a non-empty subset A ⊂ R≥0, we put ||f ||A = sup {|f(x)| | x ∈ A}.

Lemma 2.34 ([13]). For any metric space X and metric preserving function f , the
inequality 2 dGH

(
X, f(X)

)
≤ || id−f ||A holds, where A =

[
s(X),diam(X)

]
if diam(X)

< ∞ and A =
[
s(X),∞

)
otherwise.

Lemma 2.35. Let X, Y be from GH and dGH(X,Y ) < ∞, and f is a metric preserving
function. Then dGH(f(X), f(Y )) ≤ lim inf

r→dGH(X,Y )+
f(r).

Moreover, if there exists an optimal correspondence between metric spaces X and
Y , then the inequality holds dGH(f(X), f(Y )) ≤ f(dGH(X,Y )).

Proof. We prove the first point. For any r > dGH(X,Y ), find a correspondence
R ∈ R(X,Y ) such that dis(R)/2 < r. Construct a weighted graph Z = (X⊔Y,U, dZ),
where the weight function on X coincides with the distance function on X, and on Y
it coincides with the metric on Y . On the edges connecting vertices x and y such that
xRy, set dZ(a, b) = r if aRb. Since r ≥ dis(R)/2, all polygon inequalities hold, and
the projection π preserves distances due to Lemma 2.28. Applying a metrically convex
function f to this constructed space, we get dGH

(
f(X), f(Y )

)
≤ dH

(
f(X), f(Y )

)
=

f(r), where dH

(
f(X), f(Y )

)
is computed within f

(
π(Z)

)
. Taking the limit from the

condition, we obtain the desired result.
For the second point, it is sufficient to set r = dGH(X,Y ) and, by choosing a

correspondence R such that dis(R)/2 = r, complete the remaining construction from
the first point to obtain the required result. □

This lemma yields following remark.
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Remark 2.36. Suppose that for given spaces X and Y , we have found a metrically
convex function f such that f

(
dGH(X,Y )

)
< dGH

(
f(X), f(Y )

)
≤ lim inf

r→dGH(X,Y )+
f(r).

Then there is no optimal correspondence between X and Y .

3. Relation between existence of certain geodesics and optimal
correspondence

Definition 3.1. A piecewise-linear geodesic γ : [0, 1] → GH is a geodesic with affine-
natural parameterization (differ from the natural parameterization by multiplication
by a constant) if there exist a finite partition ∆ = (t0, . . . , tn) of the interval [0, 1]
and correspondences Ri ∈ Ropt

(
γ(ti−1), γ(ti)

)
, i ∈ {1, 2, . . . n} such that the geodesic

γ is a linear geodesic on each subinterval [ti, ti+1], constructed using the correspon-
dence Ri.

Proposition 3.2. If there exists a piecewise-linear geodesic between metric spaces A
and B, then the set Ropt(A,B) is not empty.

Proof. It is sufficient to consider a correspondence R =
1

⃝
i=n

Ri (the composition of

correspondences Ri), for which we have due to Lemma 2.11:

dis(R) ≤
n∑

i=1

dis(Ri) =

n∑
i=1

2 dGH

(
γ(ti−1), γ(ti)

)
= 2 dGH(A,B).

Corollary 3.3. If there exist a piecewise-linear geodesic between metric spaces then
one can find a linear geodesic.

Construction 3.4 ( [3]). Let Xn be a fundamental sequence in GH such that
2 dGH(Xn, Xn+1) < 2−n. Choose correspondences Rn ∈ R(Xn, Xn+1) such that
dis(Rn) < 2−n. Consider the set X̃ =

∏∞
i=1Xi. A thread is a sequence of points

xn ∈ Xn such that xnRnxn+1 for all n. Denote the set of threads as X̃, totally order
this set, and denote the i-th thread as {xi

n}. We define a pseudo-metric on X̃.

Theorem 3.5 ([3]). The function dX̃
(
{xi

n}, {xj
n}

)
= lim

m→∞
dXm(xi

m, xj
m) is a pseudo-

metric on X̃, and supi,j

∣∣∣dX̃(
{xi

n}, {xj
n}

)
− dXm

(
xi
m, xj

m

)∣∣∣ → 0, m → ∞. In partic-

ular, dGH(X̃,Xn) → 0, n → ∞.

Proposition 3.6. Let γ : [0, 1] → GH be a geodesic with an affine-natural parame-
terization that connects metric spaces A and B. Suppose there exists monotonically
increasing sequence ti of the interval [0, 1] that tends to 1, and there exists an optimal
correspondence between γ(ti) and γ(ti+1). Then there exists a 0-modification B̃ of
space B such that there is an optimal correspondence between A and B̃.

Proof. We construct a linear geodesic between each pair of neighbor γ(ti). Without
loss of generality we assume that γ is such a geodesic. Note that for any positive
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δ, between any two spaces from the image of the interval [0, 1 − δ] there exists an
optimal correspondence according to Proposition 3.2. Let Xn be the sequence of
points γ(1 − 1/2n+K) for some K ∈ N. Choose K such that dGH(Xn, Xn+1) ≤
dGH(A,B) ∗ 1/2n+K < 1/2n+1. Using Construction 3.4 and Theorem 3.5, con-
struct the limit space B̃′. Due to the choice of Xn and Theorem 3.5, dGH(B, B̃′) ≤
dGH(B,Xn) + dGH(B̃′, Xn) → 0 as n → ∞. Therefore, the metric space B̃, ob-
tained by factoring B̃′ by zero distances is a 0-modification of the metric space B.
Notice that there exists an optimal correspondence between A and B̃ if and only
if there exists an optimal correspondence between A and B̃′. Now we construct an
optimal correspondence between A and B̃′. Recall the structure of the limit met-

ric space and consider the correspondence R ∈ R(A, B̃′) =
{(

a, {xi
n}

)
: aR0x

i
1

}
and R̃n ∈ R(A,X ′

n) =
{(

a, xi
n

)
: aR0x

i
1

}
where R0 ∈ Ropt(A,X1). Note that

dis(R̃n) → 2 dGH(A, B̃′) as n → ∞ due to the construction. Now we show, that
dis(R) ≤ lim

n→∞
dis(R̃n). The distortion of R is given by

dis(R) = sup
(a,{xi

n}),(a′,{xj
n})

∣∣∣dA(a, a′) − dB̃′

(
{xi

n}, {xj
n}

)∣∣∣
= sup

(a,{xi
n}),(a′,{xj

n})

∣∣∣dA(a, a′) − lim
n→∞

dXn
(xi

n, x
j
n)
∣∣∣

≤ lim
n→∞

sup
(a,{xi

n}),(a′,{xj
n})

∣∣∣dA(a, a′) − dXn
(xi

n, x
j
n)
∣∣∣ = lim

n→∞
dis(R̃n) = 2 dGH(A, B̃′).

Thus, R is optimal correspondence. □

Corollary 3.7. Let γ : [0, 1] → GH be a geodesic in the affine-natural parameteri-
zation connecting metric spaces A and B. Suppose there exists t : Z → [0, 1], t(i) = ti
of the interval [0, 1] such that 0 and 1 are the only limit points, and there exists an op-
timal correspondence between neighbor points. Then there exist 0-modifications Ã and
B̃ of spaces A and B, respectively such that there exists an optimal correspondence
between Ã and B̃.

Proof. By the analogue with Proposition 3.6, we assume that the geodesic between
neighboring points is linear. Take an arbitrary point t0 from the interval (0, 1).
According to Proposition 3.6, there exist 0-modifications of spaces Ã and B̃ such
that R1 ∈ Ropt

(
Ã, γ(t0)

)
and R2 ∈ Ropt

(
γ(t0), B̃

)
. Since γ is a geodesic, we have

dGH(A,B) = dGH

(
A, γ(t0)

)
+ dGH(γ(t0), B) = dGH

(
Ã, γ(t0)

)
+ dGH

(
γ(t0), B̃

)
=

1/2
(
dis(R1) + dis(R2)

)
, therefore R1 ◦ R2 is an optimal correspondence between Ã

and B̃. □

Definition 3.8. We denote such geodesics as exhaustive piecewise-linear geodesics.
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4. Example of metric spaces with an empty set of optimal
correspondences

In [1], the similar result, but for unbounded case, was obtained. We would use the
following example to prove that there are no piecewise-linear geodesics.

Example 4.1. We provide an example of complete metric spaces X and Y such that
dGH(X,Y ) > 0, and Ropt(X,Y ) is an empty set.

To do this, consider X = △2 and Z = (N, dZ), where

dZ(i, j) =

{
0, i = j,

1/4 − 1/2max(i,j)+2, i ̸= j.

Note that all distances between distinct points are greater than or equal to 1/4−
1/24. Note that all distances are in the interval [1/8, 1/4]. Space Z is actually a
metric space because for any p1, p2, p3 ∈ Z, pi ̸= pj for i ̸= j, we have d(p1, p2) ≤
1/4 ≤ 1/8 + 1/8 ≤ d(p1, p3) + d(p3, p2).

Subdivide metric space Z as follows: for each ordered pair of points (z1, z2) ∈
Z × Z, where z1 < z2, add a new point z3 and denote the new graph as G.
1. The set of points of the graph G lying in Z we denote by OLD.

2. The set of remaining points of the graph G we denote by NEW.
We connect each point z3 ∈ NEW with edges to z1 and z2 and assign weights to

these edges as follows: ω(z3, z2) = δ = 1/2023, ω(z1, z3) = ω(z1, z2) − δ. We define
the functions:
3. left : NEW → OLD, right : NEW → OLD: left(z3) = z1 and right(z3) = z2, where
z3 added for the pair z1 ≺ z2;

4. nearest, where nearest(z3) = {left(z3), right(z3)} for z3 ∈ NEW;

5. far(z3) = OLD \ nearest(z3) for each z3 ∈ NEW.
Here and below, z3 and y3 denote arbitrary points from NEW, z2 = right(z3),

z1 = left(z3), y2 = right(y3), y1 = left(y3).
We put Y = π(G) and continue to denote by Z the image of Z. Since the graph

G was obtained by Construction 2.29, we apply Lemma 2.30 (it is valid because the
subgraphs Gz1,z2 satisfy the triangle inequalities), and obtain that the projection π
preserves the weights. By Lemma 2.26, the space Y is metric. We will also consider
Y as a weighted graph, where the weight function is the distance. We are going to
describe what other distances look like in the new space.

Lemma 4.2. The distance from z3 ∈ NEW to y ∈ far(z3) is equal to the length of
the two-edge path L = z3uy for u = right(z3) = z2, moreover |L| = ω(z2y) + δ =
dmax(z2,y) + δ < 1/2.

Proof. According to item 3. of Lemma 2.30, the distance is computed as the length
of the path L = z3uy for some u ∈ nearest(z3), and due to weight structure of graph
G, it is equal to
1. dk − δ + dm for some 2 ≤ k,m ∈ N, if L passes through z1 = left(z3), or
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2. δ + dl for some l ∈ N, if L passes through z2 = right(z3).
Note that

δ + dl = δ + 1/4 − 1/2l+2 < 1/4 + δ < 1/4 + 1/8 − δ = 1/4 − 1/16 − δ + 1/4 − 1/16

≤ 1/4 − 1/2k+2 − δ + 1/4 − 1/2m+2 = dk − δ + dm.

Thus, the distance is computed as the length of the path L = z3uy for u = z2 =
right(z3), and its length is δ + ω(z2y). □

Lemma 4.3. Let for z3, y3 ∈ NEW the conditions hold

z1 = left(z3) ̸= right(y3) = y2, z2 = right(z3) ̸= left(y3) = y1.

Then the distance from z3 to y3 is equal to the length of the three-edge path z3uvy3,
where u = right(z3), v = right(y3), and equals ω(z2y2) + 2δ = dmax(y2,z2) + 2δ < 1/2.

Proof. According to item 2. of Lemma 2.30, the shortest curve has the form z3uvy3,
where u = nearest(z3), v = nearest(y3), and its length is
1. (dm − δ) + (dk) + (dp − δ), if u = left(z3) and v = left(y3),

2. (δ) + (dk′) + (δ), if u = right(z3) and v = right(y3),

3. (dm − δ) + (dk′′) + (δ), if u = left(z3) and v = right(y3),

4. (δ) + (dk′′′) + (dp − δ), if u = right(z3) and v = left(y3),
where dm = ω(z1z2), dp = ω(y1y2), and k, k′, k′′, k′′′ are non-negative integers, and
2 < m, p ∈ N due to the conditions. Note that

δ + dk′ + δ < 1/4 + 2δ < 1/2 − 1/8 − 2δ

= 1/4 − 1/16 + 1/4 − 1/16 − 2δ ≤ dm − δ + dk′′ + δ

and δ + dk′ + δ < δ + dk′′′ + dp − δ.

Due to inequality 2δ + dn < 1/2, we have d(z3, y3) < 1/2. □

Lemma 4.4. Let for distinct z3, y3 ∈ NEW, right(y3) = left(z3). Then d(z3, y3) =
ω(z1z2) = dz2 < 1/2.

Proof. According to item 2. of Lemma 2.30, the shortest curve has the form z3uvy3,
where u = nearest(z3), v = nearest(y3), and its length is
1. L1 = (dm − δ) + (dk) + (dp − δ), if u = left(z3) and v = left(y3),

2. L2 = (δ) + (dk′) + (δ), if u = right(z3) and v = right(y3) = left(z3),

3. L3 = (dm − δ) + (dk′′) + (δ), if u = left(z3) = v = right(y3),

4. L4 = (δ) + (dk′′′) + (dp − δ), if u = right(z3) and v = left(y3),
where dm = ω(z1z2), dp = ω(y1y2), and k′′, k′′′ are non-negative integers, and k, k′

are greater than or equal to 2. The case of dk′′ = d(right(z3), left(z3)) = 0 means
L3 = dm < 1/4. Note that L1 ≥ dm + (dp − 2δ), and the expression in parentheses
is positive, so L1 > L3. Note that dk′ = d(right(z3), left(z3)) = d(z1, z2) = dm and
L2 = dm + 2δ > L1. Finally, conditions right(z3) = left(y3) and right(y3) = left(z3)
are mutually exclusive for z3 ̸= y3, so dk′′′ > 0 and L4 = dk′′′ + dp ≥ 1/4 − 1/16 +
1/4 − 1/16 > 1/4 > dm = L3. □
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Lemma 4.5. For spaces X and Y , we have 2 dGH(X,Y ) = 3/4+δ and Ropt(X,Y ) = ∅.

Proof. Any irreducible correspondence between spaces X,Y has the form R =
{
{x1}×

R(x1), {x2} ×R(x2)
}

, where R(x1) ∩R(x2) = ∅.
We provide an example of a sequence of correspondences RN ∈ R(X,Y ) whose

distortion approaches to 3/4 + δ. Let A1 = {n ∈ Z | n ≤ N}, A2 = {n ∈ Z | n > N},
then

RN (x1) = A1

⋃
{u ∈ Y | ∃a ∈ A1 such that dZ(u, a) = δ},

RN (x2) = A2

⋃
{u ∈ Y | ∃a ∈ A2 such that dZ(u, a) = δ}.

The union of RN (x1) and RN (x2) contains all of Z, as well as all of NEW (for each
z3 in NEW, there exists right(z3) at the distance δ), and RN (x1)∩RN (x2) = ∅, since
each point z3 in NEW has exactly one OLD point at a distance of δ, and points at a
distance of δ can only be from z3 ∈ NEW and its right(z3).

The diameter of this partition is less than 1/2 because diam(Y ) is less than 1/2.
The distances between points from different elements of the partition have the follow-
ing types:
1. the distance from a point in OLD∩RN (x2) to a point in OLD∩RN (x1) is of
type dM ,

2. from a point in OLD∩RN (x2) to a point in NEW∩RN (x1) is of type dM +δ (they
are far for these NEW),

3. from a point in NEW∩RN (x2) to a point in OLD∩RN (x1) is either dM − δ or
dM + δ,

4. from a point in NEW∩RN (x2) to a point in NEW∩RN (x1) is either dM + 2δ or
dM (see Lemma 4.3 and 4.4),
where M is a positive integer.

Each of the distances described above, except, maybe, dM in Item 4, is calculated
along some path that goes through an old point z > N , so M > N .

The value of dM in Item 4 is the distance from z3 ∈ RN (x2) ∩ NEW, which was
added for z1 < z2, where z2 > N , to some y3 ∈ RN (x1)∩NEW, where y1 = left(y3) =
z2 = right(z3), or y2 = right(y3) = z1 = left(z3) according to Lemma 4.4. The first
case is impossible as y3 could only be added for y1 < y2 ≤ N , while z3 was added for
z1 < z2 > N . Hence, y2 = right(y3) = z1 = left(z3). According to Lemma 4.4, the
distance between z3 and y3 is d(z1, z2) = dM = dmax(z1,z2), which means that M > N
in this case as well.

In accordance with the distances between points in R(x1) and R(x2), the minimum
distance between points y ∈ RN (x1) and y′ ∈ RN (x2) is equal to dN+1 − δ = 1/4 −
1/2N+3 − δ, that is the distance between z3 (added for 1 < N + 1) and 1. Since

max
(

diam
(
RN (x1)

)
,diam

(
RN (x2)

))
< 1/2, then

dis(RN ) = max
(
1 − 1/4 + 1/2N+3 + δ, diam

(
RN (x1)

)
,diam

(
RN (x2)

))
→ 3/4 + δ.

Now let us consider an arbitrary irreducible correspondence R ∈ R(X,Y ) with
dis(R) < 1 − δ. We will prove that its distortion is strictly greater than 3/4 + δ.
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Consider an arbitrary point z3 from NEW, suppose it belongs to R(x1). If right(z3)
belongs to R(x2), then the distortion of such correspondence is no less than 1 − δ.
Therefore, each z3 ∈ NEW belongs to the same partition element as its right(z3).
Since each R(x1) and R(x2) is a non-empty subset, each of them contains a point
from Z (if it contains z3 ∈ NEW, it also contains its right(z3)). Let’s find the
minimum n such that n ∈ R(x1) (without loss of generality), and n + 1 ∈ R(x2).
Then dis(R) ≥

∣∣1− (1/4+1/2n+3 +δ)
∣∣, because z3 ∈ NEW added to the pair n, n+1,

belongs to R(x2). Therefore, 2 dGH(X,Y ) = 3/4 + δ, and Ropt(X,Y ) = ∅. □

5. Exhaustive piecewise linear geodesics are insufficient to describe all
geodesics in the Gromov–Hausdorff space

In this section we prove that the metric spaces X and Y from Example 4.1 do not
have 0-modifications, but could be connected by some geodesics of other kind.

Lemma 5.1. Let dGH(A,B) = 0, then σ(B) = σ(A).

Proof. We prove that σ(B) ⊆ σ(A). Consider an arbitrary |yy′| ∈ σ(B) and Rn ∈
R(A,B) such that dis(Rn) → 0. Then for any n, there exist an, a′n such that

∣∣|bb′| −
|ana′n|

∣∣ ≤ dis(Rn) → 0, which implies that |bb′| is a limit point of σ(A) and thus lies

in its closure. Similarly, we obtain σ(A) ⊆ σ(B), which implies the desired result. □

Lemma 5.2. Let a metric space A have positive s(A) and e(A). Then A does not
have 0-modifications.

Proof. Let Ã be a 0-modification of A. Choose ε < min(e(A), s(A))/8 and R ∈
R(A, Ã) such that dis(R) < 2ε. Then, by Theorem 2.21, the correspondence R is
optimal. This implies dis(R) = 0, and thus R is an isometry. □

Lemma 5.3. Let σ(A) be a finite subset of the real line. Then A does not have 0-
modifications.

Proof. Consider B such that dGH(A,B) = 0. Due to Lemma 5.1, its spectrum is
also a finite subset of the real line. By Proposition 6.1, the distance between them is
achieved by some correspondence R, meaning R is an isometry. □

Proposition 5.4. Let A, B be metric spaces, and let U =
{
γ ∈ R≥0 : ∃α ∈

σ(A) and β ∈ σ(B) such that γ = |α− β|
}

be discrete, namely it has no limit points
(as a subset of the real line). Then there exists an optimal correspondence between
metric spaces A and B.

Proof. Indeed, the distortions of all correspondences are in U , so any decreasing
sequence of distortion values attains its infimum on some correspondence. □

Consider the spaces X and Y from Example 4.1.

Lemma 5.5. The spaces X and Y do not have 0-modifications.
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Proof. The space X has no 0-modifications due to Corollary 2.17.

We prove that s(Y ) and e(Y ) are strictly positive. By construction, s(Y ) = δ.
Let ϕ : Y → Y be a bijection such that dis(ϕ) < δ. Consider Y as a weighted graph
G with weights corresponding to distances between points. Let Gδ be a subgraph of
G, where the vertices set of the graph Gδ coincides with the set of vertices of the
graph G, and the edges of Gδ are all edges of G of the weight δ. Each point i has
exactly i − 1 points at the distance δ. Each of these i − 1 points is from NEW and
has exactly one point at the distance δ, namely, the point i. Therefore, graph Gδ

has a countable number of connected components, each finite, and all consisting of
different number of points. The mapping ϕ takes points at the distance δ to points
at distance δ, because σ(Y ) ∩ (0, 2δ) = {δ} and dis(ϕ) < δ. This implies ϕ(Gδ) ⊆ Gδ

and ϕ−1(Gδ) ⊆ Gδ (because dis(ϕ−1) = dis(ϕ) < δ). Therefore, ϕ(Gδ) = Gδ, which
means that ϕ is an isomorphism of the graph Gδ. In particular, ϕ(i) = i for i = 1
or i > 2, because such points i have degree i − 1, and there are no other points of
degree i−1 in the graph Gδ. We denote the unique point added for the pair 1 < 2 by
3/2. Since connected components are mapped to connected components, the vertex
2 of the graph G is mapped to the vertex 3/2 or 2 from G. If ϕ(2) = 3/2, then
dis(ϕ) ≥

∣∣d(ϕ(2), ϕ(1)) − d(2, 1)
∣∣ =

∣∣d(3/2, 1) − d(2, 1)
∣∣ = δ. A contradiction. Hence,

ϕ(i) = i for all positive integer i. We prove that the mapping ϕ is the identical on
NEW. Let z3 be added for k < i, and y3 := ϕ(z3) ̸= z3. Since ϕ is an isomorphism
of the graph Gδ and ϕ is constant on i, then ϕ(Sδ(i)) = Sδ(ϕ(i)) = Sδ(i). Thus, y3
is added for l < i, k ̸= l (d(y3, i) = δ, hence, i = right(y3)). But d(z3, k) = di − δ
by definition and d(y3, k) = di + δ according to Lemma 4.4 because k ∈ far(y3).
Therefore,

∣∣d(z3, k) − d(ϕ(z3), ϕ(k))
∣∣ =

∣∣d(z3, k) − d(y3, k)
∣∣ = 2δ, a contradiction.

Thus, ϕ = id and e(Y ) ≥ δ.

Therefore, we have min(s(Y ), e(Y )) > 0. Due to Lemma 5.2, Y has no 0-
modifications. □

Theorem 5.6. There exists a geodesic between the spaces X and Y from Example 4.1.

Proof. Consider two spaces, Z = (N, dZ) and Z ′ = (N ∪∞, dZ′), where the distances
are defined as follows:

dZ(i, j) =

{
0, i = j,

1/4 − 1/2max(i,j)+2 + 2δ, i ̸= j,

and dZ′(i, j) =


0, i = j,

1/4 − 1/2max(i,j)+2 + 2δ, i, j < ∞ and i ̸= j,

1/4 + 2δ, max(i, j) = ∞ and i ̸= j

These distances are metrics because all their nonzero distances belong to the interval
[1/7, 2/7].

Lemma 5.7. For the metric spaces Z and Z ′, the equality dGH(Z,Z ′) = 0 holds.

Proof. To show this, consider the correspondences Ri =
{(

j, j
)

: j ∈ N
}
∪
{

(i,∞)
}

.
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Their distortion are

dis(Ri) = max
(

sup
j,k<∞

∣∣dZ(j, k) − dZ′(j, k)
∣∣, sup

j

∣∣dZ(j, i) − dZ′(j,∞)
∣∣)

= sup
j

∣∣dZ(j, i) − dZ′(j,∞)
∣∣ = sup

j
1/2max(i,j)+2 = 1/2i+2.

To complete the proof, we note these distortions tend to zero as i → ∞. □

Now, we construct geodesics between X = △2 = (p1, p2) and Z ′ as well as between
Z and Y . Consider R =

{
(p1, i) : i ∈ N

}
∪
{

(p2,∞)
}
∈ R(X,Z ′). The distortion

dis(R) is

max

(
diam

(
R
(
p1
))

,diam
(
R
(
p2
))

, sup
j

{∣∣dX(p1, p2) − dZ′(j,∞)
∣∣})

= max
(

1/4 + 2δ, sup
j

(
|1 − 1/4 − 2δ|

))
= 3/4 − 2δ.

Let R′ =
⋃

i<∞
{i} ×Bδ(i) ∈ R(Z, Y ). The distortion dis(R′) is

max

(
sup
i

{∣∣di + 2δ − di
∣∣}, sup

i

{∣∣di + 2δ − (di + δ)
∣∣},

sup
i

{∣∣di + 2δ − (di − δ)
∣∣}, sup

i

{∣∣di + 2δ − (di + 2δ)
∣∣}, 2δ) = 3δ.

According to Lemma 4.5, we have 3/4+δ = 2 dGH(X,Y ), thus 3/4+δ = 2 dGH(X,Y ) ≤
2 dGH(X,Z ′) + 2 dGH(Z ′, Z) + 2 dGH(Z, Y ) ≤ dis(R) + dis(R′) = 3/4 + δ.

Therefore, R and R′ are optimal correspondences, so there exist linear geodesics
between the spaces X, Z, and Z ′, Y . Since dGH(X,Y ) = dGH(X,Z) + dGH(Z,Z ′) +
dGH(Z ′, Y ) and dGH(Z,Z ′) = 0, then metric spaces X,Y can also be connected by a
geodesic concatenated form the two geodesics constructed above. □

Notice that there is no piecewise-linear geodesic or geodesic exhaustible by piecewise-
linear geodesics between the spaces X and Y as well as their 0-modifications, because
there is no optimal correspondence between X, Y and the spaces X, Y do not have
0-modifications.

Remark 5.8. The spaces Z and Z ′ are not isometric to each other and dGH(Z,Z ′) = 0
because their spectra are different.

6. Constructing a dense subclass of GH consisting of metric spaces with
optimal correspondence between each pair

Lemma 6.1. Let X,Y ∈ B be metric spaces with finite spectra σ(X) and σ(Y ). Then
the distance between these metric spaces is achieved by some correspondence.

Proof. It is enough to notice that the distortions of all correspondences also form a
finite subset of the real line, then the infimum of distortions is achieved. □
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Recall the ceiling function ⌈x⌉ = min{n ∈ N, x ≤ n}.

Definition 6.2. The function lε(x) : R≥0 → R≥0, lε(x) = ε⌈x/ε⌉ is called the ε-
ladder.

Lemma 6.3 ([13]). The ε-ladder is the distance-preserving function.

Corollary 6.4. In GH, there exists a dense class of metric spaces D such that for
any pair X,Y ∈ D, there exists an optimal correspondence.

Proof. Consider class D obtained by applying l2−n to each metric space. Then the
difference between any two distances from metric space An = l2−n(X) and metric
space Bm = l2−m(Y ) is k2−max(m,n). By Lemma 5.4, there is an optimal correspon-
dence between the spaces An and Bm. Due to Lemma 2.34, the spaces An tends to
X as n → ∞. □

Corollary 6.5. For any X ∈ GH, we have s
(
l2−n(X)

)
≥ 2−n > 0 and e′

(
l2−n(X)

)
≥

2−n > 0, hence class D is contained in the class of metric spaces in generalized general
position.
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