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Abstract. Let b ≥ 2 be an integer. In this paper we study the base b repdigits that can
be expressed as sums or products of Fibonacci and Tribonacci numbers. As a corollary, it
is shown that the numbers 1 and 7 are the only Mersenne numbers which can be expressed
respectively as product and sum of Fibonacci and Tribonacci numbers. This is done using
linear forms in logarithms of algebraic numbers (Baker’s method) and the Baker-Davenport
reduction method (the Dujella-Pethő’s version).

1. Introduction

For an integer b ≥ 2, a positive integer N is called a base b repdigit if it has only one
digit in its base b representation. That is,

N = d

(
bℓ − 1

b− 1

)
,

for some integers ℓ ≥ 1 and d ∈ {1, . . . , b − 1}. When b = 10, one usually omits
to mention b and simply call these numbers as repdigits. The sequence of numbers
with repeated digits is included in Sloane’s On-Line Encyclopedia of Integer Sequences
(OEIS) [16] as sequence A010785. The Fibonacci sequence [10] {Fn}n≥0, is the binary
recurrence sequence given by F0 = 0, F1 = 1 and the recurrence formula

Fn+2 = Fn+1 + Fn, for all n ≥ 0.

First few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

Moreover, the Tribonacci sequence {Tn}n≥0 is defined by the recurrence formula

Tn+3 = Tn+2 + Tn+1 + Tn, for all n ≥ 0,
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2 b repdigits as product or sum of Fn and Tn numbers

with T0 = 0 and T1 = T2 = 1 (see [18]). Its first terms are

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, . . .

Note that Fn and Tn are called n-th Fibonacci number and n-th Tribonacci number,
respectively. The Fibonacci and Tribonacci sequences are included in the (OEIS) [16]
as sequences A000045 and A000073 respectively. Diophantine equations involving
repdigits, Fibonacci and Tribonacci numbers have been considered in various papers
in recent years (see [2,4,6–8,11,13,15]). We point out that Luca [11] and Marques [12]
proved that the largest repdigits in the Fibonacci and Tribonacci sequences are F10 =
55 and T8 = 44, respectively. Recently, Bednař́ık and Trojovský [2] found all the
repdigits that can be written as a product of Fibonacci and Tribonacci numbers with
the same index while Trojovský in [17] found all repdigits that can be written as
sum of Fibonacci and Tribonacci numbers with the same index. Motivated by the
work of the authors from [2,17], we devote this study to fully solve the following two
Diophantine equations

FnTn = d

(
bℓ − 1

b− 1

)
and Fn + Tn = d

(
bℓ − 1

b− 1

)
(1)

in positive integers b, n, ℓ, d with b ≥ 2 and d ∈ {1, . . . , b− 1}.
We organize this paper as follows. In Section 2, we recall some elementary prop-

erties of Fibonacci and Tribonacci numbers, a result due to Matveev on lower bounds
of linear forms in logarithms of algebraic numbers, and a result on reduction method
due to Dujella and Pethő. The proofs of our main results are given in Section 3.

2. Useful tools

In this section, we gather the tools we need to prove Theorems 3.1 and 3.6.

2.1 Linear forms in logarithms

Let η be an algebraic number of degree d, let a > 0 be the leading coefficient of
its minimal polynomial over Z and let η = η(1), . . . , η(d) denote its conjugates. The
logarithmic height of α is defined by

h(η) =
1

d

log |a|+
d∑

j=1

logmax
(
1,
∣∣∣η(j)∣∣∣)

 .

Paricularly, if η = p/q ∈ Q is a rational number in reduced form (so, q ≥ 1), then
the above definition reduces to h(η) = logmax{|p|, q}. Now, let us give some basic
properties of this height. For η1, η2 algebraic numbers and m ∈ Z we have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2, h(η1η
±
2 ) ≤ h(η1) + h(η2), h(ηm1 ) = |m|h(η1).

Let L be a real number field of degree dL, γ1, . . . , γs ∈ L and b1, . . . , bs ∈ Z \ {0}. Let
B ≥ max{|b1|, . . . , |bs|} and Γ = γb11 · · · γbss − 1. Now, let A1, . . . , As be real numbers
with Ai ≥ max{dLh(γi), | log γi|, 0.16}, i = 1, 2, . . . , s.
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The first tool that we need is the following result due to Matveev [14]. Here, we
use the version of Bugeaud, Mignotte, and Siksek [3, Theorem 9.4].

Theorem 2.1. Assume that Γ ̸= 0. Then

log |Γ| > −1.4 · 30s+3 · s4.5 · d2L · (1 + log dL) · (1 + logB) ·A1 · · ·As.

Also, we will need the following lemma due to Guzmán and Luca.

Lemma 2.2 ([9, Lemma 7]). If l ≥ 1, H >
(
4l2
)l

and H > L/(logL)l, then L <
2lH(logH)l.

2.2 Reduction method

Our next tool is a version of the reduction method of Baker and Davenport [1]. We
use a slight variant of the version given by Dujella and Pethő [5]. For a real number
x, we write ∥x∥ for the distance from x to the nearest integer.

Lemma 2.3. Let M be a positive integer, p/q be a convergent of the continued fraction
expansion of the irrational number τ such that q > 6M, and A,B, µ be some real
numbers with A > 0 and B > 1. Furthermore, let ε := ∥µq∥ −M · ∥τq∥ .

If ε > 0, then there is no solution to the inequality 0 < |uτ − v + µ| < AB−w in

positive integers u, v and w with u ≤M and w ≥ log(Aq/ε)
logB .

2.3 The Fibonacci or Tribonacci sequences

We recall here some useful properties of Fibonacci and Tribonacci sequences. We
recall a well-known non-recursive formula for generating Fibonacci numbers. Binet’s
formula asserts that

Fn =
λn − (−λ)n√

5
, for n ≥ 0,

where λ = (1 +
√
5)/2. With this formula, we can deduce that

λn−2 ≤ Fn ≤ λn−1, for n ≥ 1. (2)

It is also possible to infer that

Fn =
λn√
5
+ ν with |ν| ≤ 1√

5
, for n ≥ 1. (3)

Next, the characteristic equation for Tribonacci sequence is ψ(x) := x3−x2−x−1 = 0,
and has one real root α and two complex roots β and γ = β̄. More precisely, we have

α =
1

3
(1 + r1 + r2), β =

1

6

(
2− (r1 + r2) + (r1 − r2)

√
−3
)
,

with r1 =
3

√
19 + 3

√
33 and r2 =

3

√
19− 3

√
33.

Moreover, Binet’s formula for the general terms of the Tribonacci sequence is given
by Tn = aαn + b′βn + cγn, for n ≥ 0, where

a =
1

(α− β)(α− γ)
, b′ =

1

(β − α)(β − γ)
and c =

1

(γ − α)(γ − β)
= b′.
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Furthermore, one can observe that a = α
α2+2α+3 and its minimal polynomial over

the integers is given by 44x3 + 4x − 1, and has zeros a, b′, c with |a|, |b′|, |c| < 1.
Numerically, the following estimates hold

1.83 < α < 1.84, 0.73 < |β| = |γ| = α− 1
2 < 0.74,

0.18 < a < 0.19, 0.35 < |b′| = |c| < 0.36.

Also, setting en = Tn − aαn = b′βn + cγn, we can show that

Tn = aαn + en, with |en| <
1

αn/2
, (4)

holds for all n ≥ 1. Furthermore, by induction, one can prove that

αn−2 ≤ Tn ≤ αn−1, for n ≥ 1. (5)

Let K := Q(α, β, γ) = Q(α, β) be the splitting field of the polynomial ψ over Q. Then,
[K : Q] = 6. Furthermore, [Q(α) : Q] = 3. The Galois group of K/Q is given by

G = Gal(K/Q) = {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Thus, we identify the automorphisms of G with the permutations of the zeros of the
polynomial ψ. For example, the permutation (αβ) corresponds to the automorphism
σ : α→ β, β → α, γ → γ.

3. Main results

3.1 On b repdigits as product of Fibonacci and Tribonacci numbers

In this subsection, we will prove the following result.

Theorem 3.1. Let b ≥ 2 be an integer. Then, the Diophantine equation

FnTn = d

(
bℓ − 1

b− 1

)
(6)

has only finitely many solutions in integers (n, b, d, ℓ) such that n, ℓ ≥ 1 and 1 ≤ d ≤
b− 1. Moreover, we have n < 3.6× 1018 log3 b and ℓ < 9× 1018 log3 b.

Note that if n = 1, then all solutions of equation (6) are of the form (b, n, ℓ, d) =
(b, 1, 1, 1) with b ≥ 2. For the remaining proof, we consider n ≥ 2. The following result
will be useful in proving Theorem 3.1, which gives a relation between the variables
ℓ, n, and b of equation (6).

Lemma 3.2. All solutions of Diophantine equation (6) satisfy

(ℓ− 1)
log b

log λα
+ 1 < n < ℓ

log b

logαλ
+ 2.

Proof. From inequalities (2) and (5), we get

λn−2αn−2 < FnTn = d

(
bℓ − 1

b− 1

)
< bℓ. (7)
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Taking the logarithm on both sides of (7), we get

n log λα < ℓ log b+ 2 log λα. (8)

For the lower bound, from (2) and (5), we have

bℓ−1 < d

(
bℓ − 1

b− 1

)
= FnTn < λn−1αn−1.

Taking the logarithm on both sides, we get

(ℓ− 1) log b < (n− 1) log λ+ (n− 1) logα,

which leads to

(ℓ− 1) log b+ log λα < n log λα. (9)

Combining (8) and (9) we obtain the desired inequalities. □

Now, we will complete the proof of Theorem 6. Substituting (3) and (4) in (6),
we have

dbℓ

b− 1
− d

b− 1
=

(
λn√
5
+ ν

)
(aαn + en) =

a(λα)n√
5

+
enλ

n

√
5

+ aναn + νen,

which leads to
a(λα)n√

5
− dbℓ

b− 1
= − d

b− 1
− enλ

n

√
5

− aναn − νen. (10)

Taking the absolute value of both sides of (10), we get for n ≥ 1∣∣∣∣a(λα)n√
5

− dbℓ

b− 1

∣∣∣∣ ≤ d

b− 1
+
λn√
5
|en|+ |aν| |α|n + |νen|

< 1 +
1√
5

(
λ√
α

)n

+
0.19√

5
(α)n +

1√
5

(
1√
α

)n

= αn

[
1

αn
+

0.19√
5

+
1√
5

(
λ

α
√
α

)n

+
1√
5

(
1

α
√
α

)n]
< 1.1 · αn.

Thus, we see that ∣∣∣∣a(λα)n√
5

− dbℓ

b− 1

∣∣∣∣ < 1.1 · αn. (11)

Dividing both sides of inequality (11) by a(λα)n/
√
5, we get∣∣∣∣∣1− dbℓ

b− 1
·

√
5

a(λα)n

∣∣∣∣∣ < 1.1
√
5

aλn
,

which becomes ∣∣∣∣∣bℓ · (λα)−n · d
√
5

a(b− 1)
− 1

∣∣∣∣∣ < 13.7

λn
. (12)

Put Γ1 := bℓ · (λα)−n · d
√
5

a(b− 1)
− 1.

Next, we have to apply Theorem 2.1 to Γ1. First, we need to check that Γ1 ̸= 0.
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If it were not, then we would get that
d
√
5

a(b− 1)
bℓ = (αλ)n and so λ2n ∈ Q(α).

Since [Q(α) : Q] = 3, then λ2n is either a rational or a 3-degree algebraic number.
However, λ is a quadratic algebraic number and since Q(λn) ⊆ Q(λ), then the degree
of λ2n is either 1 or 2. So, we conclude that λ2n ∈ Q, which is an absurdity since
λ2n = An+Bn

√
5, for some positive rational numbers An and Bn. Therefore, we have

that Γ1 ̸= 0.
Now, let us apply Theorem 2.1 to Γ1 with s := 3 and (γ1, b1) := (b, ℓ), (γ2, b2) :=

(λα,−n), (γ3, b3) :=

(
d
√
5

a(b− 1)
, 1

)
.

Observe that L := Q(γ1, γ2, γ3) = Q(α, λ), so dL := 6. Moreover, we have h(γ1) =

log b and h(γ2) = h(αλ) ≤ h(α) + h(λ) =
1

2
log λ+

1

3
logα. Furthermore, we get

h(γ3) = h

(
d
√
5

a(b− 1)

)
≤ h

(
d

b− 1

)
+ h(

√
5) + h(a)

= log(max{b− 1, d}) + 1

2
log 5 +

1

3
log 44 ≤ log(b− 1) +

1

2
log 5 +

1

3
log 44.

Thus, we can take A1 := 6 log b, A2 := 2.7 and A3 := 6 log(b − 1) + 12.4. As n ≥ 2
and B ≥ max{|b1|, |b2|, |b3|} = max{ℓ, n, 1}, then we can take B := max{ℓ, n}. Using
the previous data, Theorem 2.1 tells us that

log |Γ1| > −1.4 · 306 · 34.5 · 62(1 + log 6)(1 + logB) ·A1 ·A2 ·A3, (13)

where

A1 ·A2 ·A3 = 16.2 log b · (6 log(b− 1) + 12.4) < 291.6 log2 b. (14)

In the above inequality, we have used the fact that 6 log(b−1)+12.4 < 18 log b, which
holds for all b ≥ 2. Combining (13) and (14), we get

log |Γ1| > −4.19× 1015 · log2 b · (1 + logB). (15)

Case 1: B = n. Then, from (12) and (15), it follows that

n log λ− log 13.7 < 4.19× 1015 · log2 b · (1 + log n)

and then n < 2.2× 1016 · log2 b · log n holds for n ≥ 2.

Case 2: B = ℓ. Then, from (12) and (15), we get

n log λ− log 13.7 < 4.19× 1015 · log2 b · (1 + log ℓ). (16)

By Lemma 3.2, it is easy to see that ℓ < 2.5n. Using this with (16), we get n <
3.3× 1016 · log2 b · log n.

In all cases, we see that n < 3.3×1016 · log2 b · log n. To get an upper bound of n in
term of b, we have to apply Lemma 2.2 with l = 1, L = n and H = 3.3× 1016 · log2 b.
Therefore, n < 3.6× 1018 · log3 b and ℓ < 9× 1018 · log3 b.

This completes the proof of Theorem 3.1.

Remark 3.3. The inequalities from Theorem 3.1 allows to compute all the solutions
to equation (6), for every fixed b.
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Now, as an illustration, we will solve equation (6) for 2 ≤ b ≤ 9. Therefore, we
have the following result.

Theorem 3.4. The only solutions (b, n, ℓ, d) of Diophantine equation (6) are in
(2, 1, 1, 1), (2, 2, 1, 1), (3, 1, 1, 1), (3, 2, 1, 1), (4, 1, 1, 1), (4, 2, 1, 1),
(5, 1, 1, 1), (5, 2, 1, 1), (5, 3, 1, 4), (6, 1, 1, 1), (6, 2, 1, 1), (6, 3, 1, 4),
(7, 1, 1, 1), (7, 2, 1, 1), (7, 3, 1, 4), (8, 1, 1, 1), (8, 2, 1, 1), (8, 3, 1, 4),
(9, 1, 1, 1), (9, 2, 1, 1), (9, 3, 1, 4), (3, 3, 2, 1), (5, 4, 2, 2), (6, 5, 2, 5),

(5, 7, 4, 2)

 .

Note that in the case b = 2, we have to consider the following equation FnTn =
2ℓ − 1, which allows to find all Mersenne numbers that are products of Fibonacci and
Tribonacci numbers. Thus, we have the following result, which is a consequence of
Theorem 3.4.

Corollary 3.5. The number 1 is the only Mersenne number which is a product of
Fibonacci and Tribonacci numbers. Namely, we have F1T1 = 21−1 and F2T2 = 21−1.

Proof (of Theorem 3.4). When 2 ≤ b ≤ 9, the bounds on n and ℓ become n < 4×1019

and ℓ < 1020. To lower these bounds, we return to inequality (12) by putting

Λ1 := log(Γ1 + 1) = ℓ log b− n log λα+ log

(
d
√
5

a(b− 1)

)
.

Inequality (12) can be written as
∣∣eΛ1 − 1

∣∣ < 13.7

λn
.

For n ≥ 7, we get
∣∣eΛ1 − 1

∣∣ < 13.7

λn
<

1

2
, which also implies that

1

2
< eΛ1 <

3

2
.

If Λ1 > 0, then 0 < Λ1 < eΛ1 − 1 = |eΛ1 − 1| < 13.7

λn
.

If Λ1 < 0, then 0 < |Λ1| < e|Λ1| − 1 = e−Λ1(1− eΛ1) <
27.4

λn
.

In any case, it is always holds true 0 < |Λ1| <
27.4

λn
, which implies that

0 <

∣∣∣∣∣ℓ log b

log λα
− n+

log
(
d
√
5/a(b− 1)

)
log λα

∣∣∣∣∣ < 25.3 · λ−n.

It is easy to see that
log b

log λα
is irrational. In fact, if

log b

log λα
=

p

q
(p, q ∈ Z and

p > 0, q > 0, gcd(p, q) = 1), then (λα)p = bq ∈ Z, which is an absurdity. Now, we will
apply Lemma 2.3 with

τ :=
log b

log λα
, µ :=

log
(
d
√
5/a(b− 1)

)
log λα

, A := 25.3, B := λ,

and w := n. Note that ℓ < 1020, so we can take M := 1020. For the computations, if
the first convergent such that q > 6M does not satisfy the condition ε > 0, then we
use the next convergent until we find the one that satisfies the conditions. We used
Mathematica to obtain the results given in following table.
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b 2 3 4 5 6 7 8 9
qt q37 q41 q39 q41 q50 q43 q47 q35
n ≤ 108 116 117 110 114 121 120 125
ℓ ≤ 270 290 292 275 285 302 300 312
ϵ > 0.4 0.05 0.06 0.18 0.02 0.01 0.01 0.0009

So, the bounds n ≤ 125 and ℓ ≤ 312 hold in all cases. Hence, it remains to check
equation (6) for 1 ≤ n ≤ 125 and 1 ≤ ℓ ≤ 312. A quick inspection using Maple
reveals that the only solutions of Diophantine equation (6) are those mentioned in
the statement of Theorem 3.4. □

3.2 On b repdigits as sum of Fibonacci and Tribonacci numbers

In this subsection, we will follow the method in Subsection 3.1. Our result is as
follows.

Theorem 3.6. Let b ≥ 2 be an integer. Then, the Diophantine equation

Fn + Tn = d

(
bℓ − 1

b− 1

)
, (17)

has only finitely many solutions in integers (n, b, d, ℓ) such that n, ℓ ≥ 1 and 1 ≤ d ≤
b− 1. Moreover, we have n < 7.5× 1016 log3 b and ℓ < 1.2× 1017 log3 b.

For n = 1, it is easy to show that all solutions of equation (17) are of the form
(b, n, ℓ, d) = (b, 1, 1, 2) with b ≥ 3. Now, we assume that n ≥ 2. The next lemma
relates the sizes of n, b, and ℓ.

Lemma 3.7. All solutions of the Diophantine equation (17) satisfy

(ℓ− 1)
log b

logα
+

log(α/2)

logα
< n < ℓ

log b

log λ
+ 2.

Proof. Using inequalities (2) and (5), one can see that

λn−2 < λn−2 + αn−2 ≤ Fn + Tn = d

(
bℓ − 1

b− 1

)
< bℓ. (18)

Taking the logarithm of the extreme sides of (18), we get

n log λ < ℓ log b+ 2 log λ. (19)

For the lower bound, we have from (2) and (5) that

bℓ−1 < d

(
bℓ − 1

b− 1

)
= Fn + Tn ≤ λn−1 + αn−1 < 2αn−1.

Taking the logarithm on both sides, we get that

(ℓ− 1) log b < log 2 + (n− 1) logα,

which leads to

(ℓ− 1) log b+ log(α/2) < n logα. (20)

Combining (19) and (20) we obtain the desired inequalities. □
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Now, let us finish the proof of Theorem 3.6 by substituting (3) and (4) in (17) to
have

dbℓ

b− 1
− d

b− 1
=
λn√
5
+ ν + aαn + en,

which leads to

aαn − dbℓ

b− 1
= − d

b− 1
− λn√

5
− ν − en. (21)

Taking the absolute value of both sides of (21), we get for n ≥ 1 that∣∣∣∣aαn − dbℓ

b− 1

∣∣∣∣ ≤ d

b− 1
+
λn√
5
+ |en|+ |ν|

< 1 +
λn√
5
+

1√
5
+

(
1√
α

)n

< λn
[
1

λn
+

1√
5
+

1

λn
√
5
+

(
1

λ
√
α

)n]
< 1.8 · λn.

Hence, we have ∣∣∣∣aαn − dbℓ

b− 1

∣∣∣∣ < 1.8 · λn. (22)

Dividing now both sides of (22) by aαn, we get∣∣∣∣1− bℓ · α−n · d

a(b− 1)

∣∣∣∣ < 10

(α/λ)n
. (23)

Let

Γ2 := bℓ · α−n · d

a(b− 1)
− 1. (24)

Next, we apply Theorem 2.1 to Γ2. First, we need to check that Γ2 ̸= 0. If it wasn’t,
then we would get that dbℓ = αna(b− 1).

Now, we apply the automorphism σ of the Galois group G on both sides and take
absolute values as follows: bℓ ≤ |d|bℓ = (b − 1)|b′||β|n < b − 1, which contradicts the
fact that ℓ ≥ 2. We conclude that Γ2 ̸= 0. So, we apply Theorem 2.1 to (24) with

s := 3 and (γ1, b1) := (b, ℓ), (γ2, b2) := (α,−n), (γ3, b3) :=
(

d

a(b− 1)
, 1

)
. Thus, we

have L = Q(γ1, γ2, γ3) = Q(α) since a = α/(α2 + 2α + 3), so dL = [L : Q] = 3. Note
that h(γ1) = log b, h(γ2) = (logα)/3 and

h(γ3) ≤ h

(
d

b− 1

)
+ h(a) = log (max{b− 1, d}) + 1

3
log 44 = log(b− 1) +

1

3
log 44.

Therefore, we take A1 = 3 log b, A2 = logα and A3 := 3 log(b − 1) + log 44. Since
n ≥ 2 and B ≥ max{|b1|, |b2|, |b3|}, we take B = max{n, ℓ}. Hence, we get

log |Γ2| > −1.4 · 306 · 34.5 · 32(1 + log 3) · (1 + logB) ·A1A2A3 (25)

with

A1A2A3 = 3 log b · logα · (3 log(b− 1) + log 44) < 18 · logα · log2 b. (26)
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In above inequality, we use the fact that 3 log(b−1)+log 44 < 6 log b, for b ≥ 2. Thus,
from (23), (25), and (26), we get

n log
(α
λ

)
− log 10 < 3× 1013 · (1 + logB) · log2 b,

which leads to n < 2.5 × 1014 · (1 + logB) · log2 b. Now, we study the following two
cases according to the values of B.

Case a: B = n. Then, for n ≥ 2 we obtain n < 6.2× 1014 · log2 b · log n.

Case b: B = ℓ. We have

n < 2.5× 1014 · (1 + log ℓ) · log2 b. (27)

By Lemma 3.7 one can easily see that ℓ < 1.5n, and thus by inequality (27) we get
n < 7.6× 1014 · log2 b · log n.

So, in all cases we conclude that n < 7.6× 1014 · log2 b · log n holds for n ≥ 2. To
obtain an upper bound of n in term of b we will apply Lemma 2.2 with l = 1, L = n
and H = 7.6×1014 · log2 b. Thus, we obtain n < 1.52×1015 · log2 b ·(34.3+2 log(log b)).

Since 34.3 + 2 log(log b) < 49 log b for b ≥ 2, we deduce that n < 7.5× 1016 · log3 b
and ℓ < 1.2× 1017 · log3 b. This completes the proof of Theorem 3.6.

Remark 3.8. One can use the inequalities in Theorem 3.6 to compute all the solutions
to equation (17), for every fixed b.

Now, as an illustration, we solve equation (17), for 2 ≤ b ≤ 9. The result in these
cases in the following result.

Theorem 3.9. The only solutions (b, n, ℓ, d) of the Diophantine equation (17) are in
(3, 1, 1, 2), (3, 2, 1, 2), (4, 1, 1, 2), (4, 2, 1, 2), (5, 1, 1, 2), (5, 2, 1, 2),
(5, 3, 1, 4), (6, 1, 1, 2), (6, 2, 1, 2), (6, 3, 1, 4), (7, 1, 1, 2), (7, 2, 1, 2),
(7, 3, 1, 4), (8, 1, 1, 2), (8, 2, 1, 2), (8, 3, 1, 4), (8, 4, 1, 7), (9, 1, 1, 2),
(9, 2, 1, 2), (9, 3, 1, 4), (9, 4, 1, 7), (3, 3, 2, 1), (5, 5, 2, 2), (6, 4, 2, 1),

(6, 6, 2, 3), (2, 4, 3, 1), (4, 6, 3, 1)

 .

Considering b = 2 in equation (17), we will solve the following equation Fn+Tn =
2ℓ − 1, which allows to find all Mersenne numbers that are sum of Fibonacci and
Tribonacci numbers. Thus, we have the following consequence.

Corollary 3.10. The number 7 is the only Mersenne number which is a sum of
Fibonacci and Tribonacci numbers. Namely, we have F4 + T4 = 23 − 1.

Proof (of Theorem 3.9). For 2 ≤ b ≤ 9, we get from Theorem 3.6 that n < 8 × 1017

and ℓ < 1.3× 1018. Now, we need to reduce the upper bound for n and ℓ by applying
Lemma 2.3. Put

Λ2 := log(Γ2 + 1) = ℓ log b− n logα+ log

(
d

a(b− 1)

)
.
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From (23), we conclude that
∣∣eΛ2 − 1

∣∣ < 10

(α/λ)n
. Note that if n ≥ 24, then |eΛ2−1| <

10

(α/λ)n
<

1

2
, which implies that

1

2
< eΛ2 <

3

2
.

If Λ2 > 0, then 0 < Λ2 < eΛ2 − 1 = |eΛ2 − 1| < 10

(α/λ)n
.

If Λ2 < 0, then 0 < |Λ2| < e|Λ2| − 1 = e|Λ2|(1− e−|Λ2|) <
20

(α/λ)n
.

In all cases, we have 0 < |Λ2| <
20

(α/λ)n
, which implies

0 <

∣∣∣∣ℓ log blogα
− n+

log(d/a(b− 1))

logα

∣∣∣∣ < 33.1 · (α/λ)−n. (28)

According to (28) and Lemma 2.3, we take M := 1.3 × 1018. Next, it is easy to

see that
log b

logα
is irrational. To apply Lemma 2.3, we define the following quantities

τ :=
log b

logα
, µ :=

log(d/a(b− 1))

logα
, A := 33.1, B := α/λ, and w := n. With the help of

Mathematica, we found the results mentioned in the following table.

b 2 3 4 5 6 7 8 9
qt q39 q35 q43 q42 q38 q41 q37 q37
n ≤ 194 191 197 191 194 201 210 198
ℓ ≤ 291 286 295 286 291 301 315 297
ϵ > 0.28 0.15 0.13 0.21 0.05 0.05 0.001 0.02

It follows that the bounds n ≤ 210 and ℓ ≤ 315 hold in all cases according to
the values of b. To finish the proof, we use a simple routine written in Maple which
reveals that the only solutions of the Diophantine equation (17) are those listed in
the statement of Theorem 3.9. □
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[7] F. Erduvan, R. Keskin, Z. Şiar Repdigits as product of two Pell or Pell-Lucas numbers, Acta
Math. Univ. Comenian., 88 (2019), 247–256.
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