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Abstract. Let b > 2 be an integer. In this paper we study the base b repdigits that can
be expressed as sums or products of Fibonacci and Tribonacci numbers. As a corollary, it
is shown that the numbers 1 and 7 are the only Mersenne numbers which can be expressed
respectively as product and sum of Fibonacci and Tribonacci numbers. This is done using
linear forms in logarithms of algebraic numbers (Baker’s method) and the Baker-Davenport
reduction method (the Dujella-Pethd’s version).

1. Introduction

For an integer b > 2, a positive integer N is called a base b repdigit if it has only one
digit in its base b representation. That is,

be—1
N=d ( — ) ,
for some integers £ > 1 and d € {1,...,b — 1}. When b = 10, one usually omits
to mention b and simply call these numbers as repdigits. The sequence of numbers
with repeated digits is included in Sloane’s On-Line Encyclopedia of Integer Sequences
(OEIS) [16] as sequence A010785. The Fibonacci sequence [10] {F}, } >0, is the binary
recurrence sequence given by Fy = 0, F; = 1 and the recurrence formula
Foio=F 11+ F,, foralln > 0.
First few terms of this sequence are
0,1,1,2,3,5,8,13,21, 34, 55,89, 144,233, 377,610, 987, . ...
Moreover, the Tribonacci sequence {7, }n>0 is defined by the recurrence formula
This=Thto+Tny1 + 71, foralln >0,
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2 b repdigits as product or sum of F,, and T, numbers

with To = 0 and Ty = Tp = 1 (see [18]). Its first terms are
0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705, 3136, 5768, . . .
Note that F,, and T,, are called n-th Fibonacci number and n-th Tribonacci number,
respectively. The Fibonacci and Tribonacci sequences are included in the (OEIS) [16]
as sequences A000045 and A000073 respectively. Diophantine equations involving
repdigits, Fibonacci and Tribonacci numbers have been considered in various papers
in recent years (see [2,4,6-8,11,13,15]). We point out that Luca [11] and Marques [12]
proved that the largest repdigits in the Fibonacci and Tribonacci sequences are Fig =
55 and Ty = 44, respectively. Recently, Bednaiik and Trojovsky [2] found all the
repdigits that can be written as a product of Fibonacci and Tribonacci numbers with
the same index while Trojovsky in [17] found all repdigits that can be written as
sum of Fibonacci and Tribonacci numbers with the same index. Motivated by the
work of the authors from [2,17], we devote this study to fully solve the following two
Diophantine equations
‘ ‘

FnTn:d<bbll> and Fn—i—Tn:d(bbll) (1)
in positive integers b, n, £, d with b > 2 and d € {1,...,b—1}.

We organize this paper as follows. In Section 2, we recall some elementary prop-
erties of Fibonacci and Tribonacci numbers, a result due to Matveev on lower bounds
of linear forms in logarithms of algebraic numbers, and a result on reduction method
due to Dujella and Pethé. The proofs of our main results are given in Section 3.

2. Useful tools
In this section, we gather the tools we need to prove Theorems 3.1 and 3.6.

2.1 Linear forms in logarithms

Let 1 be an algebraic number of degree d, let a > 0 be the leading coefficient of
its minimal polynomial over Z and let n = 7", ... n(® denote its conjugates. The
logarithmic height of « is defined by

Paricularly, if n = p/q € Q is a rational number in reduced form (so, ¢ > 1), then
the above definition reduces to h(n) = log max{|p|,q}. Now, let us give some basic
properties of this height. For 7;, 7, algebraic numbers and m € Z we have

hm £ 112) < h(m) + h(n2) +log 2, h(muz) < h(m) +h(n2),  h(n") = [mlh(n).

Let L be a real number field of degree dy,, v1,...,7s € L and by,...,bs € Z\ {0}. Let
B > max{|by|,...,|bs|} and T =~ ... — 1. Now, let A;,..., A, be real numbers
with 4; > max{dph(y;),|logv;l|,0.16},i=1,2,...,s.

o)

d
1
h(n) = 7 log |a| + E log max (1,
j=1
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The first tool that we need is the following result due to Matveev [14]. Here, we
use the version of Bugeaud, Mignotte, and Siksek [3, Theorem 9.4].

THEOREM 2.1. Assume that I' # 0. Then
log || > —1.4-30°%3 . s*5 . d2 . (1 4+ logdy) - (1+log B) - Ay - -- A,.

Also, we will need the following lemma due to Guzman and Luca.

Lemva 2.2 ([9, Lemma 7). If 1 > 1, H > (42)' and H > L/(log L)', then L <
2'H(log H)'.

2.2 Reduction method

Our next tool is a version of the reduction method of Baker and Davenport [1]. We
use a slight variant of the version given by Dujella and Pethé [5]. For a real number
x, we write ||z|| for the distance from z to the nearest integer.

LEMMA 2.3. Let M be a positive integer, p/q be a convergent of the continued fraction
expansion of the irrational number T such that ¢ > 6M, and A, B,u be some real
numbers with A > 0 and B > 1. Furthermore, let € := ||pg|| — M - ||7¢|| -

If e > 0, then there is no solution to the inequality 0 < |ut — v+ p| < AB™™ in

log(Aag/e)

positive integers u,v and w with u < M and w > 5
g

2.3 The Fibonacci or Tribonacci sequences

We recall here some useful properties of Fibonacci and Tribonacci sequences. We
recall a well-known non-recursive formula for generating Fibonacci numbers. Binet’s
formula asserts that
V5
where A = (14 v/5)/2. With this formula, we can deduce that
ANT2<E, <A™l for n>1. (2)

It is also possible to infer that
AT 1
F,=—=+v with |y|<—, for n>1. (3)

V5 V5

Next, the characteristic equation for Tribonacci sequence is ¢ (z) := x —2?—z—1=0,

and has one real root a and two complex roots 8 and v = . More precisely, we have

Oé:%(1+7“1+7”2), 5:%(2*(T1+T2)+(T1*Tz)\/j3),

with =119 +3V33 and 7 = /19 — 3v/33.

Moreover, Binet’s formula for the general terms of the Tribonacci sequence is given
by T,, = aa™ + b’ 3" + ™, for n > 0, where

1 1 1 —
a = v = ande= — =¥,

(@ =B)(a=7)’ (8 —a)(B—=7) (y—a)(y=5)

F, = , for n >0,

3




4 b repdigits as product or sum of F,, and T, numbers

Furthermore, one can observe that a = and its minimal polynomial over

a2+ga+3
the integers is given by 4423 + 42 — 1, and has zeros a,V’, ¢ with |al, |V/|, |c| < 1.

Numerically, the following estimates hold

1.83 < o < 1.84, 0.73 < |8 = 7| = a~7 < 0.74,
0.18 < a < 0.19, 0.35 < |[b'| = || < 0.36.
Also, setting e, = T}, — aa™ = b' 8" + cy", we can show that
T, =aa" +e,, with |e,| < ﬁ, (4)
holds for all n > 1. Furthermore, by induction, one can prove that
Q"< T, <ol for n>1. (5)

Let K:= Q(a, 8,7) = Q(a, B) be the splitting field of the polynomial ¥ over Q. Then,
[K: Q] = 6. Furthermore, [Q(c) : Q] = 3. The Galois group of K/Q is given by

G = Gal(K/Q) = {(1), (aB), (a7), (B7), (aB7), (ayB) } = Ss.

Thus, we identify the automorphisms of G with the permutations of the zeros of the
polynomial ?. For example, the permutation («3) corresponds to the automorphism
c:a—=p, —=>a,y—7.

3. Main results

3.1 On b repdigits as product of Fibonacci and Tribonacci numbers

In this subsection, we will prove the following result.
THEOREM 3.1. Let b > 2 be an integer. Then, the Diophantine equation
b —1
F,T,=d
(5=1) 0
has only finitely many solutions in integers (n,b,d,¢) such that n, > 1 and 1 <d <
b— 1. Moreover, we have n < 3.6 x 10'8log® b and ¢ < 9 x 10'® log® b.

Note that if n = 1, then all solutions of equation (6) are of the form (b,n,¢,d) =
(b,1,1,1) with b > 2. For the remaining proof, we consider n > 2. The following result
will be useful in proving Theorem 3.1, which gives a relation between the variables
¢,n, and b of equation (6).

LEMMA 3.2. All solutions of Diophantine equation (6) satisfy

log b log b
f—1 1 {—— 4 2.
( )log/\a+ sns loga)\+

Proof. From inequalities (2) and (5), we get

n—2 _n—2 be_l V4
N < BT, = d (S ) <O (7)
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Taking the logarithm on both sides of (7), we get
nlog Aa < £logb + 2log \a. (8)

For the lower bound, from (2) and (5), we have

L _
b41<d(i f):ﬁﬂy<A”Hﬂl.

Taking the logarithm on both sides, we get
(£—1)logb < (n—1)log A+ (n —1)log«,

which leads to

(¢ —1)logb+ log Aa < nlog Aa. (9)
Combining (8) and (9) we obtain the desired inequalities U
Now, we will complete the proof of Theorem 6. Substituting (3) and (4) in (6),

we have
a(Aa)™ e, A" n
+ava” + ve,,

b’ d A™ n B
b_l—b_l—(\/g—l-u)(aa +en) = 7 Vi
which leads to
" v’ d enA" n
—ava™ — ve,.

a(Aa) 3 _ B
NG b—1  b—1 /5

Taking the absolute value of both sides of (10), we get for n > 1
< 5+ S fenl + lavd ol + ven
b—1 /5
() e & ()
\a) T EY T EA
=a" {1—1-0'19 L ( ) +1(>”] <11l-a™
V5 V5
(11)

(10)

a(Aa)" dv*
NG b—1

a?’L

Thus, we see that
a(Aa)”  db
V5 b—1
Dividing both sides of inequality (11) by a(Aa)™/v/5, we get
- ' V5 1hf
b—1 a()\a)” ar™

<1.1-a™.

Y

Wthh beC()mes

g. _n.i_
b - (Aa) ab-1) 1| < R

dv/5 .

Put I'y :=b"- (\a)™™ ———
H (Aa) a(b—1)
Next, we have to apply Theorem 2.1 to I';. First, we need to check that I'; # 0
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dv/5
a(b—1)
Since [Q(«) : Q] = 3, then A?" is either a rational or a 3-degree algebraic number.
However, A is a quadratic algebraic number and since Q(A™) C Q(A), then the degree
of A" is either 1 or 2. So, we conclude that A" € Q, which is an absurdity since
A2 = A, + B,\/5, for some positive rational numbers A,, and B,,. Therefore, we have

that Fl 7é 0.
Now, let us apply Theorem 2.1 to I'y with s := 3 and (v1,b1) := (b, £), (72,b2) :=

(Aav —TL), (737 bS) = a(cé\igl) )

Observe that L := Q(y1,72,73) = Q(«, A), so dy, := 6. Moreover, we have h(v) =
1 1
logb and h(ys) = h(aX) < h(a) + h(N) = 3 log A + 3 log . Furthermore, we get

h(vs) = h (ﬂ) <h (&) + h(V5) + h(a)

If it were not, then we would get that b = (a\)™ and so A*" € Q().

1 1 1 1
= log(max{b—1,d}) + 3 log 5 + 3 log44 <log(b—1) + 3 log 5 + 3 log 44.

Thus, we can take A; := 6logb, Az := 2.7 and Az := 6log(b— 1)+ 12.4. Asn > 2
and B > max{|b1], |b2], b3} = max{¢,n, 1}, then we can take B := max{/,n}. Using
the previous data, Theorem 2.1 tells us that

log Ty > —1.4-30% - 3%5.62(1 +log6)(1 + log B) - Ay - Ay - As, (13)
where
Ay - Ay - Az =16.2logb - (6log(b — 1) + 12.4) < 291.6log? b. (14)
In the above inequality, we have used the fact that 6log(b—1)+12.4 < 18logb, which
holds for all b > 2. Combining (13) and (14), we get

log |T1| > —4.19 x 10% - log® b - (1 + log B). (15)
Case 1: B = n. Then, from (12) and (15), it follows that
nlog A —log13.7 < 4.19 x 10 - log?b - (1 + logn)
and then n < 2.2 x 106 - log? b - log n holds for n > 2.

Case 2: B = £. Then, from (12) and (15), we get

nlog A —log13.7 < 4.19 x 10 - log®b - (1 + log ). (16)
By Lemma 3.2, it is easy to see that ¢ < 2.5n. Using this with (16), we get n <
3.3 x 1016 - 1og® b - log n.

In all cases, we see that n < 3.3 x 1016-1og? b-log n. To get an upper bound of n in
term of b, we have to apply Lemma 2.2 with [ =1, L = n and H = 3.3 x 1016 - log? b.
Therefore, n < 3.6 x 108 -log® b and £ < 9 x 108 - log® b.

This completes the proof of Theorem 3.1.

REMARK 3.3. The inequalities from Theorem 3.1 allows to compute all the solutions
to equation (6), for every fixed b.
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Now, as an illustration, we will solve equation (6) for 2 < b < 9. Therefore, we
have the following result.

THEOREM 3.4. The only solutions (b,n,{,d) of Diophantine equation (6) are in
(2,1,1,1), (2,2,1,1), (3,1,1,1), (3,2,1,1), (4,1,1,1), (4,2,1,1),
(5,1,1,1), (5,2,1,1), (5,3,1,4), (6,1,1,1), (6,2,1,1), 6,3,1,4),
(7,1,1,1), (7,2,1,1), (7,3,1,4), (8,1,1,1), (8,2,1,1), (8,3,1,4),
(9,1,1,1), (9,2,1,1), (9,3,1,4), (3,3,2,1), (5,4,2,2), (6,5,2,5),

(5,7,4,2)

Note that in the case b = 2, we have to consider the following equation F,,T,, =
2¢ — 1, which allows to find all Mersenne numbers that are products of Fibonacci and
Tribonacci numbers. Thus, we have the following result, which is a consequence of
Theorem 3.4.

COROLLARY 3.5. The number 1 is the only Mersenne number which is a product of
Fibonacci and Tribonacci numbers. Namely, we have F1Ty = 21 —1 and FoTh = 21 —1.

Proof (of Theorem 3.4). When 2 < b < 9, the bounds on n and ¢ become n < 4 x 1019
and ¢ < 10%°. To lower these bounds, we return to inequality (12) by putting

d
Ay :=log(l'; + 1) = Llogb — nlog A + log <\/5> .

ab—1)
. . A 13.7
Inequality (12) can be written as |e -1 < R
A 13.7 1 ) . 1 A 3
For n > 7, we get !e r— 1| < BUE < = 5’ which also implies that 3 <eM <« ok
A A 13.7
If A; >0,then 0<A;<e—1=]e 1—1|</\—n.
27.4
If Ay <0, then 0<|Ay] <elMl—1=eM(1-eM)< R
27.4
In any case, it is always holds true 0 < |A1] < —— o , which implies that
log b log (dv/5/a(b—1
0<|elo8b _,  los(dVBlab= )| ooq s
log A« log A«
. logb . . . .. logbd D
It is easy to see that is irrational. In fact, if == (p,q € Z and
lo log A q

p>0,q >0, ged(p,q) = 1), then (Aa)? = b? € Z, which is an absurdity. Now, we will
apply Lemma 2.3 with

~ logb  log (dv/5/a(b—1))
~ log Ao’ o log A
and w := n. Note that ¢ < 1020, so we can take M := 10?°. For the computations, if
the first convergent such that ¢ > 6M does not satisfy the condition £ > 0, then we
use the next convergent until we find the one that satisfies the conditions. We used
Mathematica to obtain the results given in following table.

, A:=253, B:=)\,
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b 2 3 4 ) 6 7 8 9

at 437 | qu 439 44 450 443 447 435
n< | 108 | 116 | 117 | 110 | 114 | 121 | 120 125
£< 1270 | 290 | 292 | 275 | 285 | 302 | 300 312
e> | 04 |0.05]|0.06 | 0.18 | 0.02 | 0.01 | 0.01 | 0.0009

So, the bounds n < 125 and ¢ < 312 hold in all cases. Hence, it remains to check
equation (6) for 1 < n < 125 and 1 < ¢ < 312. A quick inspection using Maple
reveals that the only solutions of Diophantine equation (6) are those mentioned in
the statement of Theorem 3.4. U

3.2 On b repdigits as sum of Fibonacci and Tribonacci numbers

In this subsection, we will follow the method in Subsection 3.1. Our result is as
follows.

THEOREM 3.6. Let b > 2 be an integer. Then, the Diophantine equation

l_
Fn+Tn:d<b 1), (17)

b—1
has only finitely many solutions in integers (n,b,d,¢) such that n,£ > 1 and 1 <d <
b— 1. Moreover, we have n < 7.5 x 10'6log® b and ¢ < 1.2 x 107 log® b.

For n = 1, it is easy to show that all solutions of equation (17) are of the form
(b,n,L,d) = (b,1,1,2) with b > 3. Now, we assume that n > 2. The next lemma
relates the sizes of n, b, and £.

LEMMA 3.7. All solutions of the Diophantine equation (17) satisfy

loghb 1 2 logb
(£-1) LA og/2) <n< 022 4o
log o log a log A
Proof. Using inequalities (2) and (5), one can see that
b —1
)\"‘2<)\"_2+a"‘2<Fn+Tn:d<b 1) < bt (18)
Taking the logarithm of the extreme sides of (18), we get
nlog A\ < Llogb + 2log A. (19)

For the lower bound, we have from (2) and (5) that

L _
Wl <d (Z 11> =F, +T, <\ 14a" ! <2om !,

Taking the logarithm on both sides, we get that

(£ —1)logb <log2+ (n—1)loga,
which leads to

(¢ —1)logb+ log(a/2) < nloga. (20)
Combining (19) and (20) we obtain the desired inequalities. U
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Now, let us finish the proof of Theorem 3.6 by substituting (3) and (4) in (17) to

have
n

bt L———i—u—i—aa"—l—e
b—1 b-—1 /5 "

which leads to

b’ d A"
b—1  b-1 5
Taking the absolute value of both sides of (21), we get for n > 1 that
b’ d A"

S e T
b—1 _b_1+\/5+|en|+‘V|

A1 1\"
<1+t —=+(—=
11 1

1 n
<N |—+—=+——=+[—=) | <18-A"
vt e |

aa”™ — —V—en. (21)

aa™

Hence, we have

‘

aa” — ¢ <1.8- A" (22)

Dividing now both sides of (22) by aa™, we get

d 10
1-v'-a -a(bl)‘<(a//\)n. (23)
Let
Ly :=b'-am. d__ 1. (24)
a(b—1)

Next, we apply Theorem 2.1 to I's. First, we need to check that I's # 0. If it wasn’t,
then we would get that db® = a"a(b — 1).

Now, we apply the automorphism ¢ of the Galois group G on both sides and take
absolute values as follows: b¢ < |d|b* = (b — 1)|'||8|™ < b — 1, which contradicts the
fact that ¢ > 2. We conclude that I's # 0. So, we apply Theorem 2.1 to (24) with

s :=3 and (y1,b1) := (b, £), (72,b2) := (o, —n), (y3,b3) := (a(bdl)’l) Thus, we

have L = Q(71,72,73) = Q(a) since a = a/(a? + 2a + 3), so di. = [L : Q] = 3. Note
that h(vy1) = logb, h(y2) = (loga)/3 and

h(vs) <h (bdl) + h(a) = log (max{b —1,d}) + élog44 =log(b—1)+ élog44.

Therefore, we take A; = 3logb, Ay = loga and Az := 3log(b — 1) + log44. Since
n > 2 and B > max{|b1], |b2], |bs|}, we take B = max{n,¢}. Hence, we get

log |Ty| > —1.4-30°-3%%.3%(1 +log3) - (1 +log B) - A; Ay A3 (25)
with
A1 Ay Az = 3logh-loga - (3log(b — 1) +log44) < 18 -log a - log® b. (26)
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In above inequality, we use the fact that 3log(b—1)+1log44 < 6logb, for b > 2. Thus,
from (23), (25), and (26), we get

nlog (%) —log10 < 3 x 10'3 - (1 +log B) - log? b,
which leads to n < 2.5 x 1014 . (1 + log B) - log®b. Now, we study the following two
cases according to the values of B.

Case a: B = n. Then, for n > 2 we obtain n < 6.2 x 10'* - log? b - log n.

Case b: B = £. We have

n < 2.5x 10" (1+logt) -log?b. (27)
By Lemma 3.7 one can easily see that ¢ < 1.5n, and thus by inequality (27) we get
n < 7.6 x 10 -log?b - logn.

So, in all cases we conclude that n < 7.6 x 10™ - log® b - log n holds for n > 2. To
obtain an upper bound of n in term of b we will apply Lemma 2.2 with [ =1, L=n
and H = 7.6 x 10" -log? b. Thus, we obtain n < 1.52x 10'®-log? b- (34.3+2log(log b)).

Since 34.3 4+ 2log(logb) < 49logb for b > 2, we deduce that n < 7.5 x 106 - log® b
and ¢ < 1.2 x 1017 - log® b. This completes the proof of Theorem 3.6.

REMARK 3.8. One can use the inequalities in Theorem 3.6 to compute all the solutions
to equation (17), for every fixed b.

Now, as an illustration, we solve equation (17), for 2 < b < 9. The result in these
cases in the following result.

THEOREM 3.9. The only solutions (b,n,£,d) of the Diophantine equation (17) are in

(3,1,1,2), (3,2,1,2), (4,1,1,2), (4,2,1,2), (5,1,1,2), (5,2,1,2),

(5,3,1,4), (6,1,1,2), (6,2,1,2), (6,3,1,4), (7 ,1,172), (7,2,1,2),

(7.3,1,4), (8,1,1,2), (8,2,1,2), (8,3,1,4), (8,4,1,7),(9,1,1,2),

(9,2,1,2), (9,3,1,4), (9,4,1,7), (3,3,2,1), (5,5,2,2),(6,4,2,1),
(6,6,2,3), (2,4,3,1), (4,6,3,1)

Considering b = 2 in equation (17), we will solve the following equation F, +T,, =
2¢ — 1, which allows to find all Mersenne numbers that are sum of Fibonacci and
Tribonacci numbers. Thus, we have the following consequence.

COROLLARY 3.10. The number 7 is the only Mersenne number which is a sum of
Fibonacci and Tribonacci numbers. Namely, we have Fy + Ty = 23 — 1.

Proof (of Theorem 3.9). For 2 < b < 9, we get from Theorem 3.6 that n < 8 x 1017
and ¢ < 1.3 x 10'®. Now, we need to reduce the upper bound for n and ¢ by applying
Lemma 2.3. Put

Ay :=log(Ts + 1) = Llogb — nlog o + log <a(bd—1)) .
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10
From (23), we conclude that |e*? — 1| < @) Note that if n > 24, then |e*2 —1| <
10 1 1 3
(O[/)\)n < 5, which 1mphes that 5 < 6A2 < 5
10
If Ap >0, then 0< Ay <el2—1=eM2—1|< —.
(/N
20
If Ay <0, then 0 < [Ag] <elf2l 1 =elb2l(1 —elA2ly « —
(a/A)"
20 Y
In all cases, we have 0 < |Ag] < @) which implies
« n
logb log(d/a(b—1
0<|elosb _, 108ld/albm D) aay nyn (28)
log o log o
According to (28) and Lemma 2.3, we take M := 1.3 x 10'8. Next, it is easy to
log b
see that log is irrational. To apply Lemma 2.3, we define the following quantities
og o
log b log(d/a(b—1
- %8 , = og(d/a( )), A:=33.1, B:=a/\ and w:=n. With the help of
log o log o

Mathematica, we found the results mentioned in the following table.

b 2 3 4 5 6 7 8 9
at 439 435 443 442 438 44 437 437
n< | 194 | 191 | 197 | 191 | 194 | 201 210 198
£< | 291 | 286 | 295 | 286 | 291 | 301 315 297
e> | 0281015 | 0.13 | 0.21 | 0.05 | 0.05 | 0.001 | 0.02

It follows that the bounds n < 210 and ¢ < 315 hold in all cases according to
the values of b. To finish the proof, we use a simple routine written in Maple which
reveals that the only solutions of the Diophantine equation (17) are those listed in
the statement of Theorem 3.9. 0
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