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Abstract. For a compact orientable PL 4-manifold M with boundary, let M be the sin-
gular manifold obtained by capping of OM. In this article, we explore the class of compact
orientable PL. 4-manifolds with empty or connected boundary, whose fundamental groups
have rank 1, and their corresponding singular manifolds admit weak semi-simple crystalliza-
tions. First, we show that if M is a closed orientable PL 4-manifold belonging to this class,
then there exist complementary submanifolds V and V' with a shared boundary such that
G(V") > G(M) > G(V), where G(M), G(V), and G(V') denote the regular genera of M, V,
and V', respectively.

Next, we provide a handle decomposition for a compact orientable PL 4-manifold M with
connected non-spherical boundary from this class. If the rank of the fundamental group of
M, m’, is 1, then M admits a handle decomposition that takes one of the following forms:

1) one O-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2 + (2(M) —
Br(M) — p1(M), or

2) one O-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3 + B2(M) —
Br(M) — Br(M).
Further, if m’ = 0, then M admits a handle decomposition which consists of one 0-handle,
one 1-handle and f2(M) 2-handles.

We further demonstrate that no manifold from this class with empty or connected spher-
ical boundary can have a fundamental group isomorphic to a finite cyclic group. Finally,
we provide a handle decomposition for such manifolds with empty or connected spherical
boundary.

1. Introduction

A crystallization (I",y) of a compact PL d-manifold is a specialized edge-colored graph
that encodes the manifold’s structure (see Subsection 2.1). Pezzana proved that every
closed PL d-manifold has a crystallization (see [17]). This result was later broadened
to include singular d-manifolds (cf. [7-12]). For a compact PL d-manifold M with
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2 Handle decomposition for a class of compact orientable PL 4-manifolds

boundary, a singular d-manifold M can be formed by capping off each boundary
component of M. There is a one-one correspondence between the class of compact
PL 4-manifolds with empty or non-spherical boundary components and the class of
singular manifolds (see Remark 2.2). If M is a compact PL 4-manifold with spherical
boundary components, then M is a closed PL 4-manifold. If M is a closed PL 4-
manifold, then M = M.

The concept of “regular genus” for closed PL d-manifolds, introduced in [16],
generalizes the classical genus in dimension 2 and the Heegaard genus in dimension
3 (see Subsection 2.2 for details). This idea was later extended to compact PL d-
manifolds with non-spherical boundary components for d > 2 through the framework
of singular d-manifolds (cf. [7-12]).

In [1], the concept of weak semi-simple crystallizations for closed PL 4-manifolds
was introduced, while in [7], the notion of weak semi-simple gems for compact PL
4-manifolds with connected boundary was developed. This paper focuses on compact
orientable PL 4-manifolds with empty or connected boundary, whose fundamental
groups have rank 1 and whose associated singular manifolds admit weak semi-simple
crystallizations.

In [10], the authors proved that the weak simple class (weak semi-simple for
simply-connected 4-manifolds) of compact simply-connected 4-manifolds with empty
or connected boundary admit a special handle decomposition that lacks 1-handles
and 3-handles. The original problem for closed PL 4-manifolds was posed by Kirby
and can be formulated as follows: “Does every simply-connected closed 4-manifold
have a handlebody decomposition with no 1-handles and 3-handles?” A lot of work
has been performed over the decades, including studies on manifolds with boundaries,
such as Trace’s work in [19,20].

First, we prove that for a closed orientable 4-manifold M with the non-trivial cyclic
fundamental group admitting a weak semi-simple crystallization, the combinatorial
invariant regular genus of M lies between the regular genera of its complementary
submanifolds V' and V' (see Theorem 4.2).

In [3], it has been shown that for the class of closed orientable 4-manifolds with
infinite cyclic fundamental group admitting semi-simple crystallizations, there exists a
handle decomposition such that the number of 2-handles depends on the second Betti
number of the manifold, and the number of other h-handles (h < 4) is at most 2.

In this article, we extend this work from the class of closed orientable PL 4-
manifolds with rank 1 fundamental groups and admitting semi-simple crystalliza-
tions to a larger class of compact orientable PL 4-manifolds with empty or connected
boundary that admit weak semi-simple crystallizations and have non-trivial cyclic
fundamental groups. For a compact orientable PL 4-manifold M with connected
non-spherical boundary within this class, we construct a handle decomposition. If
the rank of the fundamental group of M, m/, is 1, then M admits a handle decom-
position that takes one of the following forms:

1) one 0-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2+ B2 (M) —
p1(M) — B1(M), or
2) one 0-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3+ 2 (M) —
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B1(M) — B (AT).

Further, if m’ = 0, then M admits a handle decomposition which consists of one
O-handle, one 1-handle and S2(M) 2-handles (see Theorem 4.4). In proving this
theorem, we shall extensively use the notion of regular neighborhoods [18]. The proof
of this theorem implies that any manifold with empty or connected spherical boundary
of this class can never have a finite cyclic fundamental group, and we also provide a
handle decomposition for such manifolds (see Corollary 4.5).

2. Preliminaries

The crystallization theory provides a tool for representing piecewise-linear (PL) man-
ifolds of any dimension combinatorially using edge-colored graphs.

2.1 Crystallization

In this article, we study multigraphs T' = (V(T'), E(T")) without loops, where the edges
are assigned colors (or labels) from the set A4 := {0, 1,...,d}. The elements of Ay are
called the colors of I'. A (d+1)-regular colored graph is defined as a pair (T',y), where
each vertex of I" has degree d+1, and there exists a surjective map v : E(I') — A, such
that any two adjacent edges e; and eq satisfy y(e1) # vy(e2). When the edge coloring
is clear from the context, we may simply refer to the (d+1)-regular colored graph as T'.
For C C Ay with cardinality k, the graph T'c = (V(T'),7~%(C)) is a k-regular colored
graph with edge-coloring 7|,-1(¢). For a color set {j1, j2, ..., jrx} C Ad, 9(T'j, jor.iu})
OT G{j, ja,....jn } denotes the number of connected components of the graph I'g;, j, . 51.
A graph (T',~) is called contracted if the subgraph I's = a5y 18 connected for all
Jj € Ay. We refer to [6] for standard terminologies on graphs. All spaces and maps
will be considered in PL-category [18].

For a (d + 1)-regular colored graph (T",v), a corresponding colored d dimensional
simplicial cell complex K(I') is constructed as follows:

e for each vertex v € V(I'), take a d-simplex o(v) with vertices labeled by Ay,

e corresponding to each edge of color j between vy, vy € V(I'), identify the (d—1)-
faces of o(v1) and o (v2) opposite to j-labeled vertices such that the same labeled
vertices coincide.

The geometric carrier |[[C(T")] is a d-pseudomanifold, and (T',~) is referred to as
a gem (graph encoded manifold) of any d-pseudomanifold homeomorphic to |K(T)],
or equivalently, it is said to represent the d-pseudomanifold. Since the vertex set
of K(T') can be (d + 1)-colored, we refer to K(T") as a colored triangulation of the
d-pseudomanifold |IC(T")|. For further details on CW complexes and related notions,
see [5].

From this construction, it is straightforward to observe that for any subset C C Ay
of cardinality k+ 1, (") has as many k-simplices with vertices labeled by C as there
are connected components in I'a ,\¢ [14]. The disjoint star of a simplex o € K(T') is
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a simplicial cell complex comprising all d-dimensional simplices of IC(T") that contain
o as a face, with the identification of their (d — 1)-faces containing o as in /C(T"). The
disjoint link of o € IC(T") is the subcomplex of its disjoint star formed by all simplices
that do not intersect o.

DEFINITION 2.1. A singular PL d-manifold is a closed d dimensional polyhedron with
a colored triangulation such that the disjoint links of its vertices are closed (d — 1)-
manifolds. A vertex whose link is not a sphere is called a singular vertex. It follows
that a closed (PL) d-manifold is simply a singular (PL) d-manifold with no singular
vertices.

From the correspondence between (d + 1)-regular colored graphs (I',v) and d
dimensional pseudomanifolds, it can be easily visualised that:
1) |K(I)| is a closed PL d-manifold if and only if for each ¢ € Ay, I'z represents S

2) |K(I)| is a singular PL d-manifold if and only if for each ¢ € Ay, 'z represents a
closed PL (d — 1)-manifold.

If I‘j does not represent the (d — 1)-sphere, then the color j is called a singular
color.

REMARK 2.2 ([10,12]). There is a one-to-one correspondence between the class of
singular (PL) d-manifolds and the class of all compact (PL) d-manifolds with empty
or non-spherical boundary components. If M is a singular d-manifold, then removing
a small open neighborhood around each of its singular vertices yields a compact d-
manifold M with non-spherical boundary components. Moreover, M = M if and
only if M is a closed d-manifold. Conversely, if M is a compact d-manifold with
non-spherical boundary components, a corresponding singular d-manifold M can be
obtained by capping off each boundary component of OM. 1If M is closed, then
M =M.

From this point forward, when we refer to a graph representing a compact PL 4-
manifold M with non-spherical boundary components, we mean the graph that repre-
sents the corresponding singular manifold M, obtained by capping off each boundary
component of M with a cone. In this article, we focus on compact PL 4-manifolds M
with empty or connected non-spherical boundary. As a result, we will consider only
5-regular colored graphs. Without loss of generality, we assume that color 4 is the
only possible singular color of T', the gem of M.

DEFINITION 2.3. A (d+ 1)-regular colored gem of a singular d-manifold with at most
one singular vertex is called a crystallization of M if it is contracted.

In the colored triangulation of M corresponding to a crystallization, there are
precisely d + 1 vertices. The foundation of crystallization theory lies in Pezzana’s
existence theorem [17], which proves that every closed PL d-manifold admits a crys-
tallization. Additionally, the existence of crystallizations was established for singular
(PL) d-manifolds with a single singularity in [12]. This concept has since been further
developed in various articles [7—11].
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2.2 Regular Genus

It is well known that a (d + 1)-regular colored bipartite (resp. non-bipartite) graph
(T",v) admits regular embedding into the orientable (resp. non-orientable) surface Fy
(corresponding to cyclic permutation e of A4) of Euler characteristic
XE(F) = Z g{Ei,Eq‘,+1} + (1 - d)%r)v
1€Laq41
where subscripts are taken in modulo d. Additionally, (T',~) does not admit any
regular embedding into a non-orientable (resp. orientable) surface [15]. Using this,
the concept of regular genus of closed and singular manifolds was introduced in [16]
and [12], respectively, extending the notions of genus of surfaces and Heegard genus of
3-manifolds. The regular genus is a PL-invariant for PL manifolds of any dimension.
It is known that a gem (T',7) of a manifold M is a bipartite graph if and only if M
is orientable. For d > 3, the regular genus p(T") of (T',~) is defined as

p(T) = min{p.(T") | € is a cyclic permutation of Ay},
where the genus (resp. half of genus) p.(I') of F. satisfies
x:(I)
5
The regular genus of M (closed or singular PL manifold) is defined as

G(M) = min{p(T") | (T,7) represents M }.

For a compact PL 4-manifold M with connected non-spherical boundary, the
(generalized) regular genus G(M) of M is defined as the regular genus G(M) of M.

ps(r) =1-

PROPOSITION 2.4 ([11]). Let M be a compact PL 4-manifold with connected non-
spherical boundary. Then G(M) > 2x(M) + 3m + 2m' — 2, where m and m' are the
ranks of the fundamental groups of M and M, respectively.

In [2], a lower bound is provided for the regular genus of compact PL 4-manifolds
with boundary. However, the definition of regular genus of compact PL 4-manifolds
with boundary used there differs from the definition of regular genus presented in this
article.

3. Weak semi-simple crystallizations of compact 4-manifolds

In [1] and [7], the concept of weak semi-simple crystallizations of compact PL 4-
manifolds with empty or connected non-spherical boundary was introduced. These
crystallizations are minimal with respect to regular genus among the graphs repre-
senting the same 4-manifold.

DEFINITION 3.1. Let M be a compact PL 4-manifold with empty or connected non-
spherical boundary. A 5-regular colored graph I" representing M is called weak semi-
simple with respect to a permutation € = (go,€1,...,64 =4) if g, c; 10,00y =m+1
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Vj€{0,2,4} and gic; c;i0e,00) = M + 1V j € {1,3} (additions are modulo 5 in
subscripts), where m and m’ are the ranks of the fundamental groups of M and M,
respectively.

Note that m’ < m and if T" is weak semi-simple, then it is contracted as well, and
hence T is a crystallization.

Let (T',7) be a crystallization of a singular PL 4-manifold M and IC(T") be the
corresponding colored triangulation with the vertex set Ay. If B C Ay, then K(B)
denotes the subcomplex of IC(T") generated by the vertices ¢ € B. If Sd K(T") is the
first barycentric subdivision of IC(T'), then F(i,j) (resp. F(i,j,k)) is the largest
subcomplex of Sd K(T'), disjoint from Sd K(i,5) U Sd K(A4 \ {i,5}) (resp. Sd
K(i,j,k) U Sd K(A4\ {i,7,k})). Then the polyhedron |F(i,5)| (resp. |F(i,3,k)|)
is a closed PL 3-manifold which partitions M into two 4-manifolds N (4, j)and N (A4 \
{5,}) (resp. N(i,j, k)andN(As \ {7, j, k})) with |[F(i, )] (resp. |F(i, ,k)]) as com-
mon boundary. Further, N(i,5) (resp. N(i,j,k)) is a regular neighbourhood of
|C(%, 7)| (resp. |K(i,7,k)|) in |K(T)| (see [3,10,13,16] for more details). Thus, M
has a decomposition as M = N (i, j) Ug N(A4\ {7, 7}), where ¢ is a boundary identi-
fication.

DEFINITION 3.2 (Complementary Submanifolds). Let M be a compact orientable PL
4-manifold with empty or connected boundary, and M be its corresponding singular
manifold. Let M admit weak semi-simple crystallization (I',7). Without loss of
generality, we write M = N(1,4) UN(0,2,3). We denote N(1,4) and N (0,2,3) by V
and V' respectively. We call V' and V'’ the complementary submanifolds of M.

LEMMA 3.3. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary, and M be its corresponding singular manifold. Let M admit
weak semi-simple crystallization (I',~) and V, V' be the complementary submanifolds
as in Definition 8.2. Then V NV’ is orientable and V' is PL homeomorphic to the
boundary connected sum of #.,/ (S x B®) and C(OM), the cone over OM, where m/
is the rank of m (M).

Proof. Using the Mayer-Vietoris exact sequence for the triple (M, V, V'), we obtain
0 — Hy(M) — H3(dV) — 0. This shows that M is orientable if and only if dV is
orientable. Since M is orientable, it follows that M is orientable, and thus 8V is also
orientable. Consequently, as 9V =V NV’ V NV’ is orientable.

Given that go2,3y = m'+ 1, there are exactly m’ + 1 edges of color {1,4}. There-
fore, V is PL-homeomorphic to the boundary connected sum #,, (S* x B)#C(0M),
where C(OM) is the cone over M. This further implies that OV = #,, (S! x
S?)#OM. O

The following result on isomorphism between cohomology and homology groups
of a 4-manifold with a connected boundary and its associated singular manifold,
respectively, was given in [10, Proposition 5].
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PROPOSITION 3.4. Let M be a compact orientable PL 4-manifold with connected
boundary and M be the singular manifold by capping off its boundary. Then

Hy (M) = H*F(M) for k € {1,2,3,4}.

LEMMA 3.5. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary admitting a weak semi-simple crystallization. Let V and V'
be the spaces, as in Definition 3.2. Then

BL(M) + Bi(M) = Bo(M) + Bo (V') = B (V') = m’, (1)

where m' is the rank of the fundamental group of M.

Proof. Since V' is regular neighbourhood of 2-dimensional polyhedron |K(0, 2, 3)], it
deformation retracts onto [K(0,2,3)| and thus H;(V') = 0 for i > 2. The Mayer-
Vietoris sequence of the triple (M, V,V’) gives the following long exact sequence.

0 — Hs(M) — Hy(0V) — Hy(V) @ Ho(V') — Hy(M) — H,(dV)

l

0 «— Hy (M) +— H (V)@ H (V)

By Proposition 3.4 and Universal Coefficient Theorem, we have Hz(M) = H'(M) =
FHy (M) and Hy(M) = H2(M) = FHy(M) & THy(M). Now,
Ho(0V) = Ha(#m: (S* x SP)#OM) = Hy (# (S* x S?)) & Ho(0M)
~ 3,7 & H (OM) = ©,Z ® FH,(OM),

where the third isomorphism is due to Poincaré duality. Similarly, we have Hy (V) =
®mrZ ® Hi (OM). Also, for i = 1,2; Hy(V) = H; (#n (S' x B®)) ® H;(C), where C is
cone over OM. This implies, Ho(V) = 0 and Hy(V) = @,,sZ. Therefore, the above
exact sequence simplifies to the following.

|
04— H{(M) +— @ Z& H (V') +— @ Z & H (OM)

Since the alternate sum of the number of free generators of finitely generated
abelian groups in an exact sequence is zero, the result follows.

It is known that every compact PL 4-manifold M with empty or connected bound-
ary admits a handle decomposition, i.e.,

M=HOUHEMU-uBPD)UEP U UHD)
U (Hl(g) u.---u Htgi)) (if M is closed) U H(4),
where H(® = D* and each k-handle H*) = D* x D4~ (for 1 <k <4, 1<i<dp) is
attached via a map (embedding) fi(k): OD* xD**F—o(HOU. . .U(ka_l)u. ) 'Ungj)))-

LEMMA 3.6. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary admitting a weak semi-simple crystallization (T',v) and V, V'

be as in Definition 3.2. Then, rank(m1(M)) < rank(m(V')).
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Proof. Let m/ be the rank of the fundamental group of M. We have M =V UV’ =
(#m/ (S' xB*)#C(OM)) UV’ (up to homeomorphism), where C(9M) is the cone over
OM. Also, VNV’ =0V =0V’ = (#,,/S! x S?)#0M from Lemma 3.3. We will use
Seifert-Van Kampen Theorem. Let 41 : 7 (VNV') = 7 (V) and i2 : m(V NV') —
71 (V") be the maps induced from inclusion maps j; : VNV’' — V and jo : VNV — V',
respectively.

Since VNV' = #,,/(S! xS?)#0 M, its fundamental group is generated by atleast m’
elements, say m (VNV’) = (a1,...,Qm, Y15+, Yy |d1,d2, . . ., dy,) Where generator
a; comes from #,,/ (St x §?) for all 1 < i < m/, and the remaining generators come
from OM. Also, we have m (V) = (a; | 1 < i <m') and hence i1 () = a4, 11(7y;) =
(e). Now, let 71 (V') = (B1,...,Bnsl?1,-- - 2n,). Applying the theorem, we get

1 (M):<Oél, e Oty 617 ceey Bne, |Zl7 ceey Zn4,06i:i2(067;), ezi?(’yj)7 1S2§m/7 1§]S'I’L1)>,
which proves the result. U

The following is a result that gives a characterization of having a weak semi-simple
crystallization for a closed PL 4-manifold.

PROPOSITION 3.7 ([1,4]). Let M be a closed PL 4-manifold. Then, M admits a weak
semi-simple crystallization if and only if G(M) = 2x(M) + 5m — 4, where m is the
rank of the fundamental group of M.

4. Proof of main results

In this section, we consider the class of compact orientable PL 4-manifolds with empty
or connected boundary that have fundamental groups of rank 1 (i.e., m = 1) such
that their corresponding singular manifolds admit weak semi-simple crystallizations.
This implies that the fundamental group of a manifold from this class is either Z or
Zy, for some k, k > 2. We will significantly rely on the following known fact to prove
our main results.

PROPOSITION 4.1 ([18]). Let M be a manifold and X C int M be a polyhedron. If X
collapses onto Y, then a regular neighborhood of X in M is PL-homeomorphic to a
regular neighborhood of Y in M.

THEOREM 4.2. Let M be a closed orientable PL 4-manifold with rank(m(M)) = 1.
Let (T', ) be a weak semi-simple crystallization of M and V', V' be as in Definition 3.2.
Then G(V') > G(M) > G(V).

Proof. Since M = VUV’ admits weak semi-simple crystallization, G(M) = 2x(M)+1
by Proposition 3.7. Since V' is a 4-manifold with connected boundary, Proposition 2.4
and Lemma 3.6 imply that G(V') > 2x (V') + 3 rank(m (V') —2 = 2x(V') + 1. Also,
X(V) = x(S'xB?) = 0 and x(VNV') = x(S' x$?) = 0, x(M) = x(V)+x (V') —x(VN
V) = x(V'). Thus, G(V') > 2x(V') + 1 = 2x(M) + 1 = G(M) and one inequality
follows. On the other hand, G(S! x B?) = 1 (cf. [11]) implies G(M) > G(V) and the
result follows. U
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LEMMA 4.3. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary, whose fundamental group has rank 1. Let M admit weak
semi-simple crystallization (T',~) and V, V' be as in Definition 3.2. Then V', a regular
neighborhood of K(0,2,3) = K, is PL homeomorphic to a regular neighborhood of one
of the following: S* v St v (S?)®, StV (S?)® or a space with the trivial fundamental
group, where o = [B2(K) and (S?)® denotes the wedge product of o copies of the
2-sphere S2.

Proof. We shall analyze K(0, 2, 3) to prove this. Let k be the number of {2, 3}-labeled
edges, and let dy,ds,...,d; denote the {2,3}-labeled edges. Also, by the definition
of weak semi-simple and the correspondence between the number of components of
I" and the number of simplices in the corresponding simplicial cell complex, there
are exactly two {0,2}- and {0, 3}-labeled edges each. We denote the two edges with
endpoints labeled by color 0 and 2 (resp. 0 and 3 ) by I; and I3 (resp. by r1 and r3).
Thus, there can be at most four distinct triangles with vertices 0, 2, 3 passing through
the edge d; for each i € {1,2,...k}, as shown in Figure 1. Let A% , A%y, A, and A},
be these four triangles.

Figure 1: The four possible 2-simplices passing through one {2, 3}-labeled edge.

Since the two triangles with all three edges coinciding, make one 2-sphere S2, the
triangles with the same boundary give the copies of 2-sphere. So, from here on in this
proof, we assume that no two triangles have the same boundary.

Let p; be the cardinality of 2-simplices with vertices labeled by {0, 2,3} that pass
through the d; edge.

Case 1 (p; +p; > 5V 4,j): We consider the triangles in £C(0, 2, 3) that pass through
d; and d;, i # j. The non-trivial loops (if any) should be along the edges l112, 172 and
d;d;. It is not difficult to observe that if p; +p; > 5, then all these three possible non-
trivial loops l1l2, 172 and d;d; are homotopic to identity, i.e., the fundamental group
of K(0,2,3) is trivial. Since i and j are arbitrary, we make the general statement on
similar lines that for k number of {2, 3}-labeled edges, say d1,ds, ..., d, if p;+p; > 5
Vi,j€{1,2,...,k} then the fundamental group of K(0,2,3) is trivial.

Case 2 (p; +p; > 4V i,j and p; + p; = 4 for some ¢,j but p; +p; # 4V i,5): If
pi =2 =pj, i # j and pp = 3 or 4 then the loops lils, ri7r2, didy and d;d are
homotopic to identity by using the proof of Case 1 because p; + pr, p; + pr > 5.
Now, we have to check whether the loop d;d; is trivial. Without loss of generality,
we assume that one triangle passing through d; is of the form A}, in Figure 1. If any
of the two triangles passing through d; is of the form A7}, then it forms a cone-like
shape, and obviously d;d; is homotopic to a constant loop. If one triangle is of the
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form A{Z (resp., A%l) in Figure 1 then d;d; is homotopic to rirs (resp;, l1l5) which is
further homotopic to a constant loop. If one triangle is of the form A, then another
triangle passing through d; is among Al AJ, or A}, because p; = 2. Then, A%,
with any of these three makes d;d; contractible. Thus, we summarise that £(0, 2, 3)
has the trivial fundamental group.

Case 3 (p; = 1 for some i and p; = 3 or 4 for some j): Let p;, = 1 for some k. As the
other two edges of the triangle passing through dj coincide with the edges of other
triangles in (0,2, 3) passing through the {2, 3}-labeled edge d;, we can deform thus
the triangle passing through dy, from the free edge di. On collapsing, we get the space
consisting of all the triangles except the one passing through dj, and this case reduces
to Case 1 or Case 2. Therefore, K(0,2,3) has the trivial fundamental group.

Case 4 (p; = 2 V i): This case consists of the two triangles passing through each

d;. Let A;q + Al be the set of two triangles as in Figure 1 passing through d;, where

pg,rs € {11,12,21,22}. We denote the possible combinations of triangles as follows:
Combination Aj;+Aj, Aj+A5 A +AL,  Al,+AL  Af,+AL, AL +AL,
Denoted by I; 11I; 111 1V; Vi VI

Let us first consider that k£ = 2, that is, the number of 23-colored edges are two, say

di, d;. We observe the following points:

1) The combination of the type III; +IV; is not possible; otherwise, M will turn out
to be non-orientable.

2) The combinations I; + VI; and I1; 4+ V; are the same up to the renaming of edges.

Now, as we did in Case 1, it is easy to check that all possible combinations
are contractible except those shown in Figure 2 up to the renaming of edges. We
tabulate all the non-contractible combinations up to the renaming of edges and their
corresponding spaces such that they have homeomorphic regular neighborhoods:

Li+VI; IIL;+111; II;+1V;
S?vst  s?vst RP?

I IT1; + 171, ;
L+ VI I1I; +1V;

Figure 2: Possible non-contractible combinations up to the renaming of edges for k = 2.

Let us consider k = 3. We observe that we get one more S? in the corresponding
space if

1) we add I or VI to I; + VIj;
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2) if we add IIIj to I11; + IIIj;

else the space has the trivial fundamental group. On a similar basis, the above
statement is generalized on k as below. Let I" denote the triangles of type I,
Iy, ..., I;, passing through r different edges with points labeled by {2, 3}.

Im+Vvis 11"
(SQ)T‘-‘,—S—l V Sl (S2>'r'—1 V; Sl,

where (S?)® denoted the wedge product of a copies of S%.

Besides these combinations for the k number of {2,3}-labeled edges, we get the
simply-connected space.

Case 5 (p; € {1,2} Vibut 2 # p; # 1V i): Let p; = 1. From the same observation as
in Case 3, either we have the space where we can deform the triangle through the free
edge d; and the result is unaffected, or we have the combinations as in Figure 3. The

space to which this combination corresponds with respect to the regular neighborhood
is StV (§2)ir—2.

Figure 3

Case 6 (p; = 1V i): Keeping the observation of Case 3 in consideration, all the
combinations in this case can deform as in Figure 4 and its corresponding space is
the wedge product of two 1-spheres i.e., S! v S!.

Figure 4

With all these cases, the lemma follows. O

THEOREM 4.4. Let M be a compact orientable PL 4-manifold with connected non-
spherical boundary admitting a weak semi-simple crystallization, such that the rank
of its fundamental group is 1. If the rank of the fundamental group of M, m, is 1,
then M admits a handle decomposition that takes one of the following forms:

1) one 0-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2+ (M) —
B1(M) = B1(M), or
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2) one 0-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3+ Bo(M)—
Pr(M) — B1(M).

Further, if m' = 0, then M admits a handle decomposition which consists of one
0-handle, one 1-handle and Sa(M) 2-handles.

Proof. Let M admit a weak semi-simple crystallization I' with respect to the per-
mutation € = (0,1,2,3,4). We write M = N(1,4) U N(0,2,3) = V UV’, where
V = #, (S' x B3)#C(0M) by Lemma 3.3. Since m =1, m’ = 0,1 and 71 (M) = Zy,
(or Z). Lemma 4.3 implies that V', a regular neighborhood of K = K(0,2,3), is
PL homeomorphic to a regular neighborhood of a CW complex 7', which is either
Stv St v (§2)%(0) St v (§2)52(K) or a simply-connected space, where (S?)? denote
the wedge product of v copies of the 2-sphere S2.

If m’ = 1, then due to Lemma 3.6, T' cannot be simply-connected, and we are left
with two possible choices for T
Case 1 (T =Stv (SQ)BWC)): In this case, CW complex T consists of one 0-cell, one
1-cell and B2(K) number of 2-cells. For 0 < j < 2, small regular neighbourhood of
j-cell of T'is a j-handle HY). Since V' deformation retracts onto K, Bo(V') = B2(K),

we can represent V' as V/ = HO U HM U (Hl(z) U---u H,éi)(v') .

Now, observe that boundary identification between V and 1{’ is an attachment
of one 3-handle. Also, B2(V') equals 2 + B2(M) — B1(M) — B1(M) from (1). There-

fore, M = H® U H® U (Hfg) U"-UHE?(V,)) U H®), where B5(V’) is equal to
Ba(M), B2(M)+1 or fo(M) + 2.

Case 2 (T =S'v S v (S§?)%)): In this case, the CW complex T consists of one
0-cell, two 1-cell and B5(K) number of 2-cells. Proceeding in the same manner as Case

1, we can represent V’ as V' = H(®) U (H{l) U Hg(l)) U (Hf) U---u Hl(fj)(\/’))'

Now, observe that boundary identification between V' and V' is an attachment of

one 3-handle. Thus, M = HO U (H" U HY) U (H{Q) U---U HéQ)(V)) UH®), where

B2(V') is equal to So(M) + 1, Bo2(M) + 2 or B2(M) + 3 from (1).
Now, if m’ = 0 then we get M = V' using Lemma 3.3. Since m = 1, we get
T = S' v ($?)#2(X) and thus M has a handle decomposition as M = H© u H®) y

(Hl(Q) U---U Héi)(M)) This proves the theorem. U

When M is a compact orientable PL 4-manifold with connected spherical bound-
ary, M is a closed orientable manifold, and considering (T, 7) to be a weak semi-simple
crystallization of M, Lemmas 3.3, 3.5, 3.6 and 4.3 hold true for this case as well.

COROLLARY 4.5. Let M be a compact orientable PL 4-manifold with empty or con-
nected spherical boundary having the fundamental group of rank 1. Let (T,v) be a
weak semi-simple crystallization representing M and V,V' be as in Definition 3.2.
Then m (M) = Z and M admits a handle decomposition as follows:

M=HOUuHEDY (H1(2) U---U Hé”(M)) UH® (if M is closed) UH®.
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Proof. By the Seifert-Van Kampen Theorem, we deduce that m (M) = m (M) if M
has a spherical connected boundary. Also, from the proof of Lemma 3.6, we have
7 (M) = 7 (V') if M has empty or connected spherical boundary. Since m = 1,
T = S' v (S?)%2(K) by Lemma 4.3. Thus, M with empty or connected spherical
boundary cannot have a finite cyclic group as its fundamental group. Due to (1), we
get Bo(V') = Bo(M). Thus,

M=HOUHOU (P U OB, ) UHS (6 M s dosed) UH®.

This proves the result. 0

REMARK 4.6. In [3], the authors proved that if M is a closed orientable PL 4-manifold
having a semi-simple crystallization with the fundamental group isomorphic to Z, then
it admits a handle decomposition as one of the following types:

1) one 0-handle, two 1-handles, 1+ 82(M) 2-handles, one 3-handle and one 4-handle,

2) one 0-handle, one 1-handle, 55(M) 2-handles, one 3-handle and one 4-handle,
where S2(M) denotes the second Betti number of the manifold M with Z coefficients.

Clearly, Corollary 4.5 refines this result by providing the precise handle decomposition
of M.
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