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Abstract. For a compact orientable PL 4-manifold M with boundary, let M̂ be the sin-
gular manifold obtained by capping of ∂M . In this article, we explore the class of compact
orientable PL 4-manifolds with empty or connected boundary, whose fundamental groups
have rank 1, and their corresponding singular manifolds admit weak semi-simple crystalliza-
tions. First, we show that if M is a closed orientable PL 4-manifold belonging to this class,
then there exist complementary submanifolds V and V ′ with a shared boundary such that
G(V ′) ≥ G(M) ≥ G(V ), where G(M), G(V ), and G(V ′) denote the regular genera of M , V ,
and V ′, respectively.

Next, we provide a handle decomposition for a compact orientable PL 4-manifold M with
connected non-spherical boundary from this class. If the rank of the fundamental group of
M̂ , m′, is 1, then M admits a handle decomposition that takes one of the following forms:

1) one 0-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2 + β2(M)−
β1(M)− β1(M̂), or

2) one 0-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3+ β2(M)−
β1(M)− β1(M̂).
Further, if m′ = 0, then M admits a handle decomposition which consists of one 0-handle,
one 1-handle and β2(M) 2-handles.

We further demonstrate that no manifold from this class with empty or connected spher-
ical boundary can have a fundamental group isomorphic to a finite cyclic group. Finally,
we provide a handle decomposition for such manifolds with empty or connected spherical
boundary.

1. Introduction

A crystallization (Γ, γ) of a compact PL d-manifold is a specialized edge-colored graph
that encodes the manifold’s structure (see Subsection 2.1). Pezzana proved that every
closed PL d-manifold has a crystallization (see [17]). This result was later broadened
to include singular d-manifolds (cf. [7–12]). For a compact PL d-manifold M with
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boundary, a singular d-manifold M̂ can be formed by capping off each boundary
component of ∂M . There is a one-one correspondence between the class of compact
PL 4-manifolds with empty or non-spherical boundary components and the class of
singular manifolds (see Remark 2.2). If M is a compact PL 4-manifold with spherical
boundary components, then M̂ is a closed PL 4-manifold. If M is a closed PL 4-
manifold, then M̂ = M .

The concept of “regular genus” for closed PL d-manifolds, introduced in [16],
generalizes the classical genus in dimension 2 and the Heegaard genus in dimension
3 (see Subsection 2.2 for details). This idea was later extended to compact PL d-
manifolds with non-spherical boundary components for d ≥ 2 through the framework
of singular d-manifolds (cf. [7–12]).

In [1], the concept of weak semi-simple crystallizations for closed PL 4-manifolds
was introduced, while in [7], the notion of weak semi-simple gems for compact PL
4-manifolds with connected boundary was developed. This paper focuses on compact
orientable PL 4-manifolds with empty or connected boundary, whose fundamental
groups have rank 1 and whose associated singular manifolds admit weak semi-simple
crystallizations.

In [10], the authors proved that the weak simple class (weak semi-simple for
simply-connected 4-manifolds) of compact simply-connected 4-manifolds with empty
or connected boundary admit a special handle decomposition that lacks 1-handles
and 3-handles. The original problem for closed PL 4-manifolds was posed by Kirby
and can be formulated as follows: “Does every simply-connected closed 4-manifold
have a handlebody decomposition with no 1-handles and 3-handles?” A lot of work
has been performed over the decades, including studies on manifolds with boundaries,
such as Trace’s work in [19,20].

First, we prove that for a closed orientable 4-manifoldM with the non-trivial cyclic
fundamental group admitting a weak semi-simple crystallization, the combinatorial
invariant regular genus of M lies between the regular genera of its complementary
submanifolds V and V ′ (see Theorem 4.2).

In [3], it has been shown that for the class of closed orientable 4-manifolds with
infinite cyclic fundamental group admitting semi-simple crystallizations, there exists a
handle decomposition such that the number of 2-handles depends on the second Betti
number of the manifold, and the number of other h-handles (h ≤ 4) is at most 2.

In this article, we extend this work from the class of closed orientable PL 4-
manifolds with rank 1 fundamental groups and admitting semi-simple crystalliza-
tions to a larger class of compact orientable PL 4-manifolds with empty or connected
boundary that admit weak semi-simple crystallizations and have non-trivial cyclic
fundamental groups. For a compact orientable PL 4-manifold M with connected
non-spherical boundary within this class, we construct a handle decomposition. If
the rank of the fundamental group of M̂ , m′, is 1, then M admits a handle decom-
position that takes one of the following forms:
1) one 0-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2+β2(M)−
β1(M)− β1(M̂), or

2) one 0-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3+β2(M)−
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β1(M)− β1(M̂).
Further, if m′ = 0, then M admits a handle decomposition which consists of one
0-handle, one 1-handle and β2(M) 2-handles (see Theorem 4.4). In proving this
theorem, we shall extensively use the notion of regular neighborhoods [18]. The proof
of this theorem implies that any manifold with empty or connected spherical boundary
of this class can never have a finite cyclic fundamental group, and we also provide a
handle decomposition for such manifolds (see Corollary 4.5).

2. Preliminaries

The crystallization theory provides a tool for representing piecewise-linear (PL) man-
ifolds of any dimension combinatorially using edge-colored graphs.

2.1 Crystallization

In this article, we study multigraphs Γ = (V (Γ), E(Γ)) without loops, where the edges
are assigned colors (or labels) from the set ∆d := {0, 1, . . . , d}. The elements of ∆d are
called the colors of Γ. A (d+1)-regular colored graph is defined as a pair (Γ, γ), where
each vertex of Γ has degree d+1, and there exists a surjective map γ : E(Γ)→ ∆d such
that any two adjacent edges e1 and e2 satisfy γ(e1) ̸= γ(e2). When the edge coloring
is clear from the context, we may simply refer to the (d+1)-regular colored graph as Γ.
For C ⊆ ∆d with cardinality k, the graph ΓC = (V (Γ), γ−1(C)) is a k-regular colored
graph with edge-coloring γ|γ−1(C). For a color set {j1, j2, . . . , jk} ⊂ ∆d, g(Γ{j1,j2,...,jk})
or g{j1,j2,...,jk} denotes the number of connected components of the graph Γ{j1,j2,...,jk}.
A graph (Γ, γ) is called contracted if the subgraph Γĵ = Γ∆d\{j} is connected for all
j ∈ ∆d. We refer to [6] for standard terminologies on graphs. All spaces and maps
will be considered in PL-category [18].

For a (d+ 1)-regular colored graph (Γ, γ), a corresponding colored d dimensional
simplicial cell complex K(Γ) is constructed as follows:

� for each vertex v ∈ V (Γ), take a d-simplex σ(v) with vertices labeled by ∆d,

� corresponding to each edge of color j between v1, v2 ∈ V (Γ), identify the (d−1)-
faces of σ(v1) and σ(v2) opposite to j-labeled vertices such that the same labeled
vertices coincide.

The geometric carrier |K(Γ)| is a d-pseudomanifold, and (Γ, γ) is referred to as
a gem (graph encoded manifold) of any d-pseudomanifold homeomorphic to |K(Γ)|,
or equivalently, it is said to represent the d-pseudomanifold. Since the vertex set
of K(Γ) can be (d + 1)-colored, we refer to K(Γ) as a colored triangulation of the
d-pseudomanifold |K(Γ)|. For further details on CW complexes and related notions,
see [5].

From this construction, it is straightforward to observe that for any subset C ⊂ ∆d

of cardinality k+1, K(Γ) has as many k-simplices with vertices labeled by C as there
are connected components in Γ∆d\C [14]. The disjoint star of a simplex σ ∈ K(Γ) is
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a simplicial cell complex comprising all d-dimensional simplices of K(Γ) that contain
σ as a face, with the identification of their (d− 1)-faces containing σ as in K(Γ). The
disjoint link of σ ∈ K(Γ) is the subcomplex of its disjoint star formed by all simplices
that do not intersect σ.

Definition 2.1. A singular PL d-manifold is a closed d dimensional polyhedron with
a colored triangulation such that the disjoint links of its vertices are closed (d − 1)-
manifolds. A vertex whose link is not a sphere is called a singular vertex. It follows
that a closed (PL) d-manifold is simply a singular (PL) d-manifold with no singular
vertices.

From the correspondence between (d + 1)-regular colored graphs (Γ, γ) and d
dimensional pseudomanifolds, it can be easily visualised that:
1) |K(Γ)| is a closed PL d-manifold if and only if for each c ∈ ∆d, Γĉ represents Sd−1.

2) |K(Γ)| is a singular PL d-manifold if and only if for each c ∈ ∆d, Γĉ represents a
closed PL (d− 1)-manifold.

If Γĵ does not represent the (d − 1)-sphere, then the color j is called a singular
color.

Remark 2.2 ([10, 12]). There is a one-to-one correspondence between the class of
singular (PL) d-manifolds and the class of all compact (PL) d-manifolds with empty
or non-spherical boundary components. If M is a singular d-manifold, then removing
a small open neighborhood around each of its singular vertices yields a compact d-
manifold M̌ with non-spherical boundary components. Moreover, M = M̌ if and
only if M is a closed d-manifold. Conversely, if M is a compact d-manifold with
non-spherical boundary components, a corresponding singular d-manifold M̂ can be
obtained by capping off each boundary component of ∂M . If M is closed, then
M = M̂ .

From this point forward, when we refer to a graph representing a compact PL 4-
manifold M with non-spherical boundary components, we mean the graph that repre-
sents the corresponding singular manifold M̂ , obtained by capping off each boundary
component of M with a cone. In this article, we focus on compact PL 4-manifolds M
with empty or connected non-spherical boundary. As a result, we will consider only
5-regular colored graphs. Without loss of generality, we assume that color 4 is the
only possible singular color of Γ, the gem of M̂ .

Definition 2.3. A (d+1)-regular colored gem of a singular d-manifold with at most
one singular vertex is called a crystallization of M if it is contracted.

In the colored triangulation of M corresponding to a crystallization, there are
precisely d + 1 vertices. The foundation of crystallization theory lies in Pezzana’s
existence theorem [17], which proves that every closed PL d-manifold admits a crys-
tallization. Additionally, the existence of crystallizations was established for singular
(PL) d-manifolds with a single singularity in [12]. This concept has since been further
developed in various articles [7–11].
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2.2 Regular Genus

It is well known that a (d + 1)-regular colored bipartite (resp. non-bipartite) graph
(Γ, γ) admits regular embedding into the orientable (resp. non-orientable) surface Fε

(corresponding to cyclic permutation ε of ∆d) of Euler characteristic

χε(Γ) =
∑

i∈Zd+1

g{εi,εi+1} + (1− d)
V (Γ)

2
,

where subscripts are taken in modulo d. Additionally, (Γ, γ) does not admit any
regular embedding into a non-orientable (resp. orientable) surface [15]. Using this,
the concept of regular genus of closed and singular manifolds was introduced in [16]
and [12], respectively, extending the notions of genus of surfaces and Heegard genus of
3-manifolds. The regular genus is a PL-invariant for PL manifolds of any dimension.
It is known that a gem (Γ, γ) of a manifold M is a bipartite graph if and only if M
is orientable. For d ≥ 3, the regular genus ρ(Γ) of (Γ, γ) is defined as

ρ(Γ) = min{ρε(Γ) | ε is a cyclic permutation of ∆d},
where the genus (resp. half of genus) ρε(Γ) of Fε satisfies

ρε(Γ) = 1− χε(Γ)

2
.

The regular genus of M (closed or singular PL manifold) is defined as

G(M) = min{ρ(Γ) | (Γ, γ) represents M}.
For a compact PL 4-manifold M with connected non-spherical boundary, the

(generalized) regular genus G(M) of M is defined as the regular genus G(M̂) of M̂ .

Proposition 2.4 ( [11]). Let M be a compact PL 4-manifold with connected non-
spherical boundary. Then G(M) ≥ 2χ(M) + 3m + 2m′ − 2, where m and m′ are the
ranks of the fundamental groups of M and M̂ , respectively.

In [2], a lower bound is provided for the regular genus of compact PL 4-manifolds
with boundary. However, the definition of regular genus of compact PL 4-manifolds
with boundary used there differs from the definition of regular genus presented in this
article.

3. Weak semi-simple crystallizations of compact 4-manifolds

In [1] and [7], the concept of weak semi-simple crystallizations of compact PL 4-
manifolds with empty or connected non-spherical boundary was introduced. These
crystallizations are minimal with respect to regular genus among the graphs repre-
senting the same 4-manifold.

Definition 3.1. Let M be a compact PL 4-manifold with empty or connected non-
spherical boundary. A 5-regular colored graph Γ representing M is called weak semi-
simple with respect to a permutation ε = (ε0, ε1, . . . , ε4 = 4) if g{εj ,εj+2,εj+4} = m+1
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∀ j ∈ {0, 2, 4} and g{εj ,εj+2,εj+4} = m′ + 1 ∀ j ∈ {1, 3} (additions are modulo 5 in

subscripts), where m and m′ are the ranks of the fundamental groups of M and M̂ ,
respectively.

Note that m′ ≤ m and if Γ is weak semi-simple, then it is contracted as well, and
hence Γ is a crystallization.

Let (Γ, γ) be a crystallization of a singular PL 4-manifold M and K(Γ) be the
corresponding colored triangulation with the vertex set ∆4. If B ⊂ ∆4, then K(B)
denotes the subcomplex of K(Γ) generated by the vertices i ∈ B. If Sd K(Γ) is the
first barycentric subdivision of K(Γ), then F (i, j) (resp. F (i, j, k)) is the largest
subcomplex of Sd K(Γ), disjoint from Sd K(i, j) ∪ Sd K(∆4 \ {i, j}) (resp. Sd
K(i, j, k) ∪ Sd K(∆4 \ {i, j, k})). Then the polyhedron |F (i, j)| (resp. |F (i, j, k)|)
is a closed PL 3-manifold which partitions M into two 4-manifolds N(i, j)andN(∆4 \
{i, j}) (resp. N(i, j, k)andN(∆4 \ {i, j, k})) with |F (i, j)| (resp. |F (i, j, k)|) as com-
mon boundary. Further, N(i, j) (resp. N(i, j, k)) is a regular neighbourhood of
|K(i, j)| (resp. |K(i, j, k)|) in |K(Γ)| (see [3, 10, 13, 16] for more details). Thus, M
has a decomposition as M = N(i, j)∪ϕ N(∆4 \ {i, j}), where ϕ is a boundary identi-
fication.

Definition 3.2 (Complementary Submanifolds). Let M be a compact orientable PL
4-manifold with empty or connected boundary, and M̂ be its corresponding singular
manifold. Let M̂ admit weak semi-simple crystallization (Γ, γ). Without loss of
generality, we write M̂ = N(1, 4)∪N(0, 2, 3). We denote N(1, 4) and N(0, 2, 3) by V
and V ′ respectively. We call V and V ′ the complementary submanifolds of M̂ .

Lemma 3.3. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary, and M̂ be its corresponding singular manifold. Let M admit
weak semi-simple crystallization (Γ, γ) and V, V ′ be the complementary submanifolds
as in Definition 3.2. Then V ∩ V ′ is orientable and V is PL homeomorphic to the
boundary connected sum of #m′(S1 × B3) and C(∂M), the cone over ∂M , where m′

is the rank of π1(M̂).

Proof. Using the Mayer-Vietoris exact sequence for the triple (M̂, V, V ′), we obtain
0 → H4(M̂) → H3(∂V ) → 0. This shows that M̂ is orientable if and only if ∂V is
orientable. Since M is orientable, it follows that M̂ is orientable, and thus ∂V is also
orientable. Consequently, as ∂V = V ∩ V ′, V ∩ V ′ is orientable.

Given that g{0,2,3} = m′+1, there are exactly m′+1 edges of color {1, 4}. There-
fore, V is PL-homeomorphic to the boundary connected sum #m′(S1×B3)#C(∂M),
where C(∂M) is the cone over ∂M . This further implies that ∂V = #m′(S1 ×
S2)#∂M . □

The following result on isomorphism between cohomology and homology groups
of a 4-manifold with a connected boundary and its associated singular manifold,
respectively, was given in [10, Proposition 5].
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Proposition 3.4. Let M be a compact orientable PL 4-manifold with connected
boundary and M̂ be the singular manifold by capping off its boundary. Then

Hk(M̂) ∼= H4−k(M) for k ∈ {1, 2, 3, 4}.

Lemma 3.5. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary admitting a weak semi-simple crystallization. Let V and V ′

be the spaces, as in Definition 3.2. Then

β1(M) + β1(M̂)− β2(M) + β2(V
′)− β1(V

′) = m′, (1)

where m′ is the rank of the fundamental group of M̂ .

Proof. Since V ′ is regular neighbourhood of 2-dimensional polyhedron |K(0, 2, 3)|, it
deformation retracts onto |K(0, 2, 3)| and thus Hi(V

′) = 0 for i > 2. The Mayer-
Vietoris sequence of the triple (M̂, V, V ′) gives the following long exact sequence.

0 −→ H3(M̂) −→ H2(∂V ) −→ H2(V )⊕H2(V
′) −→ H2(M̂) −→ H1(∂V )y

0←− H1(M̂)←− H1(V )⊕H1(V
′)

By Proposition 3.4 and Universal Coefficient Theorem, we have H3(M̂) ∼= H1(M) ∼=
FH1(M) and H2(M̂) ∼= H2(M) ∼= FH2(M)⊕ TH1(M). Now,

H2(∂V ) = H2

(
#m′(S1 × S2)#∂M

)
= H2

(
#m′(S1 × S2)

)
⊕H2(∂M)

∼= ⊕m′Z⊕H1(∂M) ∼= ⊕m′Z⊕ FH1(∂M),

where the third isomorphism is due to Poincaré duality. Similarly, we have H1(∂V ) =
⊕m′Z⊕H1(∂M). Also, for i = 1, 2; Hi(V ) = Hi

(
#m′(S1 ×B3)

)
⊕Hi(C), where C is

cone over ∂M . This implies, H2(V ) = 0 and H1(V ) = ⊕m′Z. Therefore, the above
exact sequence simplifies to the following.

0 −→ FH1(M) −→ ⊕m′Z⊕ FH1(∂M) −→ H2(V
′) −→ FH2(M)⊕ TH1(M)y

0←− H1(M̂)←− ⊕m′Z⊕H1(V
′)←− ⊕m′Z⊕H1(∂M)

Since the alternate sum of the number of free generators of finitely generated
abelian groups in an exact sequence is zero, the result follows. □

It is known that every compact PL 4-manifold M with empty or connected bound-
ary admits a handle decomposition, i.e.,

M = H(0) ∪ (H
(1)
1 ∪ · · · ∪H

(1)
d1

) ∪ (H
(2)
1 ∪ · · · ∪H

(2)
d2

)

∪ (H
(3)
1 ∪ · · · ∪H

(3)
d3

) (if M is closed) ∪H(4),

where H(0) = D4 and each k-handle H
(k)
i = Dk ×D4−k (for 1 ≤ k ≤ 4, 1 ≤ i ≤ dk) is

attached via a map (embedding) f
(k)
i : ∂Dk×D4−k→∂(H(0)∪. . .∪(H(k−1)

1 ∪. . .∪H(k−1)
dk−1

)).

Lemma 3.6. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary admitting a weak semi-simple crystallization (Γ, γ) and V , V ′

be as in Definition 3.2. Then, rank(π1(M̂)) ≤ rank(π1(V
′)).
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Proof. Let m′ be the rank of the fundamental group of M̂ . We have M̂ = V ∪ V ′ =(
#m′(S1×B3)#C(∂M)

)
∪V ′ (up to homeomorphism), where C(∂M) is the cone over

∂M . Also, V ∩ V ′ = ∂V = ∂V ′ = (#m′S1 × S2)#∂M from Lemma 3.3. We will use
Seifert-Van Kampen Theorem. Let i1 : π1(V ∩ V ′) → π1(V ) and i2 : π1(V ∩ V ′) →
π1(V

′) be the maps induced from inclusion maps j1 : V ∩V ′ → V and j2 : V ∩V ′ → V ′,
respectively.

Since V ∩V ′ = #m′(S1×S2)#∂M , its fundamental group is generated by atleastm′

elements, say π1(V ∩ V ′) = ⟨α1, . . . , αm′ , γ1, . . . , γn1
|d1, d2, . . . , dn2

⟩ where generator
αi comes from #m′(S1 × S2) for all 1 ≤ i ≤ m′, and the remaining generators come
from ∂M . Also, we have π1(V ) = ⟨αi | 1 ≤ i ≤ m′⟩ and hence i1(αi) = αi, i1(γj) =
⟨e⟩. Now, let π1(V

′) = ⟨β1, . . . , βn3 |z1, . . . , zn4⟩. Applying the theorem, we get

π1(M̂)=⟨α1, . . ., αm′ , β1, . . ., βn3 |z1, . . ., zn4 , αi=i2(αi), e=i2(γj), 1≤i≤m′, 1≤j≤n1)⟩,
which proves the result. □

The following is a result that gives a characterization of having a weak semi-simple
crystallization for a closed PL 4-manifold.

Proposition 3.7 ([1,4]). Let M be a closed PL 4-manifold. Then, M admits a weak
semi-simple crystallization if and only if G(M) = 2χ(M) + 5m − 4, where m is the
rank of the fundamental group of M .

4. Proof of main results

In this section, we consider the class of compact orientable PL 4-manifolds with empty
or connected boundary that have fundamental groups of rank 1 (i.e., m = 1) such
that their corresponding singular manifolds admit weak semi-simple crystallizations.
This implies that the fundamental group of a manifold from this class is either Z or
Zk for some k, k ≥ 2. We will significantly rely on the following known fact to prove
our main results.

Proposition 4.1 ([18]). Let M be a manifold and X ⊂ int M be a polyhedron. If X
collapses onto Y , then a regular neighborhood of X in M is PL-homeomorphic to a
regular neighborhood of Y in M .

Theorem 4.2. Let M be a closed orientable PL 4-manifold with rank(π1(M)) = 1.
Let (Γ, γ) be a weak semi-simple crystallization of M and V , V ′ be as in Definition 3.2.
Then G(V ′) ≥ G(M) ≥ G(V ).

Proof. Since M = V ∪V ′ admits weak semi-simple crystallization, G(M) = 2χ(M)+1
by Proposition 3.7. Since V ′ is a 4-manifold with connected boundary, Proposition 2.4
and Lemma 3.6 imply that G(V ′) ≥ 2χ(V ′)+ 3 rank(π1(V

′))− 2 = 2χ(V ′)+ 1. Also,
χ(V ) = χ(S1×B3) = 0 and χ(V ∩V ′) = χ(S1×S2) = 0, χ(M) = χ(V )+χ(V ′)−χ(V ∩
V ′) = χ(V ′). Thus, G(V ′) ≥ 2χ(V ′) + 1 = 2χ(M) + 1 = G(M) and one inequality
follows. On the other hand, G(S1 × B3) = 1 (cf. [11]) implies G(M) ≥ G(V ) and the
result follows. □
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Lemma 4.3. Let M be a compact orientable PL 4-manifold with empty or connected
non-spherical boundary, whose fundamental group has rank 1. Let M̂ admit weak
semi-simple crystallization (Γ, γ) and V, V ′ be as in Definition 3.2. Then V ′, a regular
neighborhood of K(0, 2, 3) = K, is PL homeomorphic to a regular neighborhood of one
of the following: S1 ∨ S1 ∨ (S2)α, S1 ∨ (S2)α or a space with the trivial fundamental
group, where α = β2(K) and (S2)α denotes the wedge product of α copies of the
2-sphere S2.

Proof. We shall analyze K(0, 2, 3) to prove this. Let k be the number of {2, 3}-labeled
edges, and let d1, d2, . . . , dk denote the {2, 3}-labeled edges. Also, by the definition
of weak semi-simple and the correspondence between the number of components of
Γ and the number of simplices in the corresponding simplicial cell complex, there
are exactly two {0, 2}- and {0, 3}-labeled edges each. We denote the two edges with
endpoints labeled by color 0 and 2 (resp. 0 and 3 ) by l1 and l2 (resp. by r1 and r2).
Thus, there can be at most four distinct triangles with vertices 0, 2, 3 passing through
the edge di for each i ∈ {1, 2, . . . k}, as shown in Figure 1. Let Ai

11, A
i
12, A

i
21 and Ai

22

be these four triangles.

Ai
11

32

0
r1l1

di

Ai
12

32

0
r2l1

di

Ai
21

32

0
r1l2

di

Ai
22

32

0
r2l2

di

Figure 1: The four possible 2-simplices passing through one {2, 3}-labeled edge.

Since the two triangles with all three edges coinciding, make one 2-sphere S2, the
triangles with the same boundary give the copies of 2-sphere. So, from here on in this
proof, we assume that no two triangles have the same boundary.

Let pi be the cardinality of 2-simplices with vertices labeled by {0, 2, 3} that pass
through the di edge.

Case 1 (pi + pj ≥ 5 ∀ i, j): We consider the triangles in K(0, 2, 3) that pass through
di and dj , i ̸= j. The non-trivial loops (if any) should be along the edges l1l2, r1r2 and
didj . It is not difficult to observe that if pi+pj ≥ 5, then all these three possible non-
trivial loops l1l2, r1r2 and didj are homotopic to identity, i.e., the fundamental group
of K(0, 2, 3) is trivial. Since i and j are arbitrary, we make the general statement on
similar lines that for k number of {2, 3}-labeled edges, say d1, d2, . . . , dk, if pi+pj ≥ 5
∀ i, j ∈ {1, 2, . . . , k} then the fundamental group of K(0, 2, 3) is trivial.

Case 2 (pi + pj ≥ 4 ∀ i, j and pi + pj = 4 for some i, j but pi + pj ̸= 4 ∀ i, j): If
pi = 2 = pj , i ̸= j and pk = 3 or 4 then the loops l1l2, r1r2, didk and djdk are
homotopic to identity by using the proof of Case 1 because pi + pk, pj + pk ≥ 5.
Now, we have to check whether the loop didj is trivial. Without loss of generality,
we assume that one triangle passing through di is of the form Ai

11 in Figure 1. If any
of the two triangles passing through dj is of the form Aj

11, then it forms a cone-like
shape, and obviously didj is homotopic to a constant loop. If one triangle is of the
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form Aj
12 (resp., Aj

21) in Figure 1 then didj is homotopic to r1r2 (resp., l1l2) which is

further homotopic to a constant loop. If one triangle is of the form Aj
22 then another

triangle passing through dj is among Aj
11, A

j
12 or Aj

21 because pj = 2. Then, Ai
11

with any of these three makes didj contractible. Thus, we summarise that K(0, 2, 3)
has the trivial fundamental group.

Case 3 (pi = 1 for some i and pj = 3 or 4 for some j): Let pk = 1 for some k. As the
other two edges of the triangle passing through dk coincide with the edges of other
triangles in K(0, 2, 3) passing through the {2, 3}-labeled edge dj , we can deform thus
the triangle passing through dk from the free edge dk. On collapsing, we get the space
consisting of all the triangles except the one passing through dk, and this case reduces
to Case 1 or Case 2. Therefore, K(0, 2, 3) has the trivial fundamental group.

Case 4 (pi = 2 ∀ i): This case consists of the two triangles passing through each
di. Let A

i
pq +Ai

rs be the set of two triangles as in Figure 1 passing through di, where
pq, rs ∈ {11, 12, 21, 22}. We denote the possible combinations of triangles as follows:

Combination Ai
11+Ai

12 Ai
11+Ai

21 Ai
11+Ai

22 Ai
12+Ai

21 Ai
12+Ai

22 Ai
21+Ai

22

Denoted by Ii IIi IIIi IVi Vi V Ii

Let us first consider that k = 2, that is, the number of 23-colored edges are two, say
di, dj . We observe the following points:

1) The combination of the type IIIi+ IVj is not possible; otherwise, M̂ will turn out
to be non-orientable.

2) The combinations Ii+V Ij and IIi+Vj are the same up to the renaming of edges.

Now, as we did in Case 1, it is easy to check that all possible combinations
are contractible except those shown in Figure 2 up to the renaming of edges. We
tabulate all the non-contractible combinations up to the renaming of edges and their
corresponding spaces such that they have homeomorphic regular neighborhoods:

Ii + V Ij IIIi + IIIj IIIi + IVj

S2 ∨ S1 S2 ∨ S1 RP2

Ai
11

A
j
22

Ai
12 A

j
21

2

2

3

3

0

di

di dj

dj

r1l1

l2r2

Ii + V Ij

Ai
22Ai

11

0 0

2

3

di

r2

l1 l2

r1

+

IIIi + IIIj

Aj4A
j
11

0 0

2

3

dj

r2

l1 l2

r1

Ai
11

Ai
22

A
j
12 A

j
21

2

2

3

3

0

di

dj dj

di

r1l1

l2r2

IIIi + IVj

Figure 2: Possible non-contractible combinations up to the renaming of edges for k = 2.

Let us consider k = 3. We observe that we get one more S2 in the corresponding
space if

1) we add Ik or V Ik to Ii + V Ij ;
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2) if we add IIIk to IIIi + IIIj ;

else the space has the trivial fundamental group. On a similar basis, the above
statement is generalized on k as below. Let Ir denote the triangles of type Ii1 ,
Ii2 , . . . , Iir passing through r different edges with points labeled by {2, 3}.

Ir + V Is IIIr

(S2)r+s−1 ∨ S1 (S2)r−1 ∨ S1,
where (S2)α denoted the wedge product of α copies of S2.

Besides these combinations for the k number of {2, 3}-labeled edges, we get the
simply-connected space.

Case 5 (pi ∈ {1, 2} ∀ i but 2 ̸= pi ̸= 1 ∀ i): Let pj = 1. From the same observation as
in Case 3, either we have the space where we can deform the triangle through the free
edge dj and the result is unaffected, or we have the combinations as in Figure 3. The
space to which this combination corresponds with respect to the regular neighborhood
is S1 ∨ (S2)ir−2.

32

0

r1/r2l2

dj

+

32

0

r1l1

di1
32

0

r2l1

di1

+

32

0

r1l1

di2
32

0

r2l1

di2

+. . . . . .+

32

0

r1l1

dir
32

0

r2l1

dir

Figure 3

Case 6 (pi = 1 ∀ i): Keeping the observation of Case 3 in consideration, all the
combinations in this case can deform as in Figure 4 and its corresponding space is
the wedge product of two 1-spheres i.e., S1 ∨ S1.

32

0

r1l1

di1

+

32

0

r2l2

di2

Figure 4

With all these cases, the lemma follows. □

Theorem 4.4. Let M be a compact orientable PL 4-manifold with connected non-
spherical boundary admitting a weak semi-simple crystallization, such that the rank
of its fundamental group is 1. If the rank of the fundamental group of M̂ , m′, is 1,
then M admits a handle decomposition that takes one of the following forms:
1) one 0-handle, one 1-handle, k 2-handles and one 3-handle, where k = 2+β2(M)−
β1(M)− β1(M̂), or
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2) one 0-handle, two 1-handles, k 2-handles and one 3-handle, where k = 3+β2(M)−
β1(M)− β1(M̂).
Further, if m′ = 0, then M admits a handle decomposition which consists of one
0-handle, one 1-handle and β2(M) 2-handles.

Proof. Let M admit a weak semi-simple crystallization Γ with respect to the per-
mutation ϵ = (0, 1, 2, 3, 4). We write M̂ = N(1, 4) ∪ N(0, 2, 3) = V ∪ V ′, where
V = #m′

(
S1 ×B3

)
#C(∂M) by Lemma 3.3. Since m = 1, m′ = 0, 1 and π1(M) = Zk

(or Z). Lemma 4.3 implies that V ′, a regular neighborhood of K = K(0, 2, 3), is
PL homeomorphic to a regular neighborhood of a CW complex T , which is either
S1 ∨ S1 ∨ (S2)β2(K), S1 ∨ (S2)β2(K) or a simply-connected space, where (S2)γ denote
the wedge product of γ copies of the 2-sphere S2.

If m′ = 1, then due to Lemma 3.6, T cannot be simply-connected, and we are left
with two possible choices for T .
Case 1

(
T = S1 ∨ (S2)β2(K)

)
: In this case, CW complex T consists of one 0-cell, one

1-cell and β2(K) number of 2-cells. For 0 ≤ j ≤ 2, small regular neighbourhood of
j-cell of T is a j-handle H(j). Since V ′ deformation retracts onto K, β2(V

′) = β2(K),
we can represent V ′ as V ′ = H(0) ∪H(1) ∪

(
H

(2)
1 ∪ · · · ∪H

(2)
β2(V ′)

)
.

Now, observe that boundary identification between V and V ′ is an attachment
of one 3-handle. Also, β2(V

′) equals 2 + β2(M) − β1(M) − β1(M̂) from (1). There-

fore, M = H(0) ∪ H(1) ∪
(
H

(2)
1 ∪ · · · ∪H

(2)
β2(V ′)

)
∪ H(3), where β2(V

′) is equal to

β2(M), β2(M) + 1 or β2(M) + 2.

Case 2
(
T = S1 ∨ S1 ∨ (S2)β2(K)

)
: In this case, the CW complex T consists of one

0-cell, two 1-cell and β2(K) number of 2-cells. Proceeding in the same manner asCase

1, we can represent V ′ as V ′ = H(0) ∪
(
H

(1)
1 ∪H

(1)
2

)
∪
(
H

(2)
1 ∪ · · · ∪H

(2)
β2(V ′)

)
.

Now, observe that boundary identification between V and V ′ is an attachment of

one 3-handle. Thus, M = H(0)∪
(
H

(1)
1 ∪H

(1)
2

)
∪
(
H

(2)
1 ∪ · · · ∪H

(2)
β2(V ′)

)
∪H(3), where

β2(V
′) is equal to β2(M) + 1, β2(M) + 2 or β2(M) + 3 from (1).

Now, if m′ = 0 then we get M = V ′ using Lemma 3.3. Since m = 1, we get
T = S1 ∨ (S2)β2(K) and thus M has a handle decomposition as M = H(0) ∪ H(1) ∪(
H

(2)
1 ∪ · · · ∪H

(2)
β2(M)

)
. This proves the theorem. □

When M is a compact orientable PL 4-manifold with connected spherical bound-
ary, M̂ is a closed orientable manifold, and considering (Γ, γ) to be a weak semi-simple
crystallization of M̂ , Lemmas 3.3, 3.5, 3.6 and 4.3 hold true for this case as well.

Corollary 4.5. Let M be a compact orientable PL 4-manifold with empty or con-
nected spherical boundary having the fundamental group of rank 1. Let (Γ, γ) be a
weak semi-simple crystallization representing M̂ and V, V ′ be as in Definition 3.2.
Then π1(M) = Z and M admits a handle decomposition as follows:

M = H(0) ∪H(1) ∪
(
H

(2)
1 ∪ · · · ∪H

(2)
β2(M)

)
∪H(3) (if M is closed) ∪H(4).
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Proof. By the Seifert-Van Kampen Theorem, we deduce that π1(M̂) = π1(M) if M
has a spherical connected boundary. Also, from the proof of Lemma 3.6, we have
π1(M̂) = π1(V

′) if M has empty or connected spherical boundary. Since m = 1,
T = S1 ∨ (S2)β2(K) by Lemma 4.3. Thus, M with empty or connected spherical
boundary cannot have a finite cyclic group as its fundamental group. Due to (1), we
get β2(V

′) = β2(M). Thus,

M = H(0) ∪H(1) ∪
(
H

(2)
1 ∪ · · · ∪H

(2)
β2(M)

)
∪H(3) (if M is closed) ∪H(4).

This proves the result. □

Remark 4.6. In [3], the authors proved that ifM is a closed orientable PL 4-manifold
having a semi-simple crystallization with the fundamental group isomorphic to Z, then
it admits a handle decomposition as one of the following types:
1) one 0-handle, two 1-handles, 1+β2(M) 2-handles, one 3-handle and one 4-handle,

2) one 0-handle, one 1-handle, β2(M) 2-handles, one 3-handle and one 4-handle,
where β2(M) denotes the second Betti number of the manifold M with Z coefficients.
Clearly, Corollary 4.5 refines this result by providing the precise handle decomposition
of M .
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