MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК Corrected proof Available online 15.11.2025

research paper оригинални научни рад DOI: 10.57016/MV-ZICO1528

A CHARACTERIZATION OF ULAM HYPERSTABILITY

Dan M. Dãianu

Abstract. The main result of this work is a simple characterization of the hyperstability of functional equations in a very general framework: for functions with the codomain endowed with a generalized homogeneous premetric. We also give some particularizations on Abelian groups equipped with generalized homogeneous norms, obtaining, among others, improvements of similar known results for Cauchy-type, Jensen-type equations, but also for equations having compound functions as solutions.

1. Introduction

In 2014, Brzdęk [2] observes an interesting property of Cauchy differences: if X and Y are normed linear spaces, r, s are real numbers such that r+s>0, $D:=(X\setminus\{0\})\times(X\setminus\{0\})$ and $f:X\to Y$, then

$$\sup_{(x,y)\in D} \|x\|^r \|y\|^s \|f(x+y) - f(x) - f(y)\| \in \{0,\infty\}.$$

In other words, an arbitrary function $f: X \to Y$ is either Cauchy on D, i.e.

$$f(x+y) = f(x) + f(y) \quad \text{for all} \quad (x,y) \in D$$

$$\sup_{(x,y)\in D} ||x||^r ||y||^s ||f(x+y) - f(x) - f(y)|| = \infty.$$
(1)

or

This property is a consequence of the φ -hyperstability of equation (1), where $\varphi: D \to (0, \infty)$ is a control function defined by $\varphi(x, y) := \|x\|^{-r} \|y\|^{-s}$.

The question arises whether this phenomenon also occurs for other functional equations, other control functions and what is the connection with the hyperstability.

Hyperstability of functional equations is a special case of their stability – a problem posed by S. M. Ulam [9] in metric spaces. Here we will widen the framework: instead of metric spaces we will use some special premetric spaces. We say that (Y, d) is

²⁰²⁰ Mathematics Subject Classification: 39B82, 39B52, 39A70, 39B62, 39A10 Keywords and phrases: Equation on restricted domain; hyperstability; Cauchy-type equation; Jensen-type equation.

a generalized premetric space if the function $d: Y \times Y \to \mathbb{R}_+ := [0, \infty]$ – called a premetric – satisfies only the condition: for all $x, y \in Y$

$$d(x, y) = 0$$
 if and only if $x = y$.

In the following lines, (Y, d) is a generalized premetric space, X and D are nonempty sets, G and $H: Y^X \to Y^D$ are two functions and

$$Gf(z) = Hf(z)$$
 for all $z \in D$ (2)

is a functional equation, where $f: X \to Y$ is the unknown. If $\varphi: D \to (0, \infty)$ is a function, then equation (2) is φ -hyperstable if and only if all the functions $f: X \to Y$ for which

$$d(Gf(z), Hf(z)) \le \varphi(z)$$
 for all $z \in D$ (3)

are solutions of equation (2). In this context we say that φ is a *control function* for equation (2).

By $S_{(i)}$ we denote the set of solutions of equation (inequality) (i); for instance, equation (2) is φ -hyperstable if and only if $S_{(2)} = S_{(3)}$.

We will give very general conditions under which the φ -hyperstability of equation (2) is equivalent with the alternative

either
$$f \in S_{(2)}$$
 or $\sup_{z \in D} \frac{1}{\varphi(z)} d(Gf(z), Hf(z)) = \infty$ for all $f \in Y^X$, (4)

in terms of generalized homogeneity of the functions d, G and H. We apply these results within normed groups and, in particular, for Cauchy-type equations and Jensentype equations.

Hyperstability approached in the broader sense of Ulam stability is analyzed in [3]. Information on the status of Ulam stability research can be found in [5]. Hyperstability conditions for Cauchy-type equations on restricted domains (in the meaning of equation (1), when $D=X^2$) are given in [2] and, in a more general framework (when X is part of an abelian semigroup, $D\subseteq X^2$ and the control function φ is not necessarily of Aoki-Rassias-type), in [7]. The same approach, but for Jensen-type equations, is done in [8]. Sufficient conditions under which alternatives of the form (4) hold for Cauchy equations were first given in [2] for some Aoki-Rassias-type control functions, and in [7] in an extended framework; in [8], a similar result for Jensen-type equation was proved. We can consult [6] for the behavior of generalized homogeneous functions. Details on normed groups can be found in [1].

2. Results

In the following \mathbb{N}^* is the set of positive integers, $\tau \circ g$ denotes the composition of the functions $U \to Y \to Y$, $\tau^0 := \mathrm{id}_Y$ and τ^i is the *i*-th iteration of τ for $i \in \mathbb{N}^*$.

We show first that alternative (4) is a sufficient condition for the hyperstability of equation (2).

PROPOSITION 2.1. If $\varphi: D \to (0, \infty)$ is a function that satisfies alternative (4), then equation (2) is φ -hyperstable.

Proof. Suppose there is a function $h \in S_{(3)} \setminus S_{(2)}$. Then $\frac{1}{\varphi(z)} d(Gh(z), Hh(z)) \leq 1$ for $z \in D$ and there exists $z_0 \in D$ for which $\frac{1}{\varphi(z_0)} d(Gh(z_0), Hh(z_0)) > 0$. Consequently $\sup_{z \in D} \frac{1}{\varphi(z)} d(Gh(z), Hh(z)) \in (0,1]$, which is a contradiction. Therefore equation (2) is φ -hyperstable.

2.1 Hyperstability on (τ, γ) -spaces

As above, X and D are nonempty sets, (Y,d) is a generalized premetric space and $G,H:Y^X\to Y^D$ are two functions.

We introduce the concept of generalized homogeneity.

DEFINITION 2.2. Let $n \in \mathbb{N}^*$ and $\tau : Y \to Y$ be a function.

- 1. The function $E: Y^X \to Y^D$ is (τ, τ^n) -homogeneous if $E(\tau \circ f) = \tau^n \circ Ef$ for all $f \in Y^X$.
- 2. The couple (Y, d) is a (τ, γ) -space if d is a generalized premetric on $Y, \tau : Y \to Y$ is surjective function, $\gamma \in (0, \infty) \setminus \{1\}$ and the generalized premetric d is (τ, γ) -homogeneous, i.e., $d(\tau(x), \tau(y)) = \gamma d(x, y)$ for all $x, y \in Y$.

We can consult [6] for the behavior of homogeneous functions in a generalized sense.

REMARK 2.3. The study of Ulam stability of linear operators between real or complex vector spaces equipped with gauges was initiated in [4]. Recall that, if Y is a vector space over the field $K \in \{\mathbb{R}, \mathbb{C}\}$, then $\rho: Y \to [0, \infty]$ is a gauge if $\rho(x) = 0$ if and only if x = 0, and $\rho(\lambda x) = |\lambda| \rho(x)$ for all $x \in Y$ and $\lambda \in K \setminus \{0\}$. In this context, defining $d: Y^2 \to [0, \infty]$, $d(x, y) := \rho(x - y)$ and $\tau_{\lambda}: Y \to Y, \tau_{\lambda}(x) := \lambda x$, we remark that (Y, d) is a $(\tau_{\lambda}, |\lambda|)$ -space for all $\lambda \in K \setminus \{0\}$ with $|\lambda| \neq 1$.

This is the framework in which we will prove a complement of Proposition 2.1.

Theorem 2.4. We assume that X, D are nonempty sets, (Y, d) is a (τ, γ) -space and that $G, H: Y^X \to Y^D$ are (τ, τ^n) -homogeneous functions. If $\varphi: D \to (0, \infty)$ is a function, then dichotomy (4) holds if and only if equation (2) is φ -hyperstable.

Proof. 1. From Proposition 2.1 it follows that alternative (4) implies the φ -hyperstability of equation (2).

2. For proving the converse, we first note that, if $x,y \in Y$ such that $\tau(x) = \tau(y)$, we have $\gamma d(x,y) = d(\tau(x),\tau(y)) = 0$ and x = y. Hence $\tau: Y \to Y$ is a bijective correspondence.

Since d is (τ, γ) -homogeneous, by induction on $j \in \mathbb{N}^*$ we get $d\left(\tau^j\left(x\right), \tau^j\left(y\right)\right) = \gamma^j d\left(x, y\right) \text{ for all } x, y \in Y, j \in \mathbb{N}^*.$

Replacing x, y by $\tau^{-j}(x), \tau^{-j}(y)$, where $\tau^{-j} := (\tau^j)^{-1}$, we get $d(\tau^{-j}(x), \tau^{-j}(y)) = \gamma^{-j}d(x, y)$. Therefore,

$$d\left(\tau^{j}\left(x\right),\tau^{j}\left(y\right)\right) = \gamma^{j}d\left(x,y\right) \quad \text{for all} \quad x,y \in Y, j \in \mathbb{Z}. \tag{5}$$

Similarly, since G and H are (τ, τ^n) -homogeneous,

$$G(\tau^{j} \circ f) = \tau^{nj} \circ Gf, H(\tau^{j} \circ f) = \tau^{nj} \circ Hf \text{ for all } f \in Y^{X} \text{ and } j \in \mathbb{Z}.$$
 (6)

Suppose that equation (2) is φ -hyperstable and $f \in Y^X$ such that

$$c := \sup_{z \in D} \frac{1}{\varphi(z)} d\left(Gf(z), Hf(z)\right) < \infty.$$

Then,

$$d(Gf(z), Hf(z)) \le c\varphi(z)$$
 for all $z \in D$. (7)

It is enough to prove that $f \in S_{(2)}$, (i.e. Gf = Hf) or, equivalently, c = 0. Let $j \in \mathbb{Z} \setminus \{0\}$ be such that

$$c\gamma^{nj} \le 1. (8)$$

Using consecutively (6), (5), (7) and (8) we get

$$d\left(G\left(\tau^{j}\circ f\right)\left(z\right),H\left(\tau^{j}\circ f\right)\left(z\right)\right)=d\left(\left(\tau^{nj}\circ Gf\right)\left(z\right),\left(\tau^{nj}\circ Hf\right)\left(z\right)\right)$$
$$=\gamma^{nj}d\left(Gf\left(z\right),Hf\left(z\right)\right)\leq c\gamma^{nj}\varphi\left(z\right)\leq \varphi\left(z\right)$$

for all $z \in D$. But equation (2) is φ -hyperstable, hence $\tau^j \circ f \in S_{(2)}$ i.e.,

$$G(\tau^{j} \circ f) = H(\tau^{j} \circ f), \text{ or, by (6)}, \quad \tau^{nj} \circ Gf = \tau^{nj} \circ Hf.$$

Since τ^{nj} is injective we get Gf = Hf and c = 0.

When the cardinality of Y – denoted |Y| – is 1, we get $S_{(2)} = S_{(3)} = Y^X$ and equation (2) is φ -hyperstable for every $\varphi : D \to (0, \infty)$. We can analyze the hyperstability of equation (2) when Y (or D) is finite, d is finite, but (2) is not trivial $(S_{(2)} \neq Y^X)$.

COROLLARY 2.5. Assume that (Y,d), G and H satisfy the assumptions in Theorem 2.4, d is a finite function, $|Y| < \infty$ or $|D| < \infty$, and $S_{(2)} \neq Y^X$. Then there are no functions $\varphi : D \to (0,\infty)$ for which equation (2) is φ -hyperstable.

Proof. Suppose that $\varphi: D \to (0, \infty)$ is a control function for which equation (2) is φ -hyperstable. Let $f \in Y^X \setminus S_{(2)}$. Then there is $z_0 \in D$ such that $d\left(Gf\left(z_0\right), Hf\left(z_0\right)\right) > 0$, hence

$$\sup_{z\in D}\frac{1}{\varphi\left(z\right)}d\left(Gf\left(z\right),Hf\left(z\right)\right)\in\left(0,\infty\right)$$

which contradicts the conclusions of the previous theorem.

2.2 Hyperstability on (m, γ) -groups

A special type of (τ, γ) -space is an (m, γ) -group.

DEFINITION 2.6. We say that (Y, +, ||||) is an (m, γ) -group if $m \in \mathbb{N}^*$, (Y, +) is a uniquely m-divisible normed Abelian group, $\gamma \in (0, \infty) \setminus \{1\}$ and $||||: Y \to \mathbb{R}_+$ is a (m, γ) -homogeneous norm on Y, i.e., $||my|| = \gamma ||y||$ for all $y \in Y$.

We recall that:

- the commutative group (Y, +) is uniquely m-divisible if and only if for all $y \in Y$, the equation mx = y has a unique solution $x \in Y$; we denote $x := m^{-1}y$ or $x := \frac{y}{m}$;
- $\|\|: Y \to \mathbb{R}_+$ is a norm on the commutative group (Y, +) if $\|-y\| = \|y\|$, $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in Y$ and $\|x\| = 0$ iff x = 0. Details on normed groups can be found in [1].

Nontrivial examples of (m, γ) -groups (e.g. normed linear spaces, valuated rings or F spaces) can be found in [6].

PROPOSITION 2.7. If (Y, +, ||||) is an (m, γ) -group, then (Y, d) is a (τ, γ) -space, where d(x, y) := ||x - y|| and $\tau(x) := mx$.

Proof. Of course d is a translation invariant metric on Y and a (τ, γ) -homogeneous function.

Under the terms of Proposition 2.7, we note that

- $\ker \tau = \{0\}$ (since, for $x \in Y$ with $\tau(x) = 0$ we have $0 = ||mx|| = \gamma ||x||$ and x = 0; hence τ is a monomorphism);
- since (Y, +) is uniquely m-divisible we conclude that the function

$$\sigma: Y \to Y, \quad \sigma(y) := m^{-1}y$$

is an onto and a right inverse of the monomorphism τ (since $\tau \circ \sigma(y) = m(m^{-1}y) = y$ for all $y \in Y$); therefore τ is an automorphism of Y and $\sigma = \tau^{-1}$.

In this framework, as usual we define

$$m^kg:= au^k\circ g\quad ext{ for } k\in\mathbb{Z} \ ext{ and } \ g\in Y^X\cup Y^D.$$

In these terms we can characterize the hyperstability of the equation

$$Ef(z) = 0 \text{ for all } z \in D, \tag{9}$$

where $f: X \to Y$ is the unknown, (Y, +, ||||) is an (m, γ) -group and $E: Y^X \to Y^D$ is a fixed function; if E is (τ, τ^n) -homogeneous we also say that E is (m, m^n) -homogeneous, i.e., the function E satisfies $E(mf) = m^n Ef$ for all $f \in Y^X$.

From Proposition 2.7 and Theorem 2.4 we immediately obtain the following characterization of hyperstability.

COROLLARY 2.8. Let X, D be nonempty sets, (Y, +, ||||) be an (m, γ) -group, $E: Y^X \to Y^D$ be an (m, m^n) -homogeneous function, where $n \in \mathbb{Z} \setminus \{0\}$ and $\varphi: D \to (0, \infty)$ be a function. Then equation (9) is φ -hyperstable if and only if

$$either \quad Ef = 0 \quad or \quad \sup_{z \in D} \frac{1}{\varphi\left(z\right)} \left\| Ef\left(z\right) \right\| = \infty,$$

for all $f: X \to Y$.

2.3 Applications to Cauchy-type and Jensen-type equations

Let (S, +) be an Abelian semigroup.

2.3.1. If we assume that the sets

$$X \subseteq S, D \subseteq \left\{ (x, y) \in X^2 \mid x + y \in X \right\} \tag{10}$$

are nonempty, (Y, +, ||||) is an (m, γ) -group and

$$E: Y^X \to Y^D$$
, $Ef(x,y) := f(x+y) - f(x) - f(y)$,

then we can apply the above results to the Cauchy-type equation Ea = 0, i.e.,

$$a(x+y) = a(x) + a(y)$$
 for all $(x,y) \in D$, (11)

where $a: X \to Y$ is the unknown; in this case we say that a is Cauchy on D. We note that E is (m, m)-homogeneous for $m \in \mathbb{N}^*$. Applying Corollary 2.8 we obtain the following extension of [7, Theorem 2.3].

COROLLARY 2.9. We assume that (Y, +, ||||) is an (m, γ) -group, the sets $X \subseteq S$ and $D \subseteq X^2$ satisfy (10) and $\varphi : D \to (0, \infty)$ is a function. Then equation (11) is φ -hyperstable if and only if an arbitrary function $f \in Y^X$ is Cauchy on D or

$$\sup_{(x,y)\in D}\frac{1}{\varphi\left(x,y\right)}\left\Vert f\left(x+y\right)-f\left(x\right)-f\left(y\right)\right\Vert =\infty.$$

2.3.2. Now suppose that the homomorphism

$$S \to S, x \mapsto 2x$$
 is an automorphism; (12)

we denote by $y := \frac{x}{2}$ the unique solution of the equation 2y = x for $x \in S$. Also we assume that (Y, +, ||||) is a $(2, \gamma)$ -group, the sets

$$X \subseteq S, \quad D \subseteq \left\{ (x,y) \in X^2 | \frac{x+y}{2} \in X \right\}$$
 (13)

are nonempty and the equation

$$\rho\left(\frac{x+y}{2}\right) = \frac{\rho(x) + \rho(y)}{2} \text{ for all } (x,y) \in D,$$
(14)

have the function $\rho: X \to Y$ as the unknown. Since for the function

$$E: Y^X \to Y^D, \quad E\rho\left(x,y\right) := \rho\left(\frac{x+y}{2}\right) - \frac{\rho\left(x\right) + \rho\left(y\right)}{2},$$

we have $E(m\rho) = mE\rho$ for $m \in \mathbb{N}^*$, we can apply Corollary 2.8 and we obtain a generalization of [8, Proposition 2.3].

COROLLARY 2.10. We assume that (S, +) is an Abelian semigroup that satisfies (12), $X \subseteq S$ and $D \subseteq X^2$ satisfy (13), (Y, +, ||||) is a $(2, \gamma)$ -group and $\varphi : D \to (0, \infty)$ is a function. Then equation (14) is φ -hyperstable if and only if for all $\rho \in Y^X$

$$either \quad \rho \in S_{\left(14\right)} \quad or \quad \sup_{\left(x,y\right) \in D} \frac{1}{\varphi\left(x,y\right)} \left\| 2\rho\left(\frac{x+y}{2}\right) - \rho\left(x\right) - \rho\left(y\right) \right\| = \infty.$$

Finally we give an concrete example of using the above results. Let $(Y, +, ||\cdot||)$ be

a linear normed space,

$$g:\left(0,\frac{\pi}{2}\right)\to X:=\left(-\infty,0\right),\quad g\left(u\right):=\ln\sin u$$

and $D := X^2$. In [8] it was proven that the equation

$$f\left(\arcsin\sqrt{\sin u \cdot \sin v}\right) = \frac{f(u) + f(v)}{2} \text{ for all } u, v \in (0, \frac{\pi}{2}), \tag{15}$$

where $f:(0,\frac{\pi}{2})\to Y$ is the unknown, has the solutions $S_{(15)}=\left\{\rho\circ g\mid \rho\in S_{(14)}\right\}$ (see [8, Proposition 3.11]) and that, for p,q>0 and $\varphi:D\to(0,\infty),\,\varphi(u,v):=u^pv^q,$ equation (15) is φ -hyperstable (see [8, Corollary 3.13]). Applying Corollary 2.8 we obtain the following dichotomy.

COROLLARY 2.11. Suppose that $(Y, +, \|\cdot\|)$ is a linear normed space and $f: (0, \frac{\pi}{2}) \to Y$. Then either

$$\sup_{u,v\in\left(0,\frac{\pi}{2}\right)}u^{r}v^{s}\left\|2f\left(\arcsin\sqrt{\sin u\cdot\sin v}\right)-f\left(u\right)-f\left(v\right)\right\|=\infty \quad for \ all \ r,s<0$$

$$or \qquad \rho\left(\frac{x+y}{2}\right) = \frac{\rho\left(x\right) + \rho\left(y\right)}{2} \ \ \textit{for all } x,y \in \left(-\infty,0\right),$$

where $\rho:(-\infty,0)\to Y,\ \rho(x):=f\left(\arcsin e^x\right)$.

References

- N. H. Bingham, A. J.Ostaszewski, Normed versus topological groups: dichotomy and duality, Dissertationes Math., 472 (2010), 1–138.
- [2] J. Brzdęk, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc., 89(1) (2014), 33-40.
- [3] J. Brzdęk, K. Ciepliński, Hyperstability and superstability, Abstr. Appl. Anal., (2013), Article 401756.
- [4] J. Brzdęk, D. Popa, I. Raşa, Hyers-Ulam stability with respect to gauges, J. Math. Anal. Appl., 453 (2017), 620–628.
- [5] J. Brzdek, D. Popa, I. Raşa, B. Xu, Ulam Stability of Operators, Academic Press, 2018.
- [6] D. M. Dăianu, Samples of homogeneous functions, Results Math., 77(2) (2022), Article 78.
- [7] D. M. Dăianu, General criteria for hyperstability of Cauchy-type equations, Aequat. Math., 97(4) (2023), 837–851.
- [8] D. M. Dăianu, General hyperstability criteria for Jensen-type equations, Aequat. Math., (2024), 1–21.
- [9] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, 1964.

(received 23.07.2024; in revised form 24.04.2025; available online 15.11.2025)

Department of Mathematics, Politehnica University of Timişoara, 300006 Timişoara, Romania E-mail: dan.daianu@upt.ro, dan.daianu.m@gmail.com ORCID iD: https://orcid.org/0000-0002-0442-8931