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CLASS CONCERNING ONE SHARED SET

Samar Halder

Abstract. In this paper, we investigate the value distribution of L-functions in the
extended Selberg class. We show how two L-functions L; and Lo satisfying certain condition
are uniquely determined by the zero sharing between P(L1) and P(L2) for some polynomial
P, or by a set sharing between L; and L. Considering the most general form of a polynomial
in the set sharing we obtain some results which completely generalize and extend some
recent results of [X. M. Li, X. R. Du, H. X. Yi, Dirichlet series satisfying a Riemann type
functional equation and sharing one set, Complex Var. Elliptic Equ., 68(10) (2023), 1653—
1677], which were actually proved as an answer of an analogous question of Gross [F. Gross,
Factorization of meromorphic functions and some open problems, Complex Analysis (Proc.
Conf. Univ. Kentucky, Lexington, Ky., 1976), pp. 51-69, Lect. Notes Math., Vol 599,
Springer, Berlin, 1977] for L-functions. We also obtain uniqueness relation between two
nonconstant L-functions (belonging to the extended Selberg class) by proving other two
results, one concerning a prior result due to Yuan-Li-Yi [Q. Q. Yuan, X. M. Li, H. X. Yi,
Value distribution of L-functions and uniqueness questions of F. Gross, Lithuanian Math.
J., 58 (2018), 249-262] and another related to a result of Hao-Chen [W. J. Hao, J. F. Chen,
Uniqueness theorems for L-functions in the extended Selberg class, Open Math., 16 (2018),
1291-1299].

1. Introduction

The Riemann zeta function ((s) = > o, -L is a well known and valuable object
in mathematics due to the celebrated Riemann hypothesis conjectured by B. Rie-
mann [14]. The function has various structural properties including the existence of
a single pole in C, analytic continuation as meromorphic function and Euler product
over the primes. Here and throughout the paper, C denotes the usual complex plane
and s denotes a complex variable of the form s = ¢ + it, where ¢ and ¢ are real

numbers, and ¢ is the imaginary unit. L-functions which are defined by taking the
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2 Uniqueness of L-functions in the extended Selberg class

Riemann zeta function as a prototype but in a wider setting are naturally important,
especially in analytic number theory.

In 1989, Selberg introduced a class of L-functions by considering ((s) as a model.
Recently, value distribution of L-functions belonging to this class has gained increasing
interest from the researchers (see [8,9,13,16,20]). Before going into the detailed
discussion, we must introduce the definition of this class due to Selberg, often referred
to as the Selberg Class S. The Selberg class S of L-functions is defined as the set of all
those Dirichlet series L(s) = >0, ar(;f) of a complex variable s, which is absolutely
convergent for Re (s) > 1, and satisfy the following axioms (see [15]):

(i) Ramanugan hypothesis: a(n) < n¢ for each € > 0;

(ii) Analytic continuation: There is a nonnegative integer m such that (s — 1)™L(s)
is an entire function of finite order;

(iii) Functional equation: L satisfies a functional equation of the type
Ap(s) =wAr(1-73),

K
where AL(s) = L(s)Q° H I'(A\js +vj)

j=1
with positive real numbers @), A;, a positive integer K and complex numbers v;, w
with Re (v;) > 0 and |w| = 1;

(iv) Euler product hypothesis: L can be written over primes in the following manner:

oo k
o~ Tlesw (32
P k

=1

with suitable coefficients b(p*) such that b(p*) < p*’ for some 6 < %, where the
product is taken over all prime numbers p.

An L-function L(s) is said to be in the extended Selberg class S* if it satisfies
axioms (i)-(iii) and is not vanishing identically (see [7]). It is worth mentioning that
there do exist some L(s) which do not have an Euler product. Moreover, as the class
S? contains the class S, it will be more reasonable to consider the functions in S*.
In this paper, by an L-function we will always mean an L-function in the extended
Selberg class S*, with the normalizing condition a(1) = 1. Naturally, the results
found for functions in S* are also valid for the functions in S. Let us now mention
that if dj, denotes the degree of an L-function L(s), then dj, := 2 Zj{zl Aj, where A;
and K are respectively the positive real number and the positive integer defined as in
axiom (iii). Unless stated otherwise, the degree of L(s) in the following will always be
taken as nonzero (positive). The value distribution of L(s) concerns the distribution
of zeros of L(s) — ¢ for any ¢ € CU {oco}. In this paper, we will mainly focus on the
problem of determining L-functions by the preimage of subsets of C. For the sake of
convenience, the notion of sharing of sets (or values) is now illustrated below, which
is actually same as that of the meromorphic functions.

By the term “meromorphic” we understand a function that is meromorphic in C.

Let M(C) denote the class of functions meromorphic in C. Suppose two nonconstant
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functions f and g belong to M(C). For a subset S of C U {o0}, define

E(S, f) :=Upes{s € C: f(s) = v},

where a zero of f — v with multiplicity p is counted p times in E(S, f), i.e., E(S, f)
is a multiset. When we ignore the multiplicities, we replace the symbol E(S, f) by
E(S, f). If E(S, f) = E(S,g) for some f,g € M(C), then f and g are said to share
S CM (Counting Multiplicity). In case E(S,f) = E(S,g), then f, g share S IM
(Ignoring Multiplicity). If the set S contains exactly one element, say v, then we
write E(S, f) (resp. E(S, f)) simply as E(v, f) (resp. E(v, f), and the definitions of
value sharing CM or IM follows in the similar way.

In terms of shared values, Nevanlinna’s five-value theorem states that two non-
constant meromorphic functions f and g are identically equal if E(v;, f) = E(v;,9)
for five distinct values vq, vg, v3,v4 and vs in € CU{co}. It was also shown by Nevan-
linna (see [3,19]) that the number “five” is the best possible in the above theorem.
In 2007, without putting any restriction on the degree of L-function, Steuding [16, p.
152] first proved a uniqueness result with one shared value. From this result and [5] it
is known that two L-functions L; and Lo satisfying axioms (i)-(iii) with a(1) =1 are
identical when they share a complex value ¢ (# o00,1) CM. Since L-functions can be
analytically continued as meromorphic functions, it becomes quite interesting to in-
vestigate to which extent an L-function L(s) can share values or sets with an arbitrary
meromorphic function f(s). Being motivated by the well-known Gross’ question for
meromorphic (or entire) functions (see [2]) Yuan-Li-Yi [20] investigated on the possi-
ble relationship between an L-function L and a function f in M(C) for the situation
when L and f share one or two finite sets. In [20], without requiring positive degree
of L(s), the authors proved the following result regarding one set sharing between L

and f .

THEOREM 1.1 ([20]). Let f be a meromorphic function in C with finitely many poles,
and let L be a nonconstant L-function. Suppose that S = {w : w™ + aw™ + b = 0},
where nand m are relatively prime positive integers with n > 2m + 4, and a, b are
nonzero constants. If f and L share S CM, then L = f.

Several research articles have been devoted in the direction of uniqueness of L-
functions under the sharing of one or more sets of values with some meromorphic
function. Among these, we take into account only those in this paper which involve
preferably one shared set. In the same direction, Hao-Chen [4] obtained the following
result.

THEOREM 1.2 ([4]). Let f be an entire function with limge(s)—o0 f(5) = k (k # 00),
and let R(w) = 0 be an algebraic equation with n > 2 distinct roots, where R(1), R(k),
R(b) # 0. Suppose that f(so) = L(so) = b for some so € C. If for a nonconstant
L-function L, E(S,L) = E(S, f), where S = {w: R(w) = 0}, then R(L) = R(f).

In [1], similar polynomials as of Theorem 1.1 were considered in case of set sharing.
In 2011, Li [9] obtained that if two L-functions L; and Lo in S* satisfy the same
functional equation, and if E(c;j, L1) = E(cj, L) for two distinct finite complex values
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c1 and co, then Ly = Lo. This clearly shows that the uniqueness relation Ly = Lo
holds for a relaxed nature of sharing as compared to Steuding’s theorem (see [9,16]).

In connection with the above result of Li [9] the following question was raised by
Li-Du-Yi [12] for L-functions.

QUESTION 1.3. Is there a finite set S such that any two nonconstant L-functions L
and Ly are identical if E(S, L1) = E(S, L2)?

In the same paper, the authors [12] got affirmative answers to the above question
by means of the following two theorems.

THEOREM 1.4 ([12]). Let Ly and Ly be two L-functions in the extended Selberg class
S*, which satisfy the same functional equation. Suppose that S = {c1, ca, c3}, where
c1, C2, c3 are any three distinct finite complex numbers. If E(S, L) = E(S, La), then
Ly = Ls.

THEOREM 1.5 ([12]). Let Ly and Ly be two L-functions in the extended Selberg class
S*, which satisfy the same functional equation. Suppose that S = {ci, ca}, where
c1, co are two distinct finite complex numbers. If E(S, L1) = E(S, La), then L1 = Lo.

In Theorems 1.1 and 1.2, the set S is given by the roots of some polynomials. The
sets involved in the sharing in Theorems 1.4 and 1.5 are actually {w € C : P;(w) =0}
and {w € C : Py(w) = 0}, where P;(w) and Py(w) are polynomials of the form
(w—c1)(w — c2)(w — ¢3) and (w — ¢1)(w — ¢2), respectively. In fact, Theorem 1.4
(resp. Theorem 1.5) implies that if Py(Lq) and Py(Ls) (resp. Py(L1) and Py(Ls))
share 0 CM, then L, and Lo are identical, provided they satisfy the same functional
equation. On the other hand, it is still unknown whether Theorem 1.1 holds for two
nonconstant L-functions L; and Lo in S*, or for some other values of n. However,
in [17], Wu-Hu proved a uniqueness result with L-functions for a set S € C\ {1} with
n elements of very special type. Regarding these observations, it is quite natural to
ask the following question.

QUESTION 1.6. (i) What will be the conclusions in Theorems 1.4 and 1.5 if P(L;)
and P(L2) share 0 CM, where P(w) is an arbitrary polynomial of some degree ¢?

(ii) Is it possible to replace L and f by L; and Ly of S* as well as reduce the lower
bound of n in Theorem 1.17

In this paper, we will find the best possible answer of (i) of Question 1.6 by
considering the most generalized form of a polynomial. In this direction, we prove
the following results.

THEOREM 1.7. Let L1 and Lo be two nonconstant L-functions in the extended Selberg
class S*, and let Ly, Ly satisfy the same functional equation. Suppose that P(w) = 0
is a polynomial equation with I (> 2) distinct roots. If E(0,P(Ly)) = E(0, P(Ls)),
then L1 = LQ.

COROLLARY 1.8. Let L1 and Lo be two nonconstant L-functions in the extended Sel-
berg class S*, and let Ly, Lo satisfy the same functional equation. If E(S,L1) =
E(S, Ly), where S = {v1,7v2,...,m} CC, 1> 2, then L1 = Ls.
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REMARK 1.9. It is obvious that Theorems 1.4 and 1.5 can be obtained as a special
case of Corollary 1.8. Thus Corollary 1.8 is a generalization of both Theorems 1.4
and 1.5.

Taking into account (ii) of Question 1.6 we have the next theorem.

THEOREM 1.10. Let Ly and Lo be two nonconstant L-functions in the extended Selberg
class S*, and let Ly, Lo satisfy the same functional equation. Suppose P(w) = w™ +
aw™ +b, where n and m are positive integers with n > m, by;;m + (_1)"7"’”;52_m)n7m ,
and a, b are two nonzero constants. If E(S,L1) = E(S, Ls), where S = {w : P(w) =

0}, then Ll = LQ.

REMARK 1.11. Theorem 1.10 suggests that the number of values of n for which the
conclusion holds is substantially increased with respect to Theorem 1.1. Also, while
replacing L, f by Ly, Ly one does not necessarily need ged(m,n) = 1.

As a variant of Theorem 1.1, Hao-Chen [4] obtained the following result.

THEOREM 1.12 ([4]). Let f be an entire function with im g, ()00 f(5) = k (k # 00).
Let S = {v1,72,...,m} € C\ {1,k, B}, where y1,7a,...,v are all distinct roots of
the algebraic equation w™ ™™ +aw™ +b=0, 1 <1 <n-+m, n and m are two positive
integers with n > m—+2, and a, b are finite nonzero constants. If f and a nonconstant
L-function L share S CM, and f(so) = L(so) = B for some sq € C then f = tL, where
t is a constant such that t¢ =1, d = ged(n, m).

Regarding Theorem 1.12, considering L, and Lo we deduce an application of
Theorem 1.7 by means of the following result.

THEOREM 1.13. Let Ly and Ly be two nonconstant L-functions in S, which satisfy
the same functional equation and let S be a subset of C consisting of all distinct
roots of the algebraic equation as given in Theorem 1.12 with n > m and af,’,w #

COntm™ 1 Ly and Ly share S CM, then Ly = L.

(n+m)ntm

REMARK 1.14. In Theorem 1.13, the uniqueness relation is obtained without the
requirement of the condition that f(sg) = L(sg) = 8 for some sy € C.

Let us denote by Sg the class of those L-functions belonging to S* with a(1) =1,
which have nonzero degree and satisfy the same functional equation. To state the
next result we need the following definition.

DEFINITION 1.15 ([10]). If for any two functions f, g in M(C), there exists some set
S C C such that E(S, f) = E(S,g) implies f = g, then S is called unique range set
(URS) of meromorphic functions.

Replacing f, ¢ by two L-functions in S* we can similarly define URS for L-functions
in S¥. Choosing the class Sg, from Theorem 1.7 we immediately have the following
result.
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COROLLARY 1.16. Let S = {v1,7v2,...,m1} CC, 1> 2. Then S is URS of L-functions
in Sg,

To prove the main results, we will be greatly dependent on Nevanlinna theory of
value distribution. For this, we assume that the readers are well familiar with the
standard notations and fundamental results of the theory (for details, see [3,18,19]).
For convenience, we must mention that the symbols T(r, f), m(r, f) and N(r, f)
(resp. N(r, f)) are used to denote the characteristic function, the proximity function,
the integrated counting function (resp. reduced counting function) of poles of some
meromorphic f, respectively. For some a € C, we define N(r,a;f) = N(r,ﬁ)
and N(r,a;f) = N(r, ﬁ) Moreover, S(r,h) will mean any quantity satisfying
S(r,h) = O(log(rT'(r,h))) (r — o0o0) possibly outside a set of finite Lebesgue measure.
In particular, if h is of finite order, then S(r,h) = O(logr) (r — oo) for all . The

order p(f) of some f € M(C) is defined as p(f) = limsup,_, %.

2. Lemmas

We present some lemmas that will be useful in proving the main results of this paper.

LEMMA 2.1 ([19, Theorem 1.14]). Let nonconstant f(s), g(s) € M(C). If p(f) and
p(g) are the orders of f and g respectively, then

p(fg) < max{p(f), p(9)}
p(f +g) <max{p(f), p(g)}

LEMMA 2.2 ([19, Theorem 1.42]). Let a nonconstant function f(s) € M(C). If 0
and oo are two Picard exceptional values of f, then f(s) = e"®) for some entire
function h(s).

LEMMA 2.3. Let Ly and Lo be two nonconstant L-functions in S*, and Ly, Lo satisfy
the same functional equation. If Ly + cLy # 0 for some nonzero constant c, then
Ly(s), La(s), (L1 + cL2)(s) and HjK:1 (T(Ajs+ l/j))_l have the same zeros in {s €
C: Re(s) < —ko and|Im(s)| < K1}, where kg and k1 are two sufficiently large positive
numbers such that none of the functions Ly, Ly and Ly + cLo has a zero in {s € C:
Re(s) > ko}. Furthermore, in the region {s € C: Re(s) < —ko and|Im(s)| < K1},
each common zero of L1, Lo and L1+ cLo have the same multiplicity 1 for sufficiently
large ko, K1 > 0.

Proof. Noting that Ly and Ly satisfy the same functional equation, by axiom (iii) of
the definition of L-function, we readily have

La(s) = wx(s)La(1 = 5), La(s) = wx(s)L2(1 =), M
_ QTR ILL T - 5) +75) -
- [T, T(ys +v)) .

where x(s)
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Here Q, \j, vj, w are same as in axiom (iii). From (1) we obtain

Li(s) + cLa(s) = wx(s){L1(1 —35) + cL2(1 —35)}. (3)
It is easy to see that as Lq(s) and Ly(s) are convergent Dirichlet series, under the
assumption Ly + c¢Ly # 0, we can get a right half-plane {s € C : Re(s) > ko}
determined by a sufficiently large positive constant k¢ such that none of Li(s), La(s)
and Lq(s) + cLa(s) has a zero in {s € C : Re(s) > ko}. In view of the fact that
the Gamma function I' is analytic except for its simple poles at s = 0,—1,-2,...
in C such that T'(s) # 0 for each s € C, and that x has neither a pole nor a zero in
{s € C: |Im(s)| > k1} for some sufficiently large positive number x1, we conclude
from (1)—(3) that zeros of Li(s), La(s), (L1 + cL2)(s) coincides with the zeros of
HJKZI (T(A\js+v;)) " in {s € C: Re(s) < —ko and |Im (s)| < 1} for large ko, K1 >
0. Moreover, in this region, all of Ly, Lo and L; + cLy have the zeros of the same
multiplicity (one) as that of the zeros of H]K:1 (T'(Ajs+ 1/]-))71. O

LEMMA 2.4. Let Ly and Lo be two nonconstant L-functions in S, and let Ly, Lo
satisfy the same functional equation. Suppose that P(w) = 0 is an algebraic equation,

where P(w) = Alw =)™ oo (w1 (w17 with A O), 75 (3 7 1

1,7 =1,2,...,1—1) being constants; 1(>2), m1, ma,...my are positive integers such
that Zl 1My =q. If i%é;gs 5 = = (s—1)Pehrstdz yhere dy, dy € C and p is an integer,
then 2&18; = D for some nonzero constant D.

Proof. From the assumption we can write
(La(s) =)™ o (La(s) = 9™ M a(s) =)™
(La(s) = 7)™ ... (La(s) — y—1)™ -1 (La(s) — 1)™

By the same reasoning as adopted in [9, p. 4207], we obtain

Dy D, , 1
< -1 < — = i
<l -1l < 22 and 249 =0 (). o)
and Ds <|La(s) =11 < Da and Lj(s) = O (1> , (6)
na? n2? 27

as 0 = Re(s) — +oo. Here D; (> 0) (j = 1,2,3,4) is a constant, and nq (> 2)
ng (> 2) are integers. Clearly, from (5) and (6) it follows that

Dll o g-m Ll(S) -1 m Dé no g-m

e < |4 <=|-= 7
() slm = () =oe @
where D] = D", D} = Dg” etc. From (4) and (7) we have

) ) ()

< (s 1t

<5 () (5 )ml( o) - (Eeen)
—Di\m (s) —m (s) =72 U\ La(s) = yi-1

) (8)
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as 0 — +00. Since L;(s) — 1 for o — +o00 (i = 1,2), by (8) we obtain
D} [na\7™ 2D% (o \ 7™
2z < —1)P dist+dz| 2 [ =2 9
2D; (nl) <[ -1re = Dy \ny ©)
as 0 — +00. We now distinguish the following two cases.
Case 1. Let d; # 0. Then proceeding in the line of [12, Subcase 2.1 of proof of

Theorem 1.11,pp. 1672-1674] and using (9) we obtain that this case is impossible.
Here we omit the details.

Case 2. Let dy = 0. Then (4) can be rewritten as
(La(s) —y)™ .. (La(s) = y—1)™ " (La(s) — )™
(La(s) =y1)™ ... (La(s) = y—1)™ 1 (La(s) — 1)™
In this case, (9) reduces to
Dll no 7 d 2D/2 no g
el <|(s — 1)Pete| < 222 (12 11
2Dﬁl <n1> - ’(S ) € - Dé ny ( )
as 0 — 4oo. From (11) it follows that p = 0 and ny = ny (> 2). Consequently, we
have from (10) that

(Li(s) =y)™ .o (La(s) = y=1)™*(La(s) =)™
(La(s) —y1)™ ... (La(s) — yi—1)™ -1 (La(s) — 1)™
where D = e = 0. Thus the proof of the lemma is completed. O

= (5 —1)Pe, (10)

—_

:_D7

LEMMA 2.5 ([11, Lemma 2.7]). Let P(w) = w™ + aw™ + b, where m and n are
positive integers such that n > m, a and b are finite nonzero complex values. Then
the following hold:

(i) The algebraic equation P(w) =0 has no root of multiplicity > 3;
(ii) If

aTL % nTL
then the algebraic equation P(w) = 0 has n distinct simple roots and no multiple root;

; (12)

(i) If n and m are relatively prime and

pn—m —1)mm _ n—m
_ )t —m 13
a™ n"
then the algebraic equation P(w) = 0 has exactly n — 1 distinct roots, among which
n — 2 roots are simple and the remaining one is double.

3. Proofs of the theorems

Proof (Proof of Theorem 1.7). Since L; and Ly are two L-functions in S*, each L;
(¢ = 1, 2) has at most one pole in C, which may appear only at s = 1. By the
assumption P(w) is any polynomial with [(> 2) distinct roots. Therefore, we can
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write

P(w) = A(w — 7)™ (w —72)"* ... (w — 7)™, (14)
where [ (> 2), m; (> 1) are integers and A(# 0), y1,72...,7 are constants. To
proceed further, let us consider the following two cases.

Case 1. Suppose that P(1) # 0. Clearly, v; # 1 for each j = 1,2,...,1. Since P(L)
and P(Ls) share 0 CM, we clearly obtain a function £(s) given by
£y - PEr) =1
P(Ls(5))
such that £(s) has neither zero nor pole in C. Here p is an integer, in particular, if L;
and Lo are both entire functions, then p = 0 and £(s) takes the form £(s) = iEé;E:gg

If dr,, denotes the degree of L;, then by Steuding [16, p. 150], we obtain that

(15)

1 dr,
T(r,L;) =N <r, L) +0(r) = Lirlogr+O(r), i = 1,2. (16)
i s
Using the definition of order of meromorphic function we deduce that
p(L1) =1, p(L2) =1. (17)

From Nevanlinna’s first fundamental theorem and (16) we also obtain (see [16, pp.
152-153)):

1 . .
i~
By (17), (18) and Lemma 2.1 we have p(L(s)) < max{p(P(L1)), p(P(L2))} < 1.
This together with Lemma 2.2 implies that £(s) is of the form
L(s) = e?), (19)

where ¢(s) is a polynomial of degree at most 1. Let ¢(s) = ¢15+ ¢, where ¢1 and ¢y
are constants. Then from (15) and (19) we have

P(Li(s)) f
= (s —1)Prenstes, 20
P(Lats) Y 20
where p; = —p is an integer. Noting that L;(s) = Z ai?) with a;(1) = 1, we deduce
n=1
UEIEOO Li(s)=1, i=1,2. (21)
As P(1) # 0, using (21) we clearly obtain
l mj
o—+o0 P(Ly(s)) i o—+oo \ La(s) —

Let us suppose that ¢; = ¢11 + ici2 and ¢ = co1 + icoa, where ci11, €12, Co1, Cog are
real numbers. With these values and that s = o + i, from (20) and (22) it now
follows that

— (U + it — 1)1)1 6011U—Clzt-‘rczl+i(0120+011t+c22) (23)
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and lim (O’ +it— 1):01661107012t+621+i(6120+611t+622) - 1. (24)
o—+0o0
If possible, let ¢11 # 0. Then for ¢1; > 0, in view of (23), we have lim,_, ; ‘ E g%‘ =
P(Ll(S))

~+00, which is a contradiction to (24). Similarly, for ¢;; < 0, lim,— 40 ’

=0,
P(Lz(s))
which is also a contradiction. Therefore ¢;; = 0. Then by the same reasoning we

must have p; = 0. Therefore, from (23) we get ‘ﬁgéi(sgg = e~czt+ea Also, by (24)

we have lim,_, | o e~ c12tTe21 = g=cizétten — 1 Thys ’géi gz))) = 1. This together
with (22) gives
P(L
P(L1(s) =1 (25)
P(La(s))

If P(w) is a polynomial of degree ¢, then (14) can be rewritten as
P(w) = aqw? + ag_w? ' + ...+ a;w + ag,
where a4 (# 0) ag—1,...,a0 € C, ¢ = Zizl m;. Therefore, in view of (25) it follows
that
ag(L19 — Lo®) + ag 1 (L1977 = Lo Y + ... 4 aa(Ly® — Lo?) +ay(Ly — Ly) =0

i.e.,

q-1 q-2
(Ll—Lg anqu 1- kLg +aq IZqu 2- kL +.. +CLQZL1 L2k+a1 ZO (26)
k=0 k=0 k=0

If Ly = Lo, then (26) holds and we have nothing to prove. Therefore, in what follows,
let us assume that Ly # Lo. Then from (26) we get

qg—1 — 1
anqu 1= kLQ —i—aq 1ZL1q 2= kL + . +GQZL11_kL2k —|—a1 =0. (27)
k=0 k=0 k=0

Since Ly, Ly € S* satisfy the same functional equation, by Lemma 2.3 there exists a
common zero of Ly, Ly which is also a zero of L; — Ly in some region {s € C : Re (s) <
—ro and |Im (s)] < k1} for some sufficiently large positive constants ko and k; such
that each of Ly, Lo and Ly — Lo is zero-free in {s € C : Re(s) > ko}. Considering
such a common zero, say so, satisfying L1 (so) = La(s¢) = 0, we obtain from (27) that
a1 = 0. Suppose that as # 0. If ¢ = 2, then we arrive at a contradiction as L1 #Z Lo
and a; = 0. For the case ¢ > 2, (27) reduces to

q-1 q-2
anqu YR Lok faga Zqu S PLEE +G3ZL12 FLo% = —ao(Li+Ls). (28)
k=0 k=0 k=0

If Ly + Lo # 0, then likewise in the above paragraph, using Lemma 2.3 we can
obtain a region {s € C : Re(s) < —«o and|[Im(s)| < ’1} in which L;, Lo and
Ly 4+ Ly have common zeros with the same multiplicities (one) for some sufficiently
large positive constants k’g and x'1. Let s; be a simple zero of both L; and Ls in
this region. Then s; is a zero of the left-hand side of (28) with multiplicity at least
2, while it is a zero of the right-hand side of (28) with multiplicity 1. Thus we arrive
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at a contradiction. Therefore, we have L; + Ly = 0, which is again a contradiction in
view of (21). Thus, assuming L; # Ly we obtain an impossibility for as # 0.

Next, suppose that ag = 0. Let ko (> 3) be the smallest positive integer such that
ar, 7 0. Obviously, ¢ # ko, otherwise we arrive at a contradiction as L; # Lo and
a; =0for 1 <j <ko—1. Then (26) can be written as

ag(L17—Lo®)+ay 1 (L1 T = Lot ) 4. . a1 (LT = Lyroth=—qy (Lo —LE0). (29)

Assume that Llf" e Lg“. As Ly, Ly € S* satisfy the same functional equation, from
Lemma 2.3 we see that there exits some region {s € C: Re(s) < =" and [Im (s)| <
k""1} in which Ly (s), La(s), (L1 —a1L2)(s), (L1 —a2Ll2)(s), ..., (L1 —ag,L2)(s) have
common simple zeros for some sufficiently large positive constants k"¢ and "1 such
that these functions have no zero in {s € C : Re(s) > ki }. Here as,as, ..., oy, are
the distinct roots of s* = 1. Considering s» as a common simple zero of L; and Lo
in the above region of common zeros, it is clear that s, is a zero of the left-hand side
of (29) with multiplicity at least ko + 1, and a zero of the right-hand side of (29) with
multiplicity ky. Hence we arrive at a contradiction. Therefore, we have L]f“ = Lg”,
which implies L1 = a; Lo, where afo =1, and hence L; = Lo in view of (21). This
contradicts the assumption Ly Z Lo.

Case 2. Suppose that P(1) = 0. Then exactly one of 71, 72,...,7v is 1. Without
loss of generality, suppose that v, = 1. Clearly, P(w) can be rewritten as
Pw)=Aw—y)™ ... (w—=y-1)™ (w—1)". (30)
Also, by the assumption we have, P(L;) and P(Ls) share 0 CM. Then it is easy to
see that the relations (15)-(20) hold. By (30) we have
(L1(s) = 7)™ ... (La(s) —m=1)™ (La(s) =)™
(L2(s) = v1)™ ... (La(s) — y—1)™ (La(s) — 1)™
for some integer p;. Obviously, by Lemma 2.4 we obtain
P(L
(L1(s)) - D, (31)
P(L(s))
where D(# 0) € C. Since degree of the polynomial P(w) is ¢, we have
aquq + aq,1L1q_1 +...4+a1l1 +ag
= DaqLQq + Daq_ngqfl + ...+ Dang + DCL(). (32)
Assume that Ly # Ls. Since Lj, Lo satisfy the same functional equation, there
exists a region of common zeros of Ly, Ly and L — Ly given by {s € C : Re(s) <
—ro and |Im (s)| < k1} for some sufficiently large positive constants ko and ;. With
such a common zero of L1, Ly we easily obtain from (32) that ao(1 — D) = 0. If
D =1, then (32) reduces to (26), and so by the arguments (26) onwards in Case 1.,
we obtain that Ly # Lo is not possible. Suppose that D # 1. Then using ag = 0, (32)
can be rewritten as
ag(L19 — DLo%) 4+ ag_1 (L1 " — DLy ') + ...+ a1(Ly — DLy) = 0. (33)
Let jo (> 1) be the smallest positive integer such that aj, # 0. Clearly, jo # g,

— (S _ 1)1’16013-"-02’
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otherwise by (21) we have a contradiction. Then (33) reduces to
aq(qu - DLQq) + aq_l(qu_l - DLQq_l) + ...+ aj0+1(L1j0+1 - DL2j0+1)
= —a;,(L{° — DLY). (34)

If L7 # DL, then from Lemma 2.3 we see that Li(s), La(s), (L1 — B1L2)(s),
(L1—pB2L2)(s), ..., (L1—PBj,L2)(s) have common simple zeros in some region Re (s) <
—k"y for a sufficiently large k"o > 0, where 81, 82, ..., ), are the distinct roots of
s/o = D. Considering a common simple zero of L; and Ly in this region, it is clear
that multiplicity of the zero is at least jo + 1 and exactly jg in the left-hand and
right-hand side of (34), respectively. This is clearly a contradiction. Therefore, we
have L{" = DL, and hence Ly = Lo in view of (21). This clearly contradicts the
assumption Ly # Lo.

Therefore, combining Case 1. and Case 2. it follows that L; = Ly. This completes
the proof of Theorem 1.7. 0

Proof (Proof of Corollary 1.8). By the assumption L1, Lo share S = {~v1,72,..., %}
CM, where v; # vj, 4,5 = 1,2,...,1. Then from the definition of set sharing (L; —
) L1 —v2)... (L1 — ) and (La — 71)(L2 — 72) ... (L2 — ;) have the same zeros
counting multiplicity. In other words, P;(L1) and P;(L2) share 0 CM, where P;(w) =
(w—"1)(w—="2) ... (w—"2). Since l > 2, the conclusion follows from Theorem 1.7. [

Proof (Proof of Theorem 1.10). Since n and m are positive integers with n > m > 1,
P(w) is certainly a polynomial of degree n (> 2). On the other hand, by Lemma 2.5
we see that P(w) = 0 has exactly n(> 2) distinct roots as =" # (_1)nmmrff_m)n7m
Since Ly and Lo share S CM, P(Ly) and P(Ly) share 0 CM. Thus by the lines of

proof of Theorem 1.7 the conclusion can be obtained. Hence we omit the details. [

Proof (Proof of Theorem 1.13). Since n > m, the equation P(w) = 0 has n+m (> 2)
distinct roots, in view of Lemma 2.5. Then using the sharing condition between
P(Ly) and P(Lg), and proceeding in the lines of proof of Theorem 1.7 we obtain the
conclusion. U

4. Further remarks

In Theorems 1.4, 1.5 and also in Theorems 1.7-1.13, L and Ly are L-functions which
have nonzero degree and satisfy the same functional equation. The case where L-
functions have degree zero remains unresolved in relation to these theorems. There-
fore, it is inevitable to raise the following open question.

QUESTION 4.1. How does Theorem 1.7 hold if the two L-functions L; and Lo are of
degree zero?
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