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Abstract. In this paper, we investigate the value distribution of L-functions in the
extended Selberg class. We show how two L-functions L1 and L2 satisfying certain condition
are uniquely determined by the zero sharing between P (L1) and P (L2) for some polynomial
P , or by a set sharing between L1 and L2. Considering the most general form of a polynomial
in the set sharing we obtain some results which completely generalize and extend some
recent results of [X. M. Li, X. R. Du, H. X. Yi, Dirichlet series satisfying a Riemann type
functional equation and sharing one set, Complex Var. Elliptic Equ., 68(10) (2023), 1653–
1677], which were actually proved as an answer of an analogous question of Gross [F. Gross,
Factorization of meromorphic functions and some open problems, Complex Analysis (Proc.
Conf. Univ. Kentucky, Lexington, Ky., 1976), pp. 51–69, Lect. Notes Math., Vol 599,
Springer, Berlin, 1977] for L-functions. We also obtain uniqueness relation between two
nonconstant L-functions (belonging to the extended Selberg class) by proving other two
results, one concerning a prior result due to Yuan-Li-Yi [Q. Q. Yuan, X. M. Li, H. X. Yi,
Value distribution of L-functions and uniqueness questions of F. Gross, Lithuanian Math.
J., 58 (2018), 249–262] and another related to a result of Hao-Chen [W. J. Hao, J. F. Chen,
Uniqueness theorems for L-functions in the extended Selberg class, Open Math., 16 (2018),
1291–1299].

1. Introduction

The Riemann zeta function ζ(s) =
∑∞

n=1
1
ns is a well known and valuable object

in mathematics due to the celebrated Riemann hypothesis conjectured by B. Rie-
mann [14]. The function has various structural properties including the existence of
a single pole in C, analytic continuation as meromorphic function and Euler product
over the primes. Here and throughout the paper, C denotes the usual complex plane
and s denotes a complex variable of the form s = σ + it, where σ and t are real
numbers, and i is the imaginary unit. L-functions which are defined by taking the

2020 Mathematics Subject Classification: 30D35, 30D30, 11M06, 11M41

Keywords and phrases: Dirichlet series; Selberg class; L-function; set sharing; uniqueness;
meromorphic.

1



2 Uniqueness of L-functions in the extended Selberg class

Riemann zeta function as a prototype but in a wider setting are naturally important,
especially in analytic number theory.

In 1989, Selberg introduced a class of L-functions by considering ζ(s) as a model.
Recently, value distribution of L-functions belonging to this class has gained increasing
interest from the researchers (see [8, 9, 13, 16, 20]). Before going into the detailed
discussion, we must introduce the definition of this class due to Selberg, often referred
to as the Selberg Class S. The Selberg class S of L-functions is defined as the set of all

those Dirichlet series L(s) =
∑∞

n=1
a(n)
ns of a complex variable s, which is absolutely

convergent for Re (s) > 1, and satisfy the following axioms (see [15]):
(i) Ramanujan hypothesis: a(n) ≪ nε for each ε > 0;

(ii) Analytic continuation: There is a nonnegative integer m such that (s− 1)mL(s)
is an entire function of finite order;

(iii) Functional equation: L satisfies a functional equation of the type

ΛL(s) = ωΛL(1− s),

where ΛL(s) = L(s)Qs
K∏
j=1

Γ(λjs+ νj)

with positive real numbers Q, λj , a positive integer K and complex numbers νj , ω
with Re (νj) ≥ 0 and |ω| = 1;

(iv) Euler product hypothesis: L can be written over primes in the following manner:

L(s) =
∏
p

exp

( ∞∑
k=1

b(pk)

pks

)
with suitable coefficients b(pk) such that b(pk) ≪ pkθ for some θ < 1

2 , where the
product is taken over all prime numbers p.

An L-function L(s) is said to be in the extended Selberg class S♯ if it satisfies
axioms (i)-(iii) and is not vanishing identically (see [7]). It is worth mentioning that
there do exist some L(s) which do not have an Euler product. Moreover, as the class
S♯ contains the class S, it will be more reasonable to consider the functions in S♯.
In this paper, by an L-function we will always mean an L-function in the extended
Selberg class S♯, with the normalizing condition a(1) = 1. Naturally, the results
found for functions in S♯ are also valid for the functions in S. Let us now mention
that if dL denotes the degree of an L-function L(s), then dL := 2

∑K
j=1 λj , where λj

and K are respectively the positive real number and the positive integer defined as in
axiom (iii). Unless stated otherwise, the degree of L(s) in the following will always be
taken as nonzero (positive). The value distribution of L(s) concerns the distribution
of zeros of L(s)− c for any c ∈ C ∪ {∞}. In this paper, we will mainly focus on the
problem of determining L-functions by the preimage of subsets of C. For the sake of
convenience, the notion of sharing of sets (or values) is now illustrated below, which
is actually same as that of the meromorphic functions.

By the term “meromorphic” we understand a function that is meromorphic in C.
Let M(C) denote the class of functions meromorphic in C. Suppose two nonconstant
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functions f and g belong to M(C). For a subset S of C ∪ {∞}, define
E(S, f) := ∪v∈S{s ∈ C : f(s) = v},

where a zero of f − v with multiplicity p is counted p times in E(S, f), i.e., E(S, f)
is a multiset. When we ignore the multiplicities, we replace the symbol E(S, f) by
E(S, f). If E(S, f) = E(S, g) for some f, g ∈ M(C), then f and g are said to share
S CM (Counting Multiplicity). In case E(S, f) = E(S, g), then f , g share S IM
(Ignoring Multiplicity). If the set S contains exactly one element, say v, then we
write E(S, f) (resp. E(S, f)) simply as E(v, f) (resp. E(v, f), and the definitions of
value sharing CM or IM follows in the similar way.

In terms of shared values, Nevanlinna’s five-value theorem states that two non-
constant meromorphic functions f and g are identically equal if E(vj , f) = E(vj , g)
for five distinct values v1, v2, v3, v4 and v5 in ∈ C∪{∞}. It was also shown by Nevan-
linna (see [3, 19]) that the number “five” is the best possible in the above theorem.
In 2007, without putting any restriction on the degree of L-function, Steuding [16, p.
152] first proved a uniqueness result with one shared value. From this result and [5] it
is known that two L-functions L1 and L2 satisfying axioms (i)-(iii) with a(1) = 1 are
identical when they share a complex value c ( ̸= ∞, 1) CM. Since L-functions can be
analytically continued as meromorphic functions, it becomes quite interesting to in-
vestigate to which extent an L-function L(s) can share values or sets with an arbitrary
meromorphic function f(s). Being motivated by the well-known Gross’ question for
meromorphic (or entire) functions (see [2]) Yuan-Li-Yi [20] investigated on the possi-
ble relationship between an L-function L and a function f in M(C) for the situation
when L and f share one or two finite sets. In [20], without requiring positive degree
of L(s), the authors proved the following result regarding one set sharing between L
and f .

Theorem 1.1 ([20]). Let f be a meromorphic function in C with finitely many poles,
and let L be a nonconstant L-function. Suppose that S = {w : wn + awm + b = 0},
where n and m are relatively prime positive integers with n > 2m + 4, and a, b are
nonzero constants. If f and L share S CM, then L = f.

Several research articles have been devoted in the direction of uniqueness of L-
functions under the sharing of one or more sets of values with some meromorphic
function. Among these, we take into account only those in this paper which involve
preferably one shared set. In the same direction, Hao-Chen [4] obtained the following
result.

Theorem 1.2 ([4]). Let f be an entire function with limRe(s)→∞ f(s) = k (k ̸= ∞),
and let R(w) = 0 be an algebraic equation with n ≥ 2 distinct roots, where R(1), R(k),
R(b) ̸= 0. Suppose that f(s0) = L(s0) = b for some s0 ∈ C. If for a nonconstant
L-function L, E(S,L) = E(S, f), where S = {w : R(w) = 0}, then R(L) = R(f).

In [1], similar polynomials as of Theorem 1.1 were considered in case of set sharing.
In 2011, Li [9] obtained that if two L-functions L1 and L2 in S♯ satisfy the same
functional equation, and if E(cj , L1) = E(cj , L2) for two distinct finite complex values
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c1 and c2, then L1 = L2. This clearly shows that the uniqueness relation L1 = L2

holds for a relaxed nature of sharing as compared to Steuding’s theorem (see [9,16]).
In connection with the above result of Li [9] the following question was raised by
Li-Du-Yi [12] for L-functions.

Question 1.3. Is there a finite set S such that any two nonconstant L-functions L1

and L2 are identical if E(S,L1) = E(S,L2)?

In the same paper, the authors [12] got affirmative answers to the above question
by means of the following two theorems.

Theorem 1.4 ([12]). Let L1 and L2 be two L-functions in the extended Selberg class
S♯, which satisfy the same functional equation. Suppose that S = {c1, c2, c3}, where
c1, c2, c3 are any three distinct finite complex numbers. If E(S,L1) = E(S,L2), then
L1 = L2.

Theorem 1.5 ([12]). Let L1 and L2 be two L-functions in the extended Selberg class
S♯, which satisfy the same functional equation. Suppose that S = {c1, c2}, where
c1, c2 are two distinct finite complex numbers. If E(S,L1) = E(S,L2), then L1 = L2.

In Theorems 1.1 and 1.2, the set S is given by the roots of some polynomials. The
sets involved in the sharing in Theorems 1.4 and 1.5 are actually {w ∈ C : P1(w) = 0}
and {w ∈ C : P2(w) = 0}, where P1(w) and P2(w) are polynomials of the form
(w − c1)(w − c2)(w − c3) and (w − c1)(w − c2), respectively. In fact, Theorem 1.4
(resp. Theorem 1.5) implies that if P1(L1) and P1(L2) (resp. P2(L1) and P2(L2))
share 0 CM, then L1 and L2 are identical, provided they satisfy the same functional
equation. On the other hand, it is still unknown whether Theorem 1.1 holds for two
nonconstant L-functions L1 and L2 in S♯, or for some other values of n. However,
in [17], Wu-Hu proved a uniqueness result with L-functions for a set S ⊂ C\{1} with
n elements of very special type. Regarding these observations, it is quite natural to
ask the following question.

Question 1.6. (i) What will be the conclusions in Theorems 1.4 and 1.5 if P (L1)
and P (L2) share 0 CM, where P (w) is an arbitrary polynomial of some degree q?

(ii) Is it possible to replace L and f by L1 and L2 of S♯ as well as reduce the lower
bound of n in Theorem 1.1?

In this paper, we will find the best possible answer of (i) of Question 1.6 by
considering the most generalized form of a polynomial. In this direction, we prove
the following results.

Theorem 1.7. Let L1 and L2 be two nonconstant L-functions in the extended Selberg
class S♯, and let L1, L2 satisfy the same functional equation. Suppose that P (w) = 0
is a polynomial equation with l (≥ 2) distinct roots. If E(0, P (L1)) = E(0, P (L2)),
then L1 = L2.

Corollary 1.8. Let L1 and L2 be two nonconstant L-functions in the extended Sel-
berg class S♯, and let L1, L2 satisfy the same functional equation. If E(S,L1) =
E(S,L2), where S = {γ1, γ2, . . . , γl} ⊂ C, l ≥ 2, then L1 = L2.
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Remark 1.9. It is obvious that Theorems 1.4 and 1.5 can be obtained as a special
case of Corollary 1.8. Thus Corollary 1.8 is a generalization of both Theorems 1.4
and 1.5.

Taking into account (ii) of Question 1.6 we have the next theorem.

Theorem 1.10. Let L1 and L2 be two nonconstant L-functions in the extended Selberg
class S♯, and let L1, L2 satisfy the same functional equation. Suppose P (w) = wn +

awm+b, where n and m are positive integers with n > m, bn−m

an ̸= (−1)nmm(n−m)n−m

nn ,
and a, b are two nonzero constants. If E(S,L1) = E(S,L2), where S = {w : P (w) =
0}, then L1 = L2.

Remark 1.11. Theorem 1.10 suggests that the number of values of n for which the
conclusion holds is substantially increased with respect to Theorem 1.1. Also, while
replacing L, f by L1, L2 one does not necessarily need gcd(m,n) = 1.

As a variant of Theorem 1.1, Hao-Chen [4] obtained the following result.

Theorem 1.12 ([4]). Let f be an entire function with limRe (s)→∞ f(s) = k (k ̸= ∞).
Let S = {γ1, γ2, . . . , γl} ⊂ C \ {1, k, β}, where γ1, γ2, . . . , γl are all distinct roots of
the algebraic equation wn+m + awn + b = 0, 1 ≤ l ≤ n+m, n and m are two positive
integers with n > m+2, and a, b are finite nonzero constants. If f and a nonconstant
L-function L share S CM, and f(s0) = L(s0) = β for some s0 ∈ C then f = tL, where
t is a constant such that td = 1, d = gcd(n, m).

Regarding Theorem 1.12, considering L1 and L2 we deduce an application of
Theorem 1.7 by means of the following result.

Theorem 1.13. Let L1 and L2 be two nonconstant L-functions in S♯, which satisfy
the same functional equation and let S be a subset of C consisting of all distinct
roots of the algebraic equation as given in Theorem 1.12 with n > m and bm

an+m ̸=
(−1)n+mnnmm

(n+m)n+m . If L1 and L2 share S CM, then L1 = L2.

Remark 1.14. In Theorem 1.13, the uniqueness relation is obtained without the
requirement of the condition that f(s0) = L(s0) = β for some s0 ∈ C.

Let us denote by S♯
0 the class of those L-functions belonging to S♯ with a(1) = 1,

which have nonzero degree and satisfy the same functional equation. To state the
next result we need the following definition.

Definition 1.15 ([10]). If for any two functions f, g in M(C), there exists some set
S ⊂ C such that E(S, f) = E(S, g) implies f = g, then S is called unique range set
(URS) of meromorphic functions.

Replacing f, g by two L-functions in S♯ we can similarly define URS for L-functions
in S♯. Choosing the class S♯

0, from Theorem 1.7 we immediately have the following
result.
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Corollary 1.16. Let S = {γ1, γ2, . . . , γl} ⊂ C, l ≥ 2. Then S is URS of L-functions

in S♯
0.

To prove the main results, we will be greatly dependent on Nevanlinna theory of
value distribution. For this, we assume that the readers are well familiar with the
standard notations and fundamental results of the theory (for details, see [3, 18,19]).
For convenience, we must mention that the symbols T (r, f), m(r, f) and N(r, f)
(resp. N(r, f)) are used to denote the characteristic function, the proximity function,
the integrated counting function (resp. reduced counting function) of poles of some
meromorphic f , respectively. For some a ∈ C, we define N(r, a; f) = N(r, 1

f−a )

and N(r, a; f) = N(r, 1
f−a ). Moreover, S(r, h) will mean any quantity satisfying

S(r, h) = O(log(rT (r, h))) (r → ∞) possibly outside a set of finite Lebesgue measure.
In particular, if h is of finite order, then S(r, h) = O(log r) (r → ∞) for all r. The

order ρ(f) of some f ∈ M(C) is defined as ρ(f) = lim supr→∞
log+ T (r,f)

log r .

2. Lemmas

We present some lemmas that will be useful in proving the main results of this paper.

Lemma 2.1 ([19, Theorem 1.14]). Let nonconstant f(s), g(s) ∈ M(C). If ρ(f) and
ρ(g) are the orders of f and g respectively, then

ρ(fg) ≤ max{ρ(f), ρ(g)}
ρ(f + g) ≤ max{ρ(f), ρ(g)}.

Lemma 2.2 ([19, Theorem 1.42]). Let a nonconstant function f(s) ∈ M(C). If 0
and ∞ are two Picard exceptional values of f, then f(s) = eh(s) for some entire
function h(s).

Lemma 2.3. Let L1 and L2 be two nonconstant L-functions in S♯, and L1, L2 satisfy
the same functional equation. If L1 + cL2 ̸≡ 0 for some nonzero constant c, then
L1(s), L2(s), (L1 + cL2)(s) and

∏K
j=1 (Γ(λjs+ νj))

−1
have the same zeros in {s ∈

C : Re (s) < −κ0 and |Im (s)| < κ1}, where κ0 and κ1 are two sufficiently large positive
numbers such that none of the functions L1, L2 and L1 + cL2 has a zero in {s ∈ C :
Re (s) > κ0}. Furthermore, in the region {s ∈ C : Re (s) < −κ0 and |Im (s)| < κ1},
each common zero of L1, L2 and L1+cL2 have the same multiplicity 1 for sufficiently
large κ0, κ1 > 0.

Proof. Noting that L1 and L2 satisfy the same functional equation, by axiom (iii) of
the definition of L-function, we readily have

L1(s) = ωχ(s)L1(1− s), L2(s) = ωχ(s)L2(1− s), (1)

where χ(s) =
Q1−2s

∏K
j=1 Γ(λj(1− s) + νj)∏K
j=1 Γ(λjs+ νj)

. (2)



S. Halder 7

Here Q, λj , νj , ω are same as in axiom (iii). From (1) we obtain

L1(s) + cL2(s) = ωχ(s){L1(1− s) + cL2(1− s)}. (3)

It is easy to see that as L1(s) and L2(s) are convergent Dirichlet series, under the
assumption L1 + cL2 ̸≡ 0, we can get a right half-plane {s ∈ C : Re (s) ≥ κ0}
determined by a sufficiently large positive constant κ0 such that none of L1(s), L2(s)
and L1(s) + cL2(s) has a zero in {s ∈ C : Re (s) ≥ κ0}. In view of the fact that
the Gamma function Γ is analytic except for its simple poles at s = 0,−1,−2, . . .
in C such that Γ(s) ̸= 0 for each s ∈ C, and that χ has neither a pole nor a zero in
{s ∈ C : |Im (s)| > κ1} for some sufficiently large positive number κ1, we conclude
from (1)–(3) that zeros of L1(s), L2(s), (L1 + cL2)(s) coincides with the zeros of∏K

j=1 (Γ(λjs+ νj))
−1

in {s ∈ C : Re (s) < −κ0 and |Im (s)| < κ1} for large κ0, κ1 >
0. Moreover, in this region, all of L1, L2 and L1 + cL2 have the zeros of the same
multiplicity (one) as that of the zeros of

∏K
j=1 (Γ(λjs+ νj))

−1
. □

Lemma 2.4. Let L1 and L2 be two nonconstant L-functions in S♯, and let L1, L2

satisfy the same functional equation. Suppose that P (w) = 0 is an algebraic equation,
where P (w) = A(w−γ1)

m1 . . . (w−γl−1)
ml−1(w−1)ml with A( ̸= 0), γj (γi ̸= γj ̸= 1,

i, j = 1, 2, . . . , l−1) being constants; l (≥ 2), m1, m2, . . .ml are positive integers such

that
∑l

i=1 mi = q. If P (L1(s))
P (L2(s))

= (s−1)ped1s+d2 , where d1, d2 ∈ C and p is an integer,

then P (L1(s))
P (L2(s))

= D for some nonzero constant D.

Proof. From the assumption we can write

(L1(s)− γ1)
m1 . . . (L1(s)− γl−1)

ml−1(L1(s)− 1)ml

(L2(s)− γ1)m1 . . . (L2(s)− γl−1)ml−1(L2(s)− 1)ml
= (s− 1)ped1s+d2 . (4)

By the same reasoning as adopted in [9, p. 4207], we obtain

D1

n1
σ
≤ |L1(s)− 1| ≤ D2

n1
σ

and L′
1(s) = O

(
1

n1
σ

)
, (5)

and
D3

n2
σ
≤ |L2(s)− 1| ≤ D4

n2
σ

and L′
2(s) = O

(
1

n2
σ

)
, (6)

as σ = Re (s) → +∞. Here Dj (> 0) (j = 1, 2, 3, 4) is a constant, and n1 (≥ 2)
n2 (≥ 2) are integers. Clearly, from (5) and (6) it follows that

D′
1

D′
4

(
n2

n1

)σ.ml

≤
∣∣∣∣L1(s)− 1

L2(s)− 1

∣∣∣∣ml

≤ D′
2

D′
3

(
n2

n1

)σ.ml

as σ → ∞, (7)

where D′
1 = Dml

1 , D′
2 = Dml

2 etc. From (4) and (7) we have

D′
1

D′
4

(
n2

n1

)σ.ml
∣∣∣∣(L1(s)− γ1

L2(s)− γ1

)m1
(
L1(s)− γ2
L2(s)− γ2

)m2

. . .

(
L1(s)− γl−1

L2(s)− γl−1

)ml−1
∣∣∣∣

≤
∣∣(s− 1)ped1s+d2

∣∣
≤ D′

2

D′
3

(
n2

n1

)σ.ml
∣∣∣∣(L1(s)− γ1

L2(s)− γ1

)m1
(
L1(s)− γ2
L2(s)− γ2

)m2

. . .

(
L1(s)− γl−1

L2(s)− γl−1

)ml−1
∣∣∣∣ , (8)
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as σ → +∞. Since Li(s) → 1 for σ → +∞ (i = 1, 2), by (8) we obtain

D′
1

2D′
4

(
n2

n1

)σ.ml

≤
∣∣(s− 1)ped1s+d2

∣∣ ≤ 2D′
2

D′
3

(
n2

n1

)σ.ml

(9)

as σ → +∞. We now distinguish the following two cases.

Case 1. Let d1 ̸= 0. Then proceeding in the line of [12, Subcase 2.1 of proof of
Theorem 1.11,pp. 1672-1674] and using (9) we obtain that this case is impossible.
Here we omit the details.

Case 2. Let d1 = 0. Then (4) can be rewritten as

(L1(s)− γ1)
m1 . . . (L1(s)− γl−1)

ml−1(L1(s)− 1)ml

(L2(s)− γ1)m1 . . . (L2(s)− γl−1)ml−1(L2(s)− 1)ml
= (s− 1)ped2 . (10)

In this case, (9) reduces to

D′
1

2D′
4

(
n2

n1

)σ.ml

≤
∣∣(s− 1)ped2

∣∣ ≤ 2D′
2

D′
3

(
n2

n1

)σ.ml

(11)

as σ → +∞. From (11) it follows that p = 0 and n1 = n2 (≥ 2). Consequently, we
have from (10) that

(L1(s)− γ1)
m1 . . . (L1(s)− γl−1)

ml−1(L1(s)− 1)ml

(L2(s)− γ1)m1 . . . (L2(s)− γl−1)ml−1(L2(s)− 1)ml
= D,

where D = ed2 ̸= 0. Thus the proof of the lemma is completed.

Lemma 2.5 ( [11, Lemma 2.7]). Let P (w) = wn + awm + b, where m and n are
positive integers such that n > m, a and b are finite nonzero complex values. Then
the following hold:

(i) The algebraic equation P (w) = 0 has no root of multiplicity ≥ 3;

(ii) If

bn−m

an
̸= (−1)nmm(n−m)n−m

nn
, (12)

then the algebraic equation P (w) = 0 has n distinct simple roots and no multiple root;

(iii) If n and m are relatively prime and

bn−m

an
=

(−1)nmm(n−m)n−m

nn
, (13)

then the algebraic equation P (w) = 0 has exactly n − 1 distinct roots, among which
n− 2 roots are simple and the remaining one is double.

3. Proofs of the theorems

Proof (Proof of Theorem 1.7). Since L1 and L2 are two L-functions in S♯, each Li

(i = 1, 2) has at most one pole in C, which may appear only at s = 1. By the
assumption P (w) is any polynomial with l(≥ 2) distinct roots. Therefore, we can
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write

P (w) = A(w − γ1)
m1(w − γ2)

m2 . . . (w − γl)
ml , (14)

where l (≥ 2), mi (≥ 1) are integers and A( ̸= 0), γ1, γ2 . . . , γl are constants. To
proceed further, let us consider the following two cases.

Case 1. Suppose that P (1) ̸= 0. Clearly, γj ̸= 1 for each j = 1, 2, . . . , l. Since P (L1)
and P (L2) share 0 CM, we clearly obtain a function L(s) given by

L(s) = P (L1(s))(s− 1)p

P (L2(s))
, (15)

such that L(s) has neither zero nor pole in C. Here p is an integer, in particular, if L1

and L2 are both entire functions, then p = 0 and L(s) takes the form L(s) = P (L1(s))
P (L2(s))

.

If dLi
denotes the degree of Li, then by Steuding [16, p. 150], we obtain that

T (r, Li) = N

(
r,

1

Li

)
+O(r) =

dLi

π
r log r +O(r), i = 1, 2. (16)

Using the definition of order of meromorphic function we deduce that

ρ(L1) = 1, ρ(L2) = 1. (17)

From Nevanlinna’s first fundamental theorem and (16) we also obtain (see [16, pp.
152-153]):

ρ

(
1

Li − γj

)
= ρ (Li − γj) = ρ(Li) = 1, i = 1, 2; j = 1, 2, . . . l. (18)

By (17), (18) and Lemma 2.1 we have ρ(L(s)) ≤ max {ρ(P (L1)), ρ(P (L2))} ≤ 1.
This together with Lemma 2.2 implies that L(s) is of the form

L(s) = eϕ(s), (19)

where ϕ(s) is a polynomial of degree at most 1. Let ϕ(s) = c1s+ c2, where c1 and c2
are constants. Then from (15) and (19) we have

P (L1(s))

P (L2(s))
= (s− 1)p1ec1s+c2 , (20)

where p1 = −p is an integer. Noting that Li(s) =

∞∑
n=1

ai(n)

ns
with ai(1) = 1, we deduce

lim
σ→+∞

Li(s) = 1, i = 1, 2. (21)

As P (1) ̸= 0, using (21) we clearly obtain

lim
σ→+∞

P (L1(s))

P (L2(s))
=

l∏
j=1

lim
σ→+∞

(
L1(s)− γj
L2(s)− γj

)mj

= 1. (22)

Let us suppose that c1 = c11 + ic12 and c2 = c21 + ic22, where c11, c12, c21, c22 are
real numbers. With these values and that s = σ + it, from (20) and (22) it now
follows that

P (L1(s))

P (L2(s))
= (σ + it− 1)p1ec11σ−c12t+c21+i(c12σ+c11t+c22) (23)
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and lim
σ→+∞

(σ + it− 1)p1ec11σ−c12t+c21+i(c12σ+c11t+c22) = 1. (24)

If possible, let c11 ̸= 0. Then for c11 > 0, in view of (23), we have limσ→+∞

∣∣∣P (L1(s))
P (L2(s))

∣∣∣ =
+∞, which is a contradiction to (24). Similarly, for c11 < 0, limσ→+∞

∣∣∣P (L1(s))
P (L2(s))

∣∣∣ = 0,

which is also a contradiction. Therefore c11 = 0. Then by the same reasoning we

must have p1 = 0. Therefore, from (23) we get
∣∣∣P (L1(s))
P (L2(s))

∣∣∣ = e−c12t+c21 . Also, by (24)

we have limσ→+∞ e−c12t+c21 = e−c12t+c21 = 1. Thus
∣∣∣P (L1(s))
P (L2(s))

∣∣∣ = 1. This together

with (22) gives

P (L1(s))

P (L2(s))
≡ 1. (25)

If P (w) is a polynomial of degree q, then (14) can be rewritten as

P (w) = aqw
q + aq−1w

q−1 + . . .+ a1w + a0,

where aq (̸= 0) aq−1, . . . , a0 ∈ C, q =
∑l

i=1 mi. Therefore, in view of (25) it follows
that

aq(L1
q − L2

q) + aq−1(L1
q−1 − L2

q−1) + . . .+ a2(L1
2 − L2

2) + a1(L1 − L2) = 0

i.e.,

(L1−L2)

[
aq

q91∑
k=0

L1
q919kL2

k+aq91

q92∑
k=0

L1
q929kL2

k+. . .+a2

1∑
k=0

L1
19kL2

k+a1

]
=0. (26)

If L1 = L2, then (26) holds and we have nothing to prove. Therefore, in what follows,
let us assume that L1 ̸≡ L2. Then from (26) we get

aq

q−1∑
k=0

L1
q−1−kL2

k + aq−1

q−2∑
k=0

L1
q−2−kL2

k + . . .+ a2

1∑
k=0

L1
1−kL2

k + a1 = 0. (27)

Since L1, L2 ∈ S♯ satisfy the same functional equation, by Lemma 2.3 there exists a
common zero of L1, L2 which is also a zero of L1−L2 in some region {s ∈ C : Re (s) <
−κ0 and |Im (s)| < κ1} for some sufficiently large positive constants κ0 and κ1 such
that each of L1, L2 and L1 − L2 is zero-free in {s ∈ C : Re (s) ≥ κ0}. Considering
such a common zero, say s0, satisfying L1(s0) = L2(s0) = 0, we obtain from (27) that
a1 = 0. Suppose that a2 ̸= 0. If q = 2, then we arrive at a contradiction as L1 ̸≡ L2

and a1 = 0. For the case q > 2, (27) reduces to

aq

q91∑
k=0

L1
q919kL2

k+aq91

q92∑
k=0

L1
q929kL2

k+ . . .+a3

2∑
k=0

L1
29kL2

k = −a2(L1+L2). (28)

If L1 + L2 ̸≡ 0, then likewise in the above paragraph, using Lemma 2.3 we can
obtain a region {s ∈ C : Re (s) < −κ′

0 and |Im (s)| < κ′
1} in which L1, L2 and

L1 + L2 have common zeros with the same multiplicities (one) for some sufficiently
large positive constants κ′

0 and κ′
1. Let s1 be a simple zero of both L1 and L2 in

this region. Then s1 is a zero of the left-hand side of (28) with multiplicity at least
2, while it is a zero of the right-hand side of (28) with multiplicity 1. Thus we arrive
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at a contradiction. Therefore, we have L1 +L2 = 0, which is again a contradiction in
view of (21). Thus, assuming L1 ̸≡ L2 we obtain an impossibility for a2 ̸= 0.

Next, suppose that a2 = 0. Let k0 (≥ 3) be the smallest positive integer such that
ak0

̸= 0. Obviously, q ̸= k0, otherwise we arrive at a contradiction as L1 ̸≡ L2 and
aj = 0 for 1 ≤ j ≤ k0 − 1. Then (26) can be written as

aq(L1
q−L2

q)+aq91(L1
q91−L2

q91)+. . .+ak0+1(L1
k0+1−L2

k0+1)=−ak0(L
k0
1 −Lk0

2 ). (29)

Assume that Lk0
1 ̸≡ Lk0

2 . As L1, L2 ∈ S♯ satisfy the same functional equation, from
Lemma 2.3 we see that there exits some region {s ∈ C : Re (s) < −κ′′

0 and |Im (s)| <
κ′′

1} in which L1(s), L2(s), (L1−α1L2)(s), (L1−α2L2)(s), . . . , (L1−αk0
L2)(s) have

common simple zeros for some sufficiently large positive constants κ′′
0 and κ′′

1 such
that these functions have no zero in {s ∈ C : Re (s) ≥ κ′′

0}. Here α1, α2, . . . , αk0 are
the distinct roots of sk0 = 1. Considering s2 as a common simple zero of L1 and L2

in the above region of common zeros, it is clear that s2 is a zero of the left-hand side
of (29) with multiplicity at least k0+1, and a zero of the right-hand side of (29) with
multiplicity k0. Hence we arrive at a contradiction. Therefore, we have Lk0

1 = Lk0
2 ,

which implies L1 = αjL2, where αk0
j = 1, and hence L1 = L2 in view of (21). This

contradicts the assumption L1 ̸≡ L2.

Case 2. Suppose that P (1) = 0. Then exactly one of γ1, γ2, . . . , γl is 1. Without
loss of generality, suppose that γl = 1. Clearly, P (w) can be rewritten as

P (w) = A(w − γ1)
m1 . . . (w − γl−1)

ml−1(w − 1)ml . (30)

Also, by the assumption we have, P (L1) and P (L2) share 0 CM. Then it is easy to
see that the relations (15)-(20) hold. By (30) we have

(L1(s)− γ1)
m1 . . . (L1(s)− γl−1)

ml−1(L1(s)− 1)ml

(L2(s)− γ1)m1 . . . (L2(s)− γl−1)ml−1(L2(s)− 1)ml
= (s− 1)p1ec1s+c2 ,

for some integer p1. Obviously, by Lemma 2.4 we obtain

P (L1(s))

P (L2(s))
= D, (31)

where D(̸= 0) ∈ C. Since degree of the polynomial P (w) is q, we have

aqL1
q + aq−1L1

q−1 + . . .+ a1L1 + a0

=DaqL2
q +Daq−1L2

q−1 + . . .+Da1L2 +Da0. (32)

Assume that L1 ̸≡ L2. Since L1, L2 satisfy the same functional equation, there
exists a region of common zeros of L1, L2 and L1 − L2 given by {s ∈ C : Re (s) <
−κ0 and |Im (s)| < κ1} for some sufficiently large positive constants κ0 and κ1. With
such a common zero of L1, L2 we easily obtain from (32) that a0(1 − D) = 0. If
D = 1, then (32) reduces to (26), and so by the arguments (26) onwards in Case 1.,
we obtain that L1 ̸≡ L2 is not possible. Suppose that D ̸= 1. Then using a0 = 0, (32)
can be rewritten as

aq(L1
q −DL2

q) + aq−1(L1
q−1 −DL2

q−1) + . . .+ a1(L1 −DL2) = 0. (33)

Let j0 (≥ 1) be the smallest positive integer such that aj0 ̸= 0. Clearly, j0 ̸= q,
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otherwise by (21) we have a contradiction. Then (33) reduces to

aq(L1
q −DL2

q) + aq−1(L1
q−1 −DL2

q−1) + . . .+ aj0+1(L1
j0+1 −DL2

j0+1)

= − aj0(L
j0
1 −DLj0

2 ). (34)

If Lj0
1 ̸≡ DLj0

2 , then from Lemma 2.3 we see that L1(s), L2(s), (L1 − β1L2)(s),
(L1−β2L2)(s), . . . , (L1−βj0L2)(s) have common simple zeros in some region Re (s) <
−κ′′′

0 for a sufficiently large κ′′′
0 > 0, where β1, β2, . . . , βj0 are the distinct roots of

sj0 = D. Considering a common simple zero of L1 and L2 in this region, it is clear
that multiplicity of the zero is at least j0 + 1 and exactly j0 in the left-hand and
right-hand side of (34), respectively. This is clearly a contradiction. Therefore, we
have Lj0

1 = DLj0
2 , and hence L1 = L2 in view of (21). This clearly contradicts the

assumption L1 ̸≡ L2.
Therefore, combining Case 1. and Case 2. it follows that L1 = L2. This completes
the proof of Theorem 1.7. □

Proof (Proof of Corollary 1.8). By the assumption L1, L2 share S = {γ1, γ2, . . . , γl}
CM, where γi ̸= γj , i, j = 1, 2, . . . , l. Then from the definition of set sharing (L1 −
γ1)(L1 − γ2) . . . (L1 − γl) and (L2 − γ1)(L2 − γ2) . . . (L2 − γl) have the same zeros
counting multiplicity. In other words, P1(L1) and P1(L2) share 0 CM, where P1(w) =
(w−γ1)(w−γ2) . . . (w−γl). Since l ≥ 2, the conclusion follows from Theorem 1.7. □

Proof (Proof of Theorem 1.10). Since n and m are positive integers with n > m ≥ 1,
P (w) is certainly a polynomial of degree n (≥ 2). On the other hand, by Lemma 2.5

we see that P (w) = 0 has exactly n(≥ 2) distinct roots as bn−m

an ̸= (−1)nmm(n−m)n−m

nn .
Since L1 and L2 share S CM, P (L1) and P (L2) share 0 CM. Thus by the lines of
proof of Theorem 1.7 the conclusion can be obtained. Hence we omit the details. □

Proof (Proof of Theorem 1.13). Since n > m, the equation P (w) = 0 has n+m (≥ 2)
distinct roots, in view of Lemma 2.5. Then using the sharing condition between
P (L1) and P (L2), and proceeding in the lines of proof of Theorem 1.7 we obtain the
conclusion. □

4. Further remarks

In Theorems 1.4, 1.5 and also in Theorems 1.7-1.13, L1 and L2 are L-functions which
have nonzero degree and satisfy the same functional equation. The case where L-
functions have degree zero remains unresolved in relation to these theorems. There-
fore, it is inevitable to raise the following open question.

Question 4.1. How does Theorem 1.7 hold if the two L-functions L1 and L2 are of
degree zero?
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