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WEAKLY CONTRACTIVE MAPS AND COMMON FIXED POINTS

Akbar Azam and Muhammad Shakeel

Abstract. We prove the existence of common coincidence point and common fixed point for
the self mappings satisfying a generalized weak contractive condition. Consequently it is shown
that sequence of Mann type iterations associated with two self-mappings on convex metric space
converges to their common fixed point.

1. Introduction and preliminaries

When we study linearity, we deal with a vector space and particularly with a
normed vector space. But many of linear concepts may be obtained by defining
convexity instead. Since these concepts are based not on the linear structure, but
on the convexity, it is natural to extend them to nonlinear spaces, which still carry
some kind of convexity.

In 1970, Takahashi [23] succeeded to introduce a notion of convexity in a metric
space and generalized some results regarding fixed points of nonlinear mappings in
Banach spaces. This paper of Takahashi was followed by a spate of papers and
a number of interesting results on fixed point theorems have been extended to
metric spaces by various authors (e.g. see [3–5,7–13]). The aim of this paper is
to prove the existence of coincidence points and common fixed points for a class
of noncommuting mappings on convex metric spaces. Our results extend recent
results of Beg and Abbas [6] and Rhoades [21].

Definition 1.1. [23] Let X be a metric space and I = [0, 1]. A mapping
W : X × X × I → X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × I and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

Metric space X together with the convex structure W is called a convex metric
space.
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Let X be a convex metric space. A nonempty subset C ⊂ X is said to be
convex if W (x, y, λ) ∈ C whenever (x, y, λ) ∈ C × C × I. Takahashi [23] has
shown that open spheres B(x, r) = {y ∈ X : d(x, y) < r} and closed spheres
B[x, r] = {y ∈ X : d(x, y) ≤ r} are convex. Also if {Cα : α ∈ A} is a family of
convex subsets of X, then

⋂{Cα : α ∈ A} is convex.
All normed spaces and their convex subsets are convex metric spaces. But

there are many examples of convex metric spaces which are not embedded in any
normed space (see Takahashi [23]).

Jungck [14] introduced the concept of commuting mappings and improved the
Banach contraction principle. Afterwards Sessa [22] generalized the concept of
commuting mappings by calling self mappings f, g of a metric space X weakly
commuting if and only if d(fgx, gfx) ≤ d(fx, gx) for all x ∈ X. However, since
elementary function are not weakly commuting. Pant [18] introduced less restrictive
concept of R-weakly commutativity of mappings (see Definition 1.2) and improved
two important fixed points theorems for a pair of R-weakly commuting mappings.
Recently Azam [2] used this concept of R-weakly commutativity of mappings and
extended the results of Pant [18] to four mappings.

Definition 1.2. Let (X, d) be a metric space. A pair of mappings f, g : X →
X is called R-weakly commuting, provided there exists some positive real number
R such that

d(fgx, gfx) ≤ Rd(fx, gx)

for each x ∈ X. For details see Pant [18].

We note that R-weakly commuting mappings commute at their coincidence
points. Jungck and Rhoades [16] then defined a pair of self-mappings to be weakly
compatible if they commute at their coincidence points.

2. Main results

Alber and Guerre-Delabriere [1] obtained fixed point results in Hilbert spaces
by introducing the concept of weakly contractive mappings (see Definition 2.1).
Rhoads [21] extended their work in Banach spaces. Recently Beg and Abbas [6]
proved a generalization of the corresponding theorems of Rhoads [21] for a pair of
mapping in which one is weakly contractive with respect to the other.

Definition 2.1. Let X be a metric space. A mapping T : X → X is called
weakly contractive with respect to f : X → X if for each x, y ∈ X,

d(Tx, Ty) ≤ d(fx, fy)− ϕ(d(fx, fy))

where ϕ : [0,∞) → [0,∞) is continuous, nondecreasing and positive on (0,∞),
ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.

Definition 2.2. (modified Mann iterative scheme). Let X be a convex com-
plete metric space and let T be a weakly contractive map with respect to f on X.
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Assume that TX ⊂ fX and fX is a convex subset of X. Define a sequence {yn}
in fX as

yn = fxn+1 = W (Txn, fxn, αn), x0 ∈ X, n ≥ 0,

where αn ∈ I for each n. The sequence thus obtained is a modified Mann iterative
scheme.

Theorem 2.3. Let X be a metric space and S, T , f be self mappings of X
and for each x, y in X

d(Sx, Ty) ≤ d(fx, fy)− ϕ(d(fx, fy)), (2.1)

where ϕ is continuous, nondecreasing and positive on (0,∞), ϕ(0) = 0 and
limt→∞ ϕ(t) = ∞. If SX ∪ TX ⊂ fX and fX is a complete subspace of X,
then there exists a point p in X such that fp = Sp = Tp.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such that
fx1 = Sx0. This can be done since SX ⊂ fX. Similarly choose x2 ∈ X such that
fx2 = Tx1. In general, having chosen xn in X, we obtain xn+1 in X such that

fx2k+1 = Sx2k and fx2k+2 = Tx2k+1,

where k is any positive integer. Consider

d(fx2k−1, fx2k) = d(Sx2k−2, Tx2k−1) ≤ d(fx2k−2, fx2k−1)

− ϕ(d(fx2k−2, fx2k−1)) ≤ d(f(x2k−2, f(x2k−1)), and

d(fx2k, fx2k+1) = d(Tx2k−1, Sx2k) ≤ d(fx2k−1, fx2k),

which shows that {d(fxn, fxn+1)} is a nonincreasing sequence of positive real num-
bers. Using an argument similar to that used in the corresponding part of [6, The-
orem 2.1], it follows that d(fxn, fxm) → 0 as m,n → ∞. As fX is a complete
subspace of X, therefore {fxn} has a limit q in fX. Consequently, we obtain p in
X such that fp = q. Thus

fx2k+1 = Sx2k → fp and fx2k+2 = Tx2k+1 → fp.

Now using inequality (2.1), we obtain

d(fx2k+1, Tp) = d(Sx2k, Tp) ≤ d(fx2k, fp)− ϕ(d(fx2k, fp)).

Taking limit n →∞, we obtain

d(q, Tp) ≤ d(q, fp)− ϕ(d(q, fp)).

It follows that fp = Tp. By a similar argument we have fp = Sp. Hence p is a
solution of the functional equations fx = Sx = Tx.

Corollary 2.4. [6] Let X be a metric space and let T be a weakly contractive
mapping with respect to f . If the range of f contains the range of T and fX is a
complete subspace of X, then f and T have a coincidence point in X.
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Theorem 2.5. Let X be a metric space and S, T, f be self mappings of X
satisfying inequality (2.1). If the pairs (f, S) and (f, T ) are weakly compatible (or
R-weakly commuting) and SX ∪ TX ⊂ fX and fX is a complete subspace of X,
then f , S and T have a common fixed point.

Proof. By Theorem 2.3, we obtain a point p in X such that fp = Sp = Tp = q
(say) which further implies that fSp = Sfp and fTp = Tfp. Obviously, Sq =
fq = Tq. We claim q = fq. For, if q 6= fq, consider

d(fq, q) = d(Sq, Tp) ≤ d(fp, fq)− ϕ(d(fp, fq)),

d(q, Tp) < d(q, fq). This contradiction leads to the result.

Corollary 2.6. [6] Let X be a metric space and let T be a weakly contractive
mapping with respect to f . If T and f are weakly compatible and TX ⊂ fX and
fX is a complete subspace of X, then f and T have a common fixed point in X.

Theorem 2.7. Let X be a convex metric space and let T : X → X be a weakly
contractive mapping with respect to f : X → X. If the pair (f, T ) is weakly com-
patible (or R-weakly commuting) and TX ⊂ fX and fX is a convex and complete
subspace of X, then the modified Mann iterative scheme with

∑
αn = ∞ converges

to a common fixed point of f and T .

Proof. From Corollary 2.6, we obtain a common fixed point q of f and T . Now
consider

d(yn, q) = d(fxn+1, fp) = d(W (Txn, fxn, αn), fp)

≤ (1− αn)d(fxn, fp) + αnd(Txn, fp) ≤ (1− αn)d(fxn, fp) + αnd(Txn, Tp)

≤ (1− αn)d(fxn, fp) + αn(d(fxn, fp)− ϕ(d(fxn, fp)))

≤ d(fxn, fp)− αnϕ(d(fxn, fp)) ≤ d(yn−1, q),

which gives limn→∞ d(yn, q) = l ≥ 0. Now if l > 0, then for any positive integer N
we have

∞∑
n=N

αnϕ(l) ≤
∞∑

n=N

αnϕ(d(yn, q)) ≤
∞∑

n=N

(d(yn−1, q)− d(yn, q)) < d(yN−1, q),

which is a contradiction for the choice of αn. Hence, the modified Mann iterative
scheme converges to a common fixed point of f and T .

Theorem 2.8. Let X be a convex metric space and let T be a weakly contrac-
tive mapping with respect to f . If the pair (f, T ) is weakly compatible (or R-weakly
commuting) and TX ⊂ fX and fX is a convex and complete subspace of X, sup-
pose two sequences of mappings {yn} and {zn} are defined as

zn = fxn+1 = W (Tvn, fxn, αn), yn = fvn = W (Txn, fxn, βn), n = 0, 1, 2, . . .

where 0 ≤ αn, βn ≤ 1,
∑

αnβn = ∞, and x0 ∈ X. Then the iterative scheme {zn}
converges to a common fixed point of T and f .
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Proof. Let q be a common fixed point of T and f (its existence follows from
corollary 2.6). Now

d(zn, q) = d(W (Tvn, fxn, αn), q) ≤ αnd(Tvn, q) + (1− αn)d(fxn, q)

≤ αnd(Tvn, Tp) + (1− αn)d(fxn, q)

≤ αn(d(fvn, fp)− ϕ(d(fvn, fp)) + (1− αn)d(fxn, q)

≤ αnd(fvn, fp)− αnϕ(d(fvn, fp)) + (1− αn)d(f(xn, q)

≤ αnd(fvn, q)− αnϕ(d(fvn, q)) + (1− αn)d(fxn, q)

≤ αnd(W (Txn, fxn, βn, q)− αnϕ(d(fvn, q)) + (1− αn)d(fxn, q)

≤ αn(βnd(Txn, q) + (1− βn)d(fxn, q))− αnϕ(d(fvn, q))

+ (1− αn)d(f(xn, q)

≤ αnβnd(Txn, q) + αn(1− βn)d(f(xn, q)− αnϕ(d(fvn, q))

+ (1− αn)d(fxn, q)

≤ αnβnd(Txn, Tp) + αn(1− βn)d(fxn, q)− αnϕ(d(fvn, q))

+ (1− αn)d(fxn, q)

≤ αnβn(d(fxn, q)− ϕ(d(fxn, q)) + αn(1− βn)d(fxn, q)− αnϕ(d(fvn, q))

+ (1− αn)d(fxn, q)

≤ αnβnd(fxn, q)− αnβnϕ(d(fxn, q)) + αnd(fxn, q)− αnβnd(fxn, q)

− αnϕ(d(fvn, q)) + d(fxn, q)− αnd(fxn, q)

≤ d(fxn, q)− αnβn(d(fxn, q))− αn(d(fvn, q)) ≤ d(fxn, q).

Thus {d(zn, q)} is a nonincreasing nonnegative sequence which converges to the
limit l ≥ 0. Suppose l > 0, then for any fixed integer N we have

∞∑
n=N

αnβnϕ(l) ≤
∞∑

n=N

αnβnϕ(d(zn, q)) ≤
∞∑

n=N

d(zn, q)− d(zn+1, q) ≤ d(zN , q),

which contradicts
∑

αnβn = ∞. Hence the iterative scheme {zn} converges to a
common fixed point of T and f .
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