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SOME STABILITY RESULTS FOR TWO HYBRID FIXED POINT
ITERATIVE ALGORITHMS IN NORMED LINEAR SPACE

M. O. Olatinwo

Abstract. In this paper, we prove some stability results for two newly introduced hybrid
fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann Type in normed linear space
using a certain contractive condition. Our results generalize, extend and improve some of the
results of Harder and Hicks [11], Rhoades [29,30], Osilike [26], Berinde [2,3] as well as the recent
results of the author [12,23,24,25].

1. Introduction

Let (E, d) be a complete metric space and T : E → E a selfmap of E. Suppose
that FT = {p ∈ E | Tp = p} is the set of fixed points of T .

There are several iterative processes in the literature for which the fixed points
of operators have been approximated over the years by various authors. In a com-
plete metric space, the Picard iterative process {xn}∞n=0 defined by

xn+1 = Txn, n = 0, 1, . . . , (1.1)

has been employed to approximate the fixed points of mappings satisfying the
inequality relation

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ E and α ∈ [0, 1). (1.2)

Condition (1.2) is called the Banach’s contraction condition. Any operator satis-
fying (1.2) is called a strict contraction. Also, condition (1.2) is significant in the
celebrated Banach’s fixed point theorem [1].

In the Banach space setting, we shall state some of the iterative processes
generalizing (1.1) as follows.

For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, . . . , (1.3)

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iterative process (see Mann [21]).
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For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTxn

}
n = 0, 1, . . . , (1.4)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa iterative
process (see Ishikawa [14]). See Berinde [3] for details on various iteration processes.

Kannan [16] established an extension of the Banach’s fixed point theorem by
using the following contractive definition. For a selfmap T , there exists β ∈ (0, 1

2 )
such that

d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] , ∀x, y ∈ E. (1.5)

Chatterjea [6] used the following contractive condition. For a selfmap T , there
exists γ ∈ (0, 1

2 ) such that

d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] , ∀x, y ∈ E. (1.6)

Zamfirescu [38] established a nice generalization of the Banach’s fixed point theorem
by combining (1.2), (1.5) and (1.6). That is, for a mapping T : E → E, there exist
real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 , 0 ≤ γ < 1
2 such that for each

x, y ∈ E, at least one of the following is true:

(z1) d(Tx, Ty) ≤ αd(x, y)

(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)]

(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .





(1.7)

The mapping T : E → E satisfying (1.7) is called the Zamfirescu contraction. Any
mapping satisfying condition (z2) of (1.7) is called a Kannan mapping, while the
mapping satisfying condition (z3) is called a Chatterjea operator. The contractive
condition (1.7) implies

d(Tx, Ty) ≤ 2δd(x, Tx) + δd(x, y), ∀x, y ∈ E, (1.8)

where δ = max
{

α, β
1−β , γ

1−γ

}
, 0 ≤ δ < 1.

Rhoades [32,33] used condition (1.7) to obtain some convergence results for
Mann and Ishikawa iterative processes in a uniformly convex Banach space, while
Berinde [4] extended the results of [32,33] to arbitrary Banach space for the same
iterative processes.

The following definition of stability of iterative process is due to Harder and
Hicks [11].

Definition 1.1. Let (E, d) be a complete metric space, T : E → E a selfmap
of E. Suppose that FT = {p ∈ E | Tp = p} is the set of fixed points of T . Let
{xn}∞n=0 ⊂ E be the sequence generated by an iterative procedure involving T
which is defined by

xn+1 = f(T, xn), n = 0, 1, . . . , (1.9)
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where x0 ∈ E is the initial approximation and f is some function. Suppose {xn}∞n=0

converges to a fixed point p of T . Let {yn}∞n=0 ⊂ E and set εn = d(yn+1, f(T, yn)),
n = 0, 1, . . . . Then, the iterative procedure (1.9) is said to be T -stable or stable
with respect to T if and only if limn→∞ εn = 0 implies limn→∞ yn = p.

Since the metric is induced by the norm, we have
εn = ‖yn+1 − f(T, yn)‖, n = 0, 1, . . . ,

in place of
εn = d(yn+1, f(T, yn)), n = 0, 1, . . . ,

in the definition of stability whenever we are working in normed linear space or
Banach space.

If in (1.9),
f(T, xn) = Txn, n = 0, 1, . . . ,

then we have the Picard iterative process defined in (1.1), while we obtain the
Ishikawa iterative process (1.4) from (1.9) if

f(T, xn) = (1− αn)xn + αnTzn, zn = (1− βn)xn + βnTxn,

n = 0, 1, . . . , αn, βn ∈ [0, 1].

Several stability results established in metric space and normed linear space
are available in the literature. Some of the various authors whose contributions
are of great value in the study of stability of the fixed point iterative procedures
are Ostrowski [28], Harder and Hicks [11], Rhoades [29,31], Osilike [26], Osilike
and Udomene [27], Jachymski [15], Berinde [2,3] and Singh et al. [37]. Harder and
Hicks [11], Rhoades [29,31], Osilike [26] and Singh et al. [37] used the method of
the summability theory of infinite matrices to prove various stability results for
certain contractive definitions. The method has also been adopted to establish
various stability results for certain contractive definitions in Olatinwo et al. [23,24].
Osilike and Udomene [27] introduced a shorter method of proof of stability results
and this has also been employed by Berinde [2], Imoru and Olatinwo [12], Olatinwo
et al. [25] and some others. In Harder and Hicks [11], the contractive definition
stated in (1.2) was used to prove a stability result for the Kirk’s iterative process.
The first stability result on T -stable mappings was due to Ostrowski [28] where
he established the stability of the Picard iteration by using condition (1.2). In
addition to (1.2), the contractive condition in (1.9) was also employed by Harder
and Hicks [11] to establish some stability results for both Picard and Mann iterative
processes. Rhoades [29,31] extended the stability results of [11] to more general
classes of contractive mappings. Rhoades [29] extended the results of [11] to the
following independent contractive condition: there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ c max {d(x, y), d(x, Ty), d(y, Tx)} , ∀x, y ∈ E. (1.10)
Rhoades [31] used the following contractive definition: there exists c ∈ [0, 1) such
that

d(Tx, Ty) ≤ c max
{

d(x, y),
d(x, Tx) + d(y, Ty)

2
, d(x, Ty), d(y, Tx)

}
, (1.11)

∀x, y ∈ E.
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Moreover, Osilike [26] generalized and extended some of the results of Rhoades
[31] by using a more general contractive definition than those of Rhoades [29,31].
Indeed, he employed the following contractive definition: there exist a ∈ [0, 1], L ≥ 0
such that

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y), ∀x, y ∈ E. (1.12)

Osilike and Udomene [27] introduced a shorter method to prove stability results for
the various iterative processes using the condition (1.12). Berinde [2] established
the same stability results for the same iterative processes using the same set of
contractive definitions as in Harder and Hicks [11], but the same method of shorter
proof as in Osilike and Udomene [27].

More recently, Imoru and Olatinwo [12] established some stability results which
are generalizations of some of the results of [2,11,26,27,29,31]. The following con-
tractive definition was employed: there exist a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ with ϕ(0) = 0, such that

d(Tx, Ty) ≤ ϕ(d(x, Tx)) + ad(x, y), ∀x, y ∈ E. (1.13)

Condition (1.13) was also employed in Olatinwo et al. [23] to establish some sta-
bility results in normed linear space setting with additional condition of continuity
imposed on ϕ.

In the next section, we shall state our new iterative algorithms, contractive
definition, some remarks and lemmas which are required in the sequel.

2. Preliminaries

We shall introduce and employ the following iterative processes. Let E be a
Banach space, T : E → E a selfmap of E and x0 ∈ E. Then, define the sequence
{xn}∞n=0 by

xn+1 = αn,0xn +
k∑

i=1

αn,iT
izn,

k∑
i=0

αn,i = 1, n = 0, 1, 2, . . . ,

zn =
s∑

j=0

βn,jT
jxn,

s∑
j=0

βn,j = 1,





(2.1)

k ≥ s, αn,i ≥ 0, αn,0 6= 0, βn,i ≥ 0, βn,0 6= 0, αn,i, βn,j ∈ [0, 1], where k and s are
fixed integers.

If s = 0 in (2.1), we also obtain the following interesting iterative process in a
Banach space:

xn+1 =
k∑

i=0

αn,iT
ixn,

k∑
i=0

αn,i = 1, n = 0, 1, 2, . . . , (2.2)

αn,i ≥ 0, αn,0 6= 0, αn,i ∈ [0, 1], where k is a fixed integer.
The iterative process defined in (2.1) will be called the Kirk-Ishikawa iterative

process, while that of (2.2) will be called the Kirk-Mann iterative process.
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(i) If s = 0, k = 1 in (2.1), then we have zn = βn,0xn = xn, βn,0 = 1 and
xn+1 = (1 − αn,1)xn + αn,1Txn, which is the usual Mann iterative process with∑1

i=0 αn,i = 1, αn,1 = αn.
(ii) Also, if s = k = 1, in (2.1), we get

xn+1 = (1− αn,1)xn + αn,1Tzn

zn = (1− βn,1)xn + βn,1Txn,

}

which is the usual Ishikawa iterative process with
∑1

i=0 αn,i =
∑1

i=0 βn,i = 1,
αn,1 = αn, βn,1 = βn.

(iii) If s = 0 and αn,i = αi in (2.1), then we obtain the usual Kirk’s iterative
process

xn+1 =
k∑

i=0

αiT
ixn,

k∑
i=0

αi = 1, n = 0, 1, 2, . . . , (2.3)

with zn = βn,0xn = xn, since βn,0 = 1.
Equation (2.2) is also a generalization of Picard, Schaefer, Mann and Kirk’s

iterative processes. See Berinde [3,5] for detail on the various already existing fixed
point iterative processes.

We shalll employ the following contractive definition. For a selfmap T : E → E,
there exist a real number a ∈ [0, 1), and a monotone increasing function ϕ : R+ →
R+ with ϕ(0) = 0, such that ∀x, y ∈ E,

‖Tx− Ty‖ ≤ ϕ(‖x− Tx‖) + a‖x− y‖. (2.4)

However, we shall employ the following lemmas in the sequel.

Lemma 2.1. [2,3] If δ is a real number such that 0 ≤ δ < 1, and {εn}∞n=0 is
a sequence of positive numbers such that limn→∞ εn = 0, then for any sequence of
positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, . . . ,

we have limn→∞ un = 0.

Lemma 2.2. [25] Let (E, ‖ · ‖) be a normed linear space and let T : E → E
be a selfmap of E satisfying (2.5). Let ϕ : R+ → R+ be a subadditive, monotone
increasing function such that ϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), L ≥ 0, u ∈ R+. Then,
∀i ∈ N and ∀x, y ∈ E,

‖T ix− T iy‖ ≤
i∑

j=1

(
i
j

)
ai−jϕj(‖x− Tx‖) + ai‖x− y‖.

It is our purpose in this paper to prove some stability results for the iterative
processes defined in (2.1) and (2.2). Our results are improvements, generalizations
and/or extensions of some of the results of Harder and Hicks [11], Rhoades [29,30],
Osilike [26], Osilike and Udomene [27], Berinde [2,3] as well as the recent results of
the author [23,24,25].
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3. Main Results

Theorem 3.1. Let (E, ‖.‖) be a normed linear space and T : E → E a selfmap
of E satisfying the contractive condition (2.4) and ϕ : R+ → R+, a subadditive
monotone increasing function such that ϕ(0) = 0. Let x0 ∈ E, and {xn}∞n=0 be the
Kirk-Ishikawa iterative process defined by (2.1). Suppose that T has a fixed point
p. Then, the Kirk-Ishikawa iterative process is T−stable.

Proof. Let {yn}∞n=0 ⊂ E, εn = ‖yn+1 − αn,0yn −
∑k

i=1 αn,iT
ibn‖ and

bn =
∑s

r=0 βn,rT
ryn. Suppose that limn→∞ εn = 0. Then, we shall employ

Lemma 2.2 and the triangle inequality to establish that limn→∞ yn = p. Let
(
∑k

i=1 αn,ia
i)(

∑s
r=0 βn,ra

r) + αn,0 ≤ δ with 0 ≤ δ < 1. Then,

‖yn+1 − p‖ ≤ ‖yn+1 − αn,0yn −
k∑

i=1

αn,iT
ibn‖+ ‖αn,0yn +

k∑
i=1

αn,iT
ibn − p‖

= ‖αn,0yn +
k∑

i=1

αn,iT
ibn −

k∑
i=0

αn,iT
ip‖+ εn

= ‖
k∑

i=1

αn,i(T ibn − T ip) + αn,0(yn − p)‖+ εn

≤
k∑

i=1

αn,i‖T ip− T ibn‖+ αn,0‖yn − p‖+ εn

≤
k∑

i=1

αn,i

{
i∑

j=1

(
i
j

)
ai−jϕj(‖p− Tp‖) + ai‖p− bn‖

}
+ αn,0‖yn − p‖+ εn

=
k∑

i=1

αn,i

{
i∑

j=1

(
i
j

)
ai−jϕj(0) + ai‖p− bn‖

}
+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)
‖p− bn‖+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)
‖

s∑
r=0

βn,rT
rp−

s∑
r=0

βn,rT
ryn‖+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)
‖

s∑
r=0

βn,r(T rp− T ryn)‖+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

){
‖

s∑
r=1

βn,r(T rp− T ryn) + βn,0(p− yn)‖
}

+ αn,0‖yn − p‖+ εn

≤
(

k∑
i=1

αn,ia
i

){
s∑

r=1
βn,r‖T rp− T ryn‖+ βn,0‖yn − p‖

}
+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r‖T rp− T ryn‖+

(
k∑

i=1

αn,ia
i

)
βn,0‖yn − p‖

+ αn,0‖yn − p‖+ εn

≤
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r[

r∑
j=1

(
r
j

)
ar−jϕj(‖p− Tp‖) + ar‖p− yn‖]
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+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r[

r∑
j=1

(
r
j

)
ar−jϕj(0) + ar‖yn − p‖]

+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖+ εn

=
(

k∑
i=1

αn,ia
i

)(
s∑

r=1
βn,ra

r

)
‖yn − p‖+

(
k∑

i=1

αn,ia
i

)
βn,0‖yn − p‖

+ αn,0‖yn − p‖+ εn

= (
k∑

i=1

αn,ia
i)

{
s∑

r=1
βn,ra

r + βn,0

}
‖yn − p‖+ αn,0‖yn − p‖+ εn

= (
k∑

i=1

αn,ia
i)(

s∑
r=0

βn,ra
r)‖yn − p‖+ αn,0‖yn − p‖+ εn

=
[
(

k∑
i=1

αn,ia
i)(

s∑
r=0

βn,ra
r) + αn,0

]
‖yn − p‖+ εn

≤ δ‖yn − p‖+ εn. (3.1)
Since 0 ≤ δ < 1, using Lemma 2.1 in (3.1) yields limn→∞ yn = p.

Conversely, let limn→∞ yn = p. Then, we shall show that limn→∞ εn = 0,
using Lemma 2.2 and the triangle inequality as follows:

εn = ‖yn+1 − αn,0yn −
k∑

i=1

αn,iT
ibn‖

≤ ‖yn+1 − p‖+ ‖p− αn,0yn −
k∑

i=1

αn,iT
ibn‖

= ‖yn+1 − p‖+ ‖
k∑

i=0

αn,iT
ip− αn,0yn −

k∑
i=1

αn,iT
ibn‖

= ‖yn+1 − p‖+ ‖
k∑

i=1

αn,i(T ip− T ibn) + αn,0(p− yn)‖

≤ ‖yn+1 − p‖+
k∑

i=1

αn,i‖T ip− T ibn‖+ αn,0‖yn − p‖

≤ ‖yn+1 − p‖+
k∑

i=1

αn,i

{
i∑

j=1

(
i
j

)
ai−jϕj(‖p− Tp‖) + ai‖p− bn‖

}
+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
k∑

i=1

αn,i

{
i∑

j=1

(
i
j

)
ai−jϕj(0) + ai‖p− bn‖

}
+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
‖p− bn‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
‖

s∑
r=0

βn,rT
rp−

s∑
r=0

βn,rT
ryn‖+ αn,0‖yn − p‖
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= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
‖

s∑
r=0

βn,r(T rp− T ryn)‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

){
‖

s∑
r=1

βn,r(T rp− T ryn) + βn,0(p− yn)‖
}

+ αn,0‖yn − p‖

≤ ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

){
s∑

r=1
βn,r‖T rp− T ryn‖+ βn,0‖yn − p‖

}

+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r‖T rp− T ryn‖

+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖

≤
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r[

r∑
j=1

(
r
j

)
ar−jϕj(‖p− Tp‖) + ar‖p− yn‖]

+ ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)
s∑

r=1
βn,r[

r∑
j=1

(
r
j

)
ar−jϕj(0) + ar‖yn − p‖]

+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
(

k∑
i=1

αn,ia
i

)(
s∑

r=1
βn,ra

r

)
‖yn − p‖

+
(

k∑
i=1

αn,ia
i

)
βn,0‖yn − p‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+ (
k∑

i=1

αn,ia
i)

{
s∑

r=1
βn,ra

r + βn,0

}
‖yn − p‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+ (
k∑

i=1

αn,ia
i)(

s∑
r=0

βn,ra
r)‖yn − p‖+ αn,0‖yn − p‖

= ‖yn+1 − p‖+
[
(

k∑
i=1

αn,ia
i)(

s∑
r=0

βn,ra
r) + αn,0

]
‖yn − p‖

≤ ‖yn+1 − p‖+ δ‖yn − p‖ → 0 as n →∞.

Theorem 3.2. Let (E, ‖.‖) be a normed linear space and T : E → E a selfmap
of E satisfying the contractive condition (2.4) and ϕ : R+ → R+ a subadditive
monotone increasing function such that ϕ(0) = 0. Let x0 ∈ E, and {xn}∞n=0 be the
Kirk-Mann iterative process defined by (2.2). Suppose that T has a fixed point p.
Then, the Kirk-Mann iterative process is T− stable.

Proof. The proof of this theorem is similar to that of Theorem 3.1.
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Remark 3.3. Theorems 3.1 is a generalization and extension of Theorem 2
of Osilike [26], Theorem 2 and Theorem 5 of Osilike and Udomene [27] as well as
Theorem 3 of Olatinwo et al. [24]. Theorem 3.2 is a generalization of Theorem 2
of Rhoades [29,31], Theorem 3 of Berinde [2] as well as Theorem 3.2 of Imoru and
Olatinwo [12].
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[9] Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45
(1974), 267–273.

[10] C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972),
369–372.

[11] A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math.
Japonica 33 (5) (1988), 693–706.

[12] C. O. Imoru and M. O. Olatinwo, On the stability of Picard and Mann iteration processes,
Carp. J. Math. 19 (2) (2003), 155–160.

[13] C. O. Imoru, M. O. Olatinwo, and O. O. Owojori, On the stability results for Picard and
Mann iteration procedures, J. Appl. Func. Diff. Eqns. 1 (1), 71–80.

[14] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1) (1974),
147–150.

[15] J. R. Jachymski, An extension of A. Ostrowski’s theorem on the round-off stability of itera-
tions, Aequ. Math. 53 (1997), 242–253.

[16] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71–76.

[17] L. Liu, Fixed points of local strictly pseudo-contractive mappings using Mann and Ishikawa
iteration with errors, Indian J. Pure Appl. Math. 26 (7) (1995), 649–659.

[18] L. Liu, Ishikawa and Mann iteration processes with errors for nonlinear strongly accretive
mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114–125.

[19] G. Liu, D. Lei and S. Li, Approximating fixed points of nonexpansive mappings, Internat. J.
Math. & Math. Sci. 24 (3) (2000), 173–177.

[20] M. Maiti and B. Saha., Approximating fixed points of nonexpansive and generalized nonex-
pansive mappings, Internat. J. Math. & Math. Sci. 16 (1) (1993), 81–86.

[21] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 44 (1953), 506–510.

[22] M. O. Olatinwo, Some stability and strong convergence results for the Jungck-Ishikawa iter-
ation process, Creative Math. & Inf., 17 (2008), 33–42.

[23] M. O. Olatinwo, O. Owojori and C. O. Imoru, On Some stability results for fixed point
iteration procedure, J. Math. Stat. 2 (1) (2006), 339–342.



256 M. O. Olatinwo

[24] M. O. Olatinwo, O. O. Owojori and C. O. Imoru, Some stability results on Krasnoselskij and
Ishikawa fixed point iteration procedures, J. Math. Stat. 2 (1) (2006), 360–362.

[25] M. O. Olatinwo, O. O. Owojori and C. O. Imoru, Some stability results for fixed point
iteration processes, Aus. J. Math. Anal. Appl., 3 (2) (2006), 1–7.

[26] M. O. Osilike, Some stability results for fixed point iteration procedures, J. Nigerian Math.Soc.,
14/15 (1995),17–29.

[27] M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration
procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math. 30 (12)
(1999), 1229–1234.

[28] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967),
77–81.

[28] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures,
Indian J. Pure Appl. Math. 21 (1) (1990), 1–9.

[30] B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci., 14 (1) (1991),
1–16.

[31] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures,
II, Indian J. Pure Appl. Math. 24 (11) (1993), 691–703.

[32] B. E. Rhoades, Fixed point iteration using infinite matrices, Trans. Amer. Math. Soc. 196
(1974), 161–76.

[33] B. E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (2)
(1976), 741–750.

[34] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer.
Math. Soc. 226 (1977), 257–290.

[35] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj Napoca, 2001.

[36] I. A. Rus, A. Petrusel and G. Petrusel, Fixed Point Theory, 1950–2000, Romanian Contri-
butions, House of the Book of Science, Cluj Napoca, 2002.

[37] S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-type iterative procedures,
Internatioal J. Math. & Math. Sc. 19 (2005), 3035–3043.

[38] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972), 292–298.

[39] E. Zeidler, Nonlinear Functional Analysis and its Applications. Fixed-Point Theorems I,
Springer-Verlag New York, Inc., 1986.

(received 17.08.2008, in revised form 07.11.2008)

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

E-mail : polatinwo@oauife.edu.ng, molaposi@yahoo.com


