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ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY
KENMOTSU MANIFOLD WITH THE CANONICAL
SEMI-SYMMETRIC SEMI-METRIC CONNECTION

Mobin Ahmad

Abstract. We define the canonical semi-symmetric semi-metric connection in a nearly
Kenmotsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold
endowed with the canonical semi-symmetric semi-metric connection. Moreover, we discuss the
integrability of distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with
the canonical semi-symmetric semi-metric connection.

1. Introduction

In [9], K. Kenmotsu introduced and studied a new class of almost contact
manifolds called Kenmotsu manifolds. The notion of nearly Kenmotsu manifold
was introduced by A. Shukla in [13]. Semi-invariant submanifolds in Kenmotsu
manifolds were studied by N. Papaghuic [11] and M. Kobayashi [10]. Semi-invariant
submanifolds of a nearly Kenmotsu manifolds were studied by M.M. Tripathi and
S.S. Shukla in [14]. In this paper we study semi-invariant submanifolds of a nearly
Kenmotsu manifold with the canonical semi-symmetric semi-metric connection.

Let ∇ be a linear connection in an n-dimensional differentiable manifold M .
The torsion tensor T and the curvature tensor R of ∇ are given respectively by

T (X,Y ) = ∇XY −∇Y X − [X, Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is
non-symmetric. The connection ∇ is a metric connection if there is a Riemannian
metric g in M such that ∇g = 0, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.
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In [8, 12], A. Friedmann and J. A. Schouten introduced the idea of a semi-
symmetric linear connection A linear connection ∇ is said to be a semi-symmetric
connection if its torsion tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1-form.
Some properties of semi-invariant submanifolds, hypersurfaces and submani-

folds with respect to semi-symmetric or quarter symmetric connections were studied
in [1, 7], [2, 3] and [4] respectively.

This paper is organized as follows. In Section 2, we give a brief introduction
of nearly Kenmotsu manifold. In Section 3, we show that the induced connection
on semi-invariant submanifolds of a nearly Kenmotsu manifold with the canonical
semi-symmetric semi-metric connection is also semi-symmetric semi-metric. In Sec-
tion 4, we establish some lemmas on semi-invariant submanifolds and in Section 5,
we discuss the integrability conditions of distributions on semi-invariant submani-
folds of nearly Kenmotsu manifolds with the canonical semi-symmetric semi-metric
connection.

2. Preliminaries

Let M̄ be (2m + 1)-dimensional almost contact metric manifold [6] with a
metric tensor g, a tensor field φ of type (1,1), a vector field ξ, a 1-form η which
satisfy

φ2 = −I + η⊗ξ, φξ = 0, ηφ = 0, η(ξ) = 1 (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (2.2)

for any vector fields X, Y on M̄ . If in addition to the above conditions we have
dη(X, Y ) = g(X, φY ), the structure is said to be a contact metric structure.

The almost contact metric manifold M̄ is called a nearly Kenmotsu manifold
if it satisfies the condition [13]

( ¯̄∇Xφ)(Y ) + ( ¯̄∇Y φ)(X) = −η(Y )φX − η(X)φY , (2.3)

where ¯̄∇ denotes the Riemannian connection with respect to g. If, moreover, M
satisfies

( ¯̄∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX, (2.4)

then it is called Kenmotsu manifold [9]. Obviously a Kenmotsu manifold is also a
nearly Kenmotsu manifold.

Definition. An n-dimensional Riemannian submanifold M of a nearly Ken-
motsu manifold M̄ is called a semi-invariant submanifold if ξ is tangent to M and
there exists on M a pair of distributions (D, D⊥) such that [10]:

(i) TM orthogonally decomposes as D⊕D⊥⊕〈ξ〉,
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(ii) the distribution D is invariant under φ, that is, φDx⊂Dx for all x∈M ,
(iii) the distribution D⊥ is anti-invariant under φ, that is, φD⊥

x ⊂T⊥x M for all
x∈M , where TxM and T⊥x M are the tangent and normal spaces of M at x.

The distribution D(resp. D⊥) is called the horizontal (resp. vertical) distri-
bution. A semi-invariant submanifold M is said to be an invariant (resp. anti-
invariant) submanifold if we have D⊥

x = {0} (resp. Dx = {0}) for each x ∈ M . We
also call M proper if neither D nor D⊥ is null. It is easy to check that each hyper-
surface of M̄ which is tangent to ξ inherits a structure of semi-invariant submanifold
of M̄ .

Now, we remark that owing to the existence of the 1-form η, we can define the
canonical semi-symmetric semi-metric connection ∇̄ in any almost contact metric
manifold (M̄, φ, ξ, η, g) by

∇̄XY = ¯̄∇XY − η(X)Y + g(X, Y )ξ (2.5)

such that (∇̄Xg)(Y, Z) = 2η(X)g(Y, Z) − η(Y )g(X, Z) − η(Z)g(X,Y ) for any
X, Y ∈TM̄ . In particular, if M̄ is a nearly Kenmotsu manifold, then from (2.5)
we have

(∇̄Xφ)Y + (∇̄Y φ)X = −η(X)φY − η(Y )φX. (2.6)

Theorem 2.1. Let (M̄, φ, ξ, η, g) be an almost contact metric manifold and M
be a submanifold tangent to ξ. Then, with respect to the orthogonal decomposition
TM ⊕ T⊥M , the canonical semi-symmetric semi-metric connection ∇̄ induces on
M a connection ∇ which is semi-symmetric and semi-metric.

Proof. With respect to the orthogonal decomposition TM ⊕ T⊥M , we have

∇̄XY = ∇XY + m(X,Y ), (2.7)

where m is a T⊥M−valued symmetric tensor field on M . If ∇? denotes the induced
connection from the Riemannian connection ¯̄∇, then

¯̄∇XY = ∇?
XY + h(X, Y ), (2.8)

where h is the second fundamental form. By the definition of semi-symmetric
semi-metric connection

∇̄XY = ¯̄∇XY − η(X)Y + g(X,Y )ξ. (2.9)

Now using above equations, we have

∇XY + m(X, Y ) = ∇?
XY + h(X,Y )− η(X)Y + g(X,Y )ξ.

Equating tangential and normal components from both the sides, we get

h(X,Y ) = m(X, Y )

and
∇XY = ∇?

XY − η(X)Y + g(X, Y )ξ.

Thus ∇ is also a semi-symmetric semi-metric connection.
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Now, Gauss equation for M in (M̄, ∇̄) is

∇̄XY = ∇XY + h(X,Y ) (2.10)

and Weingarten formulas are given by

∇̄XN = −ANX +∇⊥XN − η(X)N (2.11)

for X,Y ∈ TM and N ∈ T⊥M . Moreover, we have

g(h(X,Y ), N) = g(ANX, Y ). (2.12)

From now on, we consider a nearly Kenmotsu manifold M̄ and a semi-invariant
submanifold M . Any vector X tangent to M can be written as

X = PX + QX + η(X)ξ, (2.13)

where PX and QX belong to the distribution D and D⊥ respectively. For any
vector field N normal to M , we put

φN = BN + CN, (2.14)

where BN (resp. CN) denotes the tangential (resp. normal) component of φN .

Definition. A semi-invariant submanifold is said to be mixed totally geodesic
if h(X,Z) = 0 for all X∈D and Z∈D⊥.

Using the canonical semi-symmetric semi-metric connection, the Nijenhuis ten-
sor of φ is expressed by

N(X,Y ) = (∇̄φXφ)(Y )− (∇̄φY φ)(X)− φ(∇̄Xφ)(Y ) + φ(∇̄Y φ)(X) (2.15)

for any X, Y ∈TM̄ .

From (2.6), we have

(∇̄φXφ)(Y ) = η(Y )X − η(X)η(Y )ξ − (∇̄Y φ)φX. (2.16)

Also,
(∇̄Y φ)φX = ((∇̄Y η)(X))ξ + η(X)∇̄Y ξ − φ(∇̄Y φ)X. (2.17)

By virtue of (2.15), (2.16) and (2.17), we get

N(X,Y ) = −η(Y )X − 3η(X)Y + 4η(X)η(Y )ξ + η(Y )∇̄Xξ

− η(X)∇̄Y ξ + 2dη(X, Y )ξ + 4φ(∇̄Y φ)X (2.18)

for any X, Y ∈TM̄ .
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3. Basic lemmas

Lemma 3.1. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then

2(∇̄Xφ)Y = ∇XφY −∇Y φX + h(X, φY )− h(Y, φX)− φ[X, Y ]

for any X, Y ∈ D.

Proof. By Gauss formula we have

∇̄XφY − ∇̄Y φX = ∇XφY −∇Y φX + h(X, φY )− h(Y, φX). (3.1)

Also by use of (2.10) covariant differentiation yields

∇̄XφY − ∇̄Y φX = (∇̄Xφ)Y − (∇̄Y φ)X + φ[X,Y ]. (3.2)

From (3.1) and (3.2), we get

(∇̄Xφ)Y − (∇̄Y φ)X = ∇XφY −∇Y φX + h(X, φY )− h(Y, φX)− φ[X, Y ]. (3.3)

Using η(X) = 0 for each X ∈ D in (2.6), we get

(∇̄Xφ)Y + (∇̄Y φ)X = 0. (3.4)

Adding (3.3) and (3.4) we get the result.

Similar computations also yield

Lemma 3.2. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold with the canonical semi-symmetric semi-metric connection. Then

2(∇̄Xφ)Y = −AφY X +∇⊥XφY −∇Y φX − h(Y, φX)− φ[X,Y ]

for any X∈D and Y ∈D⊥.

Lemma 3.3. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then

P∇XφPY + P∇Y φPX − PAφQY X − PAφQXY

= −2η(Y )φPX − η(X)φPY + φP∇XY + φP∇Y X (3.5)
Q∇XφPY + Q∇Y φPX −QAφQY X −QAφQXY

= −η(Y )φQX − 2η(X)φQY + 2Bh(X, Y ) (3.6)

h(X, φPY ) + h(Y, φPX) +∇⊥XφQY +∇⊥Y φQX

= 2Ch(X, Y ) + φQ∇XY + φQ∇Y X (3.7)

η(∇XφPY +∇Y φPX −AφQY X −AφQXY ) = 0 (3.8)

for all X,Y ∈TM .
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Proof. Differentiating (2.13) covariantly and using (2.10) and (2.11), we have

(∇̄Xφ)Y + φ(∇XY ) + φh(X, Y ) = P∇X(φPY ) + Q∇X(φPY )

− η(AφQY X)ξ + η(∇XφPY )ξ − PAφQY X −QAφQY X

+∇⊥XφQY + h(X, φPY ) + η(X)φPY. (3.9)

Similarly,

(∇̄Y φ)X + φ(∇Y X) + φh(Y, X) = P∇Y (φPX) + Q∇Y (φPX)

− η(AφQXY )ξ + η(∇Y φPX)ξ − PAφQXY −QAφQXY

+∇⊥Y φQX + h(Y, φPX) + η(Y )φPX. (3.10)

Adding (3.9) and (3.10) and using (2.6) and (2.14), we have

− 2η(Y )φPX − 2η(Y )φQX − 2η(X)φPY − 2η(X)φQY + φP∇XY

+ φQ∇XY + φP∇Y X + φQ∇Y X + 2Bh(Y, X) + 2Ch(Y, X)

= P∇X(φPY ) + P∇Y (φPX) + Q∇Y (φPX)− PAφQY X

+ Q∇X(φPY ) +∇⊥XφQY − PAφQXY −QAφQY X

−QAφQXY +∇⊥Y φQX + h(Y, φPX) + h(X, φPY )

+ η(∇XφPY )ξ + η(∇Y φPX)ξ − η(AφQXY )ξ − η(AφQY X)ξ. (3.11)

Equations (3.5)–(3.8) follow by comparison of tangential, normal and vertical com-
ponents of (3.11).

Definition. The horizontal distribution D is said to be parallel with respect
to the connection ∇ on M if ∇XY ∈D for all vector fields X, Y ∈D.

Proposition 3.4. Let M be a semi-invariant submanifold of a nearly Ken-
motsu manifold M̄ with the canonical semi-symmetric semi-metric connection. If
the horizontal distribution D is parallel then h(X, φY ) = h(Y, φX) for all X,Y ∈D.

Proof. Since D is parallel, therefore, ∇XφY ∈D and ∇Y φX∈D for each X,Y ∈
D. Now from (3.6) and (3.7), we get

h(X,φY ) + h(Y, φX) = 2φh(X, Y ). (3.12)

Replacing X by φX in above equation, we have

h(φX, φY )− h(Y,X) = 2φh(φX, Y ). (3.13)

Replacing Y by φY in (3.12), we have

−h(X, Y ) + h(φX, φY ) = 2φh(X, φY ). (3.14)

Comparing (3.13) and (3.14), we have h(X, φY ) = h(φX, Y ) for all X,Y ∈D.
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Lemma 3.5. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then M
is mixed totally geodesic if and only if ANX∈D for all X∈D and N ∈ T⊥M .

Proof. If ANX∈D, then g(h(X,Y ), N) = g(ANX, Y ) = 0, which gives
h(X,Y ) = 0 for Y ∈D⊥. Hence M is mixed totally geodesic.

4. Integrability conditions for distributions

Theorem 4.1. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then the
following conditions are equivalent:

(i) the distribution D⊕〈ξ〉 is integrable,
(ii) N(X,Y ) ∈ D⊕〈ξ〉 and h(X,φY ) = h(φX, Y ) for any X, Y ∈D⊕〈ξ〉.
Proof. The condition N(X,Y ) ∈ D⊕〈ξ〉 for any X, Y ∈ D⊕〈ξ〉 is equivalent

to the following two
(I) N(X, ξ) ∈ D⊕〈ξ〉 for any X ∈ D,

(II) N(X,Y ) ∈ D⊕〈ξ〉 for any X, Y ∈ D.
In the first case, using Gauss formula and (2.6) in (2.18), we get

N(X, ξ) = 3X − 3∇Xξ + 2dη(X, ξ)ξ − 3h(X, ξ) + 4η(∇Xξ)ξ

and
N(X, ξ) ∈ D⊕〈ξ〉 ⇔ Q(∇Xξ) = 0, h(X, ξ) = 0.

Using again (2.6) and computing its normal component we get

h(ξ, φX)− φQ(∇ξX)− 2C(h(ξ,X))− φQ(∇Xξ) = 0.

Hence for any X ∈ D

N(X, ξ) ∈ D⊕〈ξ〉 ⇒ Q([X, ξ]) = 0, h(X, ξ) = 0. (4.1)

In case (II), using Gauss formula in (2.18), we get

N(X,Y ) = 2dη(X, Y )ξ+4φ(∇Y φX)+4φh(Y, φX)+4h(Y,X)+4∇Y X−4η(∇Y X)ξ
(4.2)

for all X, Y ∈ D. From (4.2) we have that N(X,Y )∈(D⊕〈ξ〉) implies

φQ(∇Y φX) + Ch(Y, φX) + h(Y,X) = 0

for all X, Y ∈ D. Replacing Y by φZ, where Z ∈ D, we get

φQ(∇φZφX) + Ch(φZ, φX) + h(φZ, X) = 0.

Interchanging X and Z, we have

φQ(∇φXφZ) + Ch(φX, φZ) + h(φX, Z) = 0.
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Subtracting above two equations, we have

φQ[φX, φZ] + h(Z, φX)− h(X, φZ) = 0.

Thus, we get, for any X, Y ∈ D

N(X,Y ) ∈ D⊕〈ξ〉 ⇒ φQ([X,Y ]) + h(φX, Y )− h(X, φY ) = 0. (4.3)

Now, suppose that D⊕〈ξ〉 is integrable so for any X, Y ∈ D⊕〈ξ〉 we have N(X, Y ) ∈
D⊕〈ξ〉, since φ(D⊕〈ξ〉) ⊂ D. Moreover, h(X, ξ) = 0, h(X,φY ) = h(φX, Y ) for any
X, Y ∈ D and ii) is proven. Vice versa, if ii) holds, then from (4.1) and (4.3) we
get the integrability of D⊕〈ξ〉.

Lemma 4.2. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then

2(∇̄Y φ)Z = AφY Z −AφZY +∇⊥Y φZ −∇⊥ZφY − φ[Y, Z]

for Y, Z ∈ D⊥.

Proof. From Weingarten equation, we have

∇̄Y φZ − ∇̄ZφY = −AφZY + AφY Z +∇⊥Y φZ −∇⊥ZφY. (4.4)

Also by covariant differentiation, we get

∇̄Y φZ − ∇̄ZφY = (∇̄Y φ)Z − (∇̄Zφ)Y + φ[Y,Z]. (4.5)

From (4.4) and (4.5) we have

(∇̄Y φ)Z − (∇̄Zφ)Y = AφY Z −AφZY +∇⊥Y φZ −∇⊥ZφY − φ[Y,Z]. (4.6)

From (2.6) we obtain
(∇̄Y φ)Z + (∇̄Zφ)Y = 0 (4.7)

for any Y,Z ∈ D⊥. Adding (4.6) and (4.7), we get

2(∇̄Y φ)Z = AφY Z −AφZY +∇⊥Y φZ −∇⊥ZφY − φ[Y, Z].

Proposition 4.3. Let M be a semi-invariant submanifold of a nearly Kenmot-
su manifold M̄ with the canonical semi-symmetric semi-metric connection. Then

AφY Z −AφZY =
1
3
φP [Y,Z]

for any Y,Z ∈ D⊥.

Proof. Let Y, Z∈D⊥ and X ∈ TM then from (2.10) and (2.12), we have

2g(AφZY, X) = −g(∇̄Y φX, Z)− g(∇̄XφY,Z) + g((∇̄Y φ)X + (∇̄Xφ)Y,Z).

By use of (2.6) and η(Y ) = 0 for Y ∈D⊥, we have

2g(AφZY,X) = −g(φ∇̄Y Z,X) + g(AφY Z,X).
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Interchanging Y and Z and subtracting we get

g(3AφY Z − 3AφZY − φP [Y, Z], X) = 0 (4.8)

from which, for any Y,Z ∈ D⊥,

AφY Z −AφZY =
1
3
φP [Y,Z]

follows.

Theorem 4.4. Let M be a semi-invariant submanifold of a nearly Kenmotsu
manifold M̄ with the canonical semi-symmetric semi-metric connection. Then the
distribution D⊥ is integrable if and only if

AφY Z −AφZY = 0

for all Y, Z∈D⊥.

Proof. Suppose that the distribution D⊥ is integrable. Then [Y, Z]∈D⊥ for
any Y, Z∈D⊥. Therefore, P [Y, Z] = 0 and from (4.8), we get

AφY Z −AφZY = 0. (4.9)

Conversely, let (4.9) hold. Then by virtue of (4.8) we have φP [Y, Z] = 0 for all
Y, Z∈D⊥. Since rank φ = 2m, we have φP [Y, Z] = 0 and P [Y, Z] ∈ D ∩ 〈ξ〉.
Hence P [Y, Z] = 0, which is equivalent to [Y, Z]∈D⊥ for all Y,Z∈D⊥ and D⊥ is
integrable.
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