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ON CAMINA GROUP AND ITS GENERALIZATIONS

A.S. Muktibodh and S.H. Ghate

Abstract. In this paper we present some new results on Camina groups. Infinite general-
izations of Camina groups and generalized Camina groups are also discussed. We further define
and study some new group structures which arise out of inter-relations between conjugacy classes,
order classes, and cosets with respect to a normal subgroup.

1. Introduction

Camina groups were introduced by A.R.Camina in [2] and were further exten-
sively studied by Macdonald, Chillag, Mann, Scoppola and Dark. For an exhaustive
list of papers on Camina groups, we refer the readers to [4]. Dark and Scoppola
classified Camina groups according to the following theorem ([4]).

Theorem 1.1. Let G be a Camina group. Then G satisfies one of the following
1. G is a p-group for some prime p;
2. G is a Frobenius group with Frobenius kernel G′ and cyclic Frobenius comple-

ments;
3. G is a Frobenius group where the Frobenius complements are isomorphic to the

quaternion group.

In Section 2 we prove some results regarding Camina groups and discuss their
classification on new lines. In Section 3 we discuss infinite generalization of Cam-
ina and Generalized Camina groups. In Section 4 we introduce some new group
structures based on relations between conjugacy classes, cosets and order classes.
In the following cl(g) will stand for the conjugacy class of an element g in G.

2. New results on Camina groups

Theorem 2.1. If G is a Camina group with non-trivial center and all conju-
gacy classes outside Z(G) are of size pr, then G is a special p-group.
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Proof. G has a conjugate type vector (1, pr). By Ito [7], G is a p-group.
Further we must have |G′| = pr and Z(G) ⊆ G′. It follows that there can not
reside a conjugacy class of order pr in G′ outside Z(G). Thus, Z(G) = G′, and G
has class 2. Hence G is special (by [10, Cor. 2.4]).

In particular, for r = 1, |G′| = p, so G′ is cyclic. Thus, G′ and G/G′ have
exponent p. Therefore φ(G) = G′ = Z(G), where φ(G) is the Frattini subgroup of
G. Thus in this case G is extra-special (by [10, Cor. 2.5]).

Theorem 2.2. Let G be a Camina group with Z(G) = 1 and G′ its minimal
normal subgroup. Then G is a Frobenius group with Frobenius kernel G′, and a
cyclic Frobenius complement.

Proof. G is not a p-group since Z(G) = 1. By Theorem 1.1, let G be a Frobe-
nius group with Frobenius complement isomorphic to the group of Quaternions.
Let K be the Frobenius kernel of G. Since G/K is isomorphic to the quaternions,
K has index 2 in G′. As K > 1, this implies that G′ is not minimal normal, which is
a contradiction. The only possibility is that G is a Frobenius group with Frobenius
kernel G′ and a cyclic Frobenius complement.

In what follows we attempt to classify Camina groups based on the number of
conjugacy classes contained in G′. We start with the following definition.

Definition 2.1. An n-Camina group, where n ≥ 2, is a Camina group G for
which G′ is the union of n conjugacy classes.

We note that if G is an n-Camina group then |Z(G)| ≤ n with equality only if
G′ = Z(G). In [3], we have classified 2-Camina and 3-Camina groups by proving
the following theorems.

Theorem 2.3. Let G be a finite group. Then G is a 2-Camina group if
and only if (i) G is a Frobenius group with Frobenius kernel Zr

p and Frobenius
complement Zpr−1, or (ii) G is an extra-special 2-group.

Theorem 2.4. A finite group G is a 3-Camina group if and only if (i) G is a
Frobenius group with Frobenius kernel Zr

p and Frobenius complement Z(pr−1)/2, or
(ii) G is an extra-special 3-group, or (iii) G is Frobenius with Frobenius kernel Z2

3

and Frobenius complement Q8.

The process can be extended further in the form of the following result.

Theorem 2.5. If G is an n-Camina group where neither G′ nor G/G′ is a
p-group for any prime p, then n ≥ 16.

Proof. If G is an n-Camina group where neither G′ nor G/G′ is a p-group, then
G is Frobenius with cyclic Frobenius complement H and Frobenius kernel N = G′.
It is clear that |H| ≥ 6. As N is nilpotent N = P × Q where P is a nontrivial
p-group and Q is a nontrivial p-complement. As H acts Frobeniusly on both P
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and Q, |P | = a|H|+ 1 and |Q| = b|H|+ 1 where a and b are distinct nonnegative
integers. We have ab ≥ 2 and a + b ≥ 3. Thus,

|N | − 1
|H| =

|P ||Q| − 1
|H| =

(a|H|+ 1)(b|H|+ 1)− 1
|H|

=
ab|H|2 + a|H|+ b|H|

|H| = ab|H|+ a + b.

As the number of conjugacy classes in G′ is n = |N |−1
|H| + 1, we have n = ab|H| +

a + b + 1 ≥ 2 · 6 + 3 + 1 = 16.
This bound can be attained by considering a Frobenius group of order 546

with Frobenius kerenel of order 91 and a cyclic Frobenius complement of order 6.

Theorem 2.6. There do not exist 4-Camina groups which are Frobenius with
Frobenius complement isomorphic to quaternions.

Proof. Let G be a 4-Camina group with Frobenius complement Q8 and Frobe-
nius kernel N . As the number of conjugacy classes in G′ = |N |−1

8 + 2, we have
|N | = 17. Thus automorphism group of N is cyclic contradicting the fact that Q8

is the Frobenius complement of N .
However, there exists a 5-Camina group C2

5 of Q8 which is Frobenius with a
quaternion complement. This example suggests that for a 5-Camina group, G′ may
not be a p-group.

We give below a few examples of n-Camina groups with n ≤ 8. Examples 1 to
4 are 4-Camina groups, 5 to 7 are 5-Camina groups, 8 is a 6-Camina group, 9 is a
7-Camina group, and 10 is a 8-Camina group.

1. C13 of C4 6. C2
3 of C2

2. C4
2 of C5 7. C2

5 of Q8

3. C19 of C6 8. C4
2 o C3

4. P3 of C7 9. C19 of C3

where P3 is a 2-group of type sz(8) 10. D30

5. D18

Note: It is worth noting that for every positive integer n, D4n+2 is an (n + 1)-
Camina group.

2.1. Groups satisfying an arithmetic condition on conjugacy class
order

Definition 2.2. A vector in the form (1, n1, n2, n3, . . . , nr) where 1 ≤ n1 ≤
n2 ≤ n3 ≤ · · · ≤ nr are the orders of all the conjugacy classes of the elements of
the group G is called a multiple conjugate type vector of the group G.

Let G be an r-Camina group. Then it is clear that G′ is a union of
r conjugacy classes and the size of conjugacy classes outside G′ is equal to
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|G′|. Equivalently, the multiple conjugate type vector of G must be of the form
(1, n1, n2, n3, . . . , nr−1, nr, nr, . . . , nr), where 1 + n1 + n2 + n3 . . . + nr−1 = nr =
|G′|. Thus r-Camina groups have multiple conjugate type vector of the form
(1, n1, n2, n3, . . . , nr−1, nr, nr, . . . , nr), where 1 + n1 + n2 + n3 + · · ·+ nr−1 = nr =
|G′|.

However, just having multiple conjugate type vector of the form
(1, n1, n2, n3, . . . , nr−1, nr, nr, . . . , nr) where 1 + n1 + n2 + n3 + · · · + nr−1 = nr

is not sufficient for the group to be an r-Camina group. There exists a 3-group of
order 243 having multiple conjugate type vector
(1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9) for
which G′ is of order 27.

It is possible to construct such a p-group with ACCC for odd prime p as
follows. Let G = 〈a, b〉 with relations ap = bp = 1 and γ4(G) = 1. Then G/G′

is elementary abelian of order p2, and G′′ ≤ γ4(G) = 1. It is well known that
G′ = 〈[a, b], [a, b, a], [a, b, b]〉 is elementary abelian of order p3. Hence |G| = p5.
Multiple conjugate vector of these groups will have p2 entries equal to 1 and p3− 1
entries equal to p2.

This example led us to study the above condition on multiple conjugate type
vector in some more details.

Arithmetic Condition ACCC. Let r ≥ 2. We call any finite group G having
a multiple conjugate type vector of the form (1, n1, n2, . . . , nr−1, nr, nr, . . . , nr)
where 1 + n1 + n2 + · · · + nr−1 = nr and union of the conjugacy classes of order
1, n1, n2, . . . , nr−1 forms a normal subgroup N of G, as a group with arithmetic
condition on conjugacy classes (or G has ACCC ).

In the following, whenever G is a group with ACCC, N will always denote the
normal subgroup which is the union of the first r conjugacy classes in the multiple
conjugate type vector of G.

The following result explicitly gives the relation between Camina groups and
groups with ACCC.

Theorem 2.7. A finite group G is an r-Camina group if and only if it is a
group with ACCC and G′ = N .

Proof. The direct part follows from the previous argument.
Conversely, if x /∈ G′, then |cl(x)| = nr = |G′| = |xG′|. Also if y ∈ cl(x), then

y ∈ xG′. So, cl(x) ⊆ xG′. But both of these are finite sets with |xG′| = |cl(x)|.
Thus xG′ = cl(x).

Groups with ACCC can further be investigated in the light of the following
lemma.

Lemma 2.1. Let G be a finite group with ACCC. Then N ≤ G′.

Proof. As G is a group with ACCC, all conjugacy classes of G outside N have
size |N |. Put M = G′ ∩ N . Then G′ −M is a union of conjugacy classes of size
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|N |. Hence
|N | divides |G′ −M | = |G′| − |M |. (1)

First, let G′N < G. Choose g ∈ G − G′N . Then the coset gG′ is the union of
conjugacy classes of size |N | and hence

|N | divides |gG′| = |G′|. (2)

From (1) and (2), |N | divides |G′| − (|G′| − |M |) = |M |. But M ≤ N . Thus
|N | ≤ |M | ≤ |N |. Hence N = M = G′ ∩N and so N ≤ G′ as required.

We may now suppose that G′N = G and G′ < G. Let n0 = |N/M | =
|N/(G′ ∩ N)| = |G′N/G′| = |G/G′|. It follows from (1) that n0|M | = |N | and
|N | divides |G′| − |M | = (|G′/M | − 1)|M |. So, n0 divides |G′/M | − 1. Thus,
there is an integer k such that kn0 = |G′/M | − 1. So, kn0 + 1 = |G′/M | =
|G′/(G′ ∩ N)| = |G′N/N | = |G/N |. Choose an element h ∈ G − (G′ ∪ N), and
put H = CG(h). Then h is not in N and h has |N | conjugates in G. Therefore
|H| = |G|/|N | = kn0 + 1. Hence |H/(G′ ∩ H)| divides kn0 + 1 = |H|. On the
other hand |H/(G′∩H)| = |G′H/G′| and |G′H/G′| divides n0 = |G/G′|. Therefore
|H/(G′ ∩ H)| divides the highest common factor (kn0 + 1, n0) = 1. This implies
that H = G′ ∩H, so H ≤ G′. But h ∈ CG(h) = H and h is not in G′. This is the
required contradiction. Thus, the situation G′N = G is not possible.

3. Infinite Camina and generalized Camina groups

In this section we give infinite generalization of Camina and generalized Cam-
ina groups. We start with the following definitions for infinite groups.

Definition 3.1. An infinite group G such that non-trivial coset xG′ is a single
conjugacy class cl(x) in G, is called an infinite Camina group.

Defintion 3.2. An infinite group G is called an infinite Frobenius group
with Frobenius kernel N if N is a proper non-trivial normal subgroup of G and
CG(x) ≤ N for all non-identity elements x of N .

We now give construction of some infinite Camina groups.
Let F be a field. Consider the collection G of maps f : F −→ F of type f(r) =

ar + b, a 6= 0, a, b ∈ F . Then G becomes a group under composition if we note that
f−1(r) = r−b

a ∈ G. Excepting the case when F = Z/(2), G is a non commutative
group. Any commutator of G is of the type fgf−1g−1(r) = r − d − bc + ad + b,
i.e., of type r 7→ r + α, α ∈ F where f(r) = ar + b, g(r) = cr + d, a 6= 0, c 6= 0, and
a, b, c, d ∈ F .

Conversely, given h ∈ G of the type h(r) = r + α for some α ∈ F , we can
choose a, b, c, d such that α = b − d + ad − bc. Further, the collection of maps
r 7→ r + α, α ∈ F , itself is a group. Thus G′, the derived subgroup of G is given by
G′ = {h ∈ G : h(r) = r + α, α ∈ F}. Now, if f ∈ G and f is not in G′, then f is
given by f(r) = ar+ b, a 6= 1, a 6= 0, a ∈ F, b ∈ F (note that, in the case F = Z/(2),
G = {f1, f2 : f1(r) = r, f2(r) = r + 1}. We exclude the case F = Z/(2)).
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Further, if g ∈ G, consider gfg−1 with g(r) = cr + d. Then gfg−1(r) =
gf( r−d

c ) = g(a(r−d)
c + b) = g(ar−ad+bc

c ) = ar − ad + bc + d, i.e., gfg−1(r) =
ar − ad + bc + d, which is of the type f ◦ h with h ∈ G′ and vice versa.

Therefore cl(f) = fG′,∀f ∈ G, f not in G′. Hence G is a Camina group.

We note that G′ is an abelian group. Thus G is solvable. As Z(G) is trivial,
G is not nilpotent.

Since G′ = {h ∈ G : h(r) = r+α, α ∈ F}, any typical element of the conjugacy
class of r +α, α 6= 0 ∈ F is r +aα (if f(r) = ar + b then f ◦ (r +α) ◦ f−1 = r +aα).
So, if r + β is a non identity element of G′, then for a ∈ F such that aα = β, r + β
will be in the conjugacy class of r + α. Thus G′ consists of only two conjugacy
classes. So, G is a 2-Camina group.

For any f such that f(r) = ar + b, fn(r) = an(r) + b
∑n−1

i=0 ai. Thus for
elements of G of the type −r + b, b ∈ F , order is 2, and all these elements lie
outside G′ if and only if characteristic of F is not 2.

Note that centralizer of every element in G′ is contained in G′. For, let f ∈ G′

such that f(r) = r + α, and let g(r) = ar + β ∈ CG(f). Then we have f ◦ g(r) =
ar + β + α, and g ◦ f(r) = ar + aα + β. So, a = 1. Hence g is in G′. This shows
that G is a Frobenius group.

Thus, if the underlying field F is infinite, then G is an infinite 2-Camina group
which is Frobenius with abelian kernel G′. It is solvable but not nilpotent and
non-torsion-free group.

By taking different infinite fields F , we get numerous examples of infinite 2-
Camina groups which are solvable but not nilpotent.

The above is not the only way in which infinite Camina groups could be con-
structed. As was suggested to us by Prof. Evgeny Khukhro, University of Manch-
ester, U.K. and Novosibirsk Institute of Mathematics, Russia, following is the sketch
of possible construction of nilpotent infinite Camina groups.

Let G be a finite p group which is also a Camina group. By Dark and Scop-
pola [4], its class of nilpotency would be less than or equal to three. If p > 3, then
it is possible to construct a Lie ring L by using inversions of the Baker-Campbell-
Hausdorff (Lazard’s Correspondence) formula. An infinite Lie ring with the same
property can be obtained by extending the ring L. Applying Lazard’s correspon-
dence in the opposite direction one obtains an infinite Camina group for which the
nilpotency class would be preserved.

Thus, one can have infinite Camina groups which are nilpotent or non nilpo-
tent. The question however remains that , if an infinite Camina group is nilpotent
then is its class of nilpotency necessarily less or equal to three? As proposed by us
this question has appeared as an unsolved problem in group theory ([5]).

Unsolved problem. Let G be a nilpotent group in which every coset xG′ for
x ∈ G\G′, is equal to the conjugacy class cl(x). Is there a bound for the nilpotency
class of G ? If G is finite, then its class is at most 3 (R.Dark and C. Scoppola [4]).
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Marcel Herzog of Tel-Aviv University and his group has also come out with
other examples of infinite Camina groups [6]. They have constructed infinite Cam-
ina groups which are non-solvable.

In his paper [8] Mark Lewis defined generalized Camina group (denoted by
GCG) as a finite group G in which the conjugacy class of every element g ∈ G \
Z(G)G′ is gG′. These groups are isoclinic to Camina groups. In particular he
showed that if G is a nilpotent generalized Camina group then its nilpotence class
is at most 3. Obviously, every Camina group is a generalized Camina group.

As an example of generalized Camina group consider G = Z3 o Z4 described
via generators a, b with relations a6 = 1, b2 = a3, ba = a−1b. Here G′ = {1, a2, a4}
and Z(G) = {1, a3}. Simple computations show that G is a generalized Camina
group.

We extend the concept of generalized Camina group to infinite case and give
one example in support. We define

Definition 3.3. A group G (finite or infinite) is called a generalized Camina
group if the conjugacy class of every element g ∈ G \ Z(G)G′ is G′g.

We give an example of infinite generalized Camina group.

G =
{(

a b
0 d

)
| ad 6= 0, a, b, d ∈ R

}
where R is the field of reals. Then

G′ =
{(

1 x
0 1

)
| x ∈ R

}
is a commutator group. Here G/G′ is abelian. Z(G) =

{(
a 0
0 a

)
| a ∈ R

}
Let g =

(
a b
0 d

)
∈ G \ Z(G)G′ with a 6= d. Then

coset of G′ w.r.t. g is G′g =
{(

1 x
0 1

) (
a b
0 d

)
| ad 6= 0, a, b, d, x ∈ R

}
=

{(
a b + dx
0 d

)
| ad 6= 0

}
. We can obtain conjugacy class of g as cl(g) =

{(
a (aq+bs)−dq

p

0 d

)
| ad 6= 0

}
.

Comparing the two sets G′g and cl(g), for every a, b, d and x we can always
find p, q and s such that b+dx = (aq+bs)−dq

p and vice versa. Thus G′g = cl(g),∀g ∈
G \ Z(G)G′. As a result G is an infinite generalized Camina group.

This shows that G is an infinite generalized Camina group which is not a
Camina group as Z(G) is not contained in G′. Moreover, this construction is valid
for any field. One only needs to take an infinite field to get the infinite group.

Remark. In the above example G = H × Z(G) where H ={(
a b
0 1

)
| a, b ∈ R, a 6= 0

}
is an infinite Frobenius group.
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4. Or-Cos and Or-Con Groups

Xing-Zhong, Guo-hua Qian and Wu-jie Shi [16] have shown that “If G is a
finite group in which elements of same order outside the center are conjugate then
either G is abelian or G ∼= S3.”. Such groups are called OC-groups. A more general
question would be to determine the structure of a finite group G with a normal
subgroup N such that elements of same order in G \ N are conjugate. In this
section we try to address this and similar problems . We start with the following
definitions followed by examples.

Definition 4.1. A group G is said to be an Or-Con group with respect to a
normal subgroup N if for every x ∈ G \ N the conjugacy class cl(x) equals order
class of x restricted to G \N .

Definition 4.2. A group G is said to be an Or-Cos group with respect to a
normal subgroup N if for every x ∈ G \ N the coset xN equals order class of x
restricted to G \N .

In the above definitions it may happen that for some a ∈ G \ N there exists
b ∈ N such that |a| = |b|. This observation leads us to the following definitions.

Definition 4.3. An Or-Con group with respect to normal subgroup N such
that N consists of complete order classes is called a complete Or-Con group.

Definition 4.4. An Or-Cos group with respect to normal subgroup N such
that N consists of complete order classes is called a complete Or-Cos group.

Definition 4.5. If a is an element of a group G, then a is said to be a real
element of G if a and a−1 are in the same conjugacy class in G.

Examples.

1. Consider the group G = Z3oZ4 described via generators a and b satisfying
the relations a6 = 1, b2 = a3, and ba = a−1b. Then N = {1, a, a2, a3, a4, a5} is
its maximal normal subgroup. G is complete Or-Cos with respect to N , as all the
elements of order 4 are in G \N and form a single coset of N . Since the elements
b, ab, a2b, a3b, a4b, a5b are in the same order class but not in a single conjugacy class,
G cannot be an Or-Con group. Similarly, as Z(G) = {1, a3}, and G′ = {1, a2, a4},
it cannot be a Camina group. This is an example of a non abelian Or-Cos group
which is neither an Or-Con group nor a Camina group.

2. Dihedral groups Dp of order 2p, p an odd prime, described via generators
a and b with relations, ap = 1, b2 = 1, and ba = a−1b are non abelian complete
Or-Cos, complete Or-Con, and Camina groups with respect to G′ = Zp.

3. Z4 with N = {1, a2} and Z4 ×Z2 with N = {1, a2, b, a2b} are complete Or-
Cos groups. Z2

3 = Z2 × Z2 × Z2 described via generators a, b and c with relations
a2 = b2 = c2 = 1, ba = ab, ca = ac, cb = bc has 7 normal subgroups name-
ly, {1, a, b, ab}, {1, a, c, ac}, {1, a, bc, abc}, {1, b, c, bc}, {1, b, ac, abc}, {1, ab, c, abc},
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{1, ab, ac, bc} each of order 4 with respect to which it is Or-Cos. This is not a com-
plete Or-Cos group. Q8 described via generators a and b with relations a4 = b2 = 1
and ba = a−1b has 3 normal subgroups namely, {1, a, a2, a3}, {1, b, a2, a2b}, and
{1, ab, a2, a2b} for being Or-Cos. This is not a complete Or-Cos group. None of
these four groups are Or-Con. Further, although each of them is a Camina group,
none of them is Or-Cos with respect to G′.

Thus, a Camina group G which is also Or-Cos may not be Or-Cos with respect
to G′.

4. The infinite groups with N = 1 which are HNN extensions are Or-Con
groups which are neither Or-Cos groups nor Camina groups.

It is clear from the definitions that every OC- group is an Or-Con group with
N = Z(G).

We now present some basic properties and inter-relations between the different
group structures defined above. Ox|G\N will denote order class of x restricted to
G \N .

Proposition 4.1. Z2 is the only abelian Or-Con group.

Proof. For an abelian group to be Or-Con, it is necessary that at least half
the number of elements of G be each of different order. This is not possible, except
when |G| ≤ 2. Because if |G| = 3, then G has no non-trivial normal subgroup, and
all non-identity elements are of same order. In case |G| > 3 and G is Or-Con, then
there exists a normal subgroup N such that elements of same order outside N are
conjugate . Thus, not only all elements outside N are singleton conjugacy classes,
but order classes outside N are all singleton sets. Also, |N | ≤ |G|/2. Hence, at
least |G|/2 number of elements should be each of different order, and other than 1.
This is not possible as all these numbers are required to be divisors of order of G.
Thus Z2 is the only abelian Or-Con group.

Proposition 4.2. If G is Or-Cos with respect to N then G′ ⊆ N .

Proof. We have Ox|G\N = xN for every x ∈ G \N . Thus every coset of N will
contain at least one conjugacy class. Hence G′ ⊆ N .

Proposition 4.3. If G is Or-Cos and Or-Con with respect to same normal
subgroup N , then G is a Camina group with N = G′.

Proof. Let G be Or-Cos as well as Or-Con with respect to N . Then Ox|G\N =
xN and Ox|G\N = cl(x). Thus xN = cl(x) for all x ∈ G \ N . Therefore G is a
Camina group and N = G′.

Proposition 4.4. Let G be a Camina group.

(1) If G is Or-Con with respect to G′, then it is Or-Cos with respect to G′.

(2) If G is Or-Cos with respect to G′, then it is Or-Con with respect to G′.
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Proof. (1) For every x ∈ G \G′, xG′ = cl(x) and Ox|G\G′ = cl(x). Therefore
Ox|G\G′ = xG′.

(2) For every x ∈ G\G′, xG′ = cl(x) and Ox|G\G′ = xG′. Therefore Ox|G\G′ =
cl(x).

Theorem 4.1. If G is a complete Or-Cos group with respect to N then N is
unique.

Proof. Let N1 and N2 be two normal subgroups such that G is Or-Cos with
respect to N1 and N2. We first show that we cannot have N1 ⊂ N2. If possible,
let N1 ⊂ N2. Then for x ∈ G \N2 we shall have Ox = xN2, and Ox = xN1. This
implies |N1| = |N2| which is not possible. Similarly, we cannot have N2 ⊂ N1.

Let, if possible x ∈ N1 but x is not in N2, and y ∈ N2 but y is not in N1. So,
Ox = xN2, and as x ∈ N1 and G is complete Or-Cos with respect to N1, we have
Ox ⊂ N1. This implies |N2| = |Ox| < |N1|, i.e. |N2| < |N1|. Similarly, using y we
get |N1| < |N2|. This is a contradiction. Therefore N1 = N2.

Remark. We notice that if G is not a complete Or-Cos group with respect to N
then N may not be unique, as can be seen from examples Q8 and Z3

2 = Z2×Z2×Z2.
Following results have been suggested by Prof. Mark Lewis, Kent State Uni-

versity, Ohio.
Theorem 4.2. Let G be an Or-Cos group with respect to the normal subgroup

N , then G/N is an elementary abelian 2-group.

Proof. Let a ∈ G \ N . Then a and a−1 belong to the same coset of N , as
order of a and a−1 is same. Hence aN = a−1N , i.e. aN has order 2 in G/N . Thus
G/N has exponent 2. Therefore G/N is an elementary abelian 2-group.

Theorem 4.2. If G is an Or-Con group with respect to the normal subgroup
N , then G/G′N is an elementary abelian 2-group and G is Or-Cos with respect to
G′N .

Proof. Let a ∈ G \N . Then a and a−1 are in the same conjugacy class of G.
Hence, aN and a−1N are in the same conjugacy class of G/N . So, all conjugacy
classes of G/N are real. Therefore, all irreducible characters of G/G′N are real.
Hence, G/G′N is an elementary abelian 2-group. If a and b are elements of G\G′N
and are of same order, then a and b are conjugate in G. All conjugates of a will lie
in aG′N as G/G′N is abelian. Therefore b ∈ aG′N .

Corollary 4.1. Every Or-Con group is also an Or-Cos group.

Proof is immediate from the above Theorem.
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