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SOME RESULTS ON TRANS-SASAKIAN MANIFOLDS

Rajendra Prasad and Vibha Srivastava

Abstract. The object of the present paper is to study φ-conformally (resp. conharmonically,
projectively) flat trans-Sasakian manifolds.

1. Preliminaries

In 1985 J.A. Oubina [9] introduced a new class of almost contact metric man-
ifolds, called trans-Sasakian manifold, which includes Sasakian, Kenmotsu and
Cosymplectic structures. The local classification of trans-Sasakian manifold is given
by J.C. Marrero [8]. Blair and Oubina [3] also obtained some fundamental results
on this structure. D-homothetic deformations on trans-Sasakian manifold is stud-
ied by Shaikh et al. [14]. Conformally flat trans-Sasakian manifold is classified by
Shaikh and Matsuyama [12]. Weakly symmetric trans-Sasakian structure is studied
by Shaikh and Hui [13].

The Riemannian Christoffel curvature tensor R, the Weyl conformal curvature
tensor C [15], the coharmonic curvature tensor K [7] and projective curvature
tensor P [15] of (2n + 1)-dimensional manifold M2n+1 are defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z − 1
2n− 1

[S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ],

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ], (1.1)

K(X,Y )Z = R(X,Y )Z − 1
2n− 1

[S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ],

P (X,Y )Z = R(X,Y )Z − 1
2n

[g(Y, Z)QX − g(X, Z)QY ], (1.2)
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respectively, where ∇ is the Levi−Civta connection, Q is the Ricci operator defined
by S(X, Y ) = g(QX,Y ), S is the Ricci tensor, τ is the scalar curvature and X,Y, Z
∈ χ(M2n+1), χ(M2n+1) being the Lie algebra of vector fields of M2n+1. The paper
is organized as follows:

In Section 2, we define a trans-Sasakian manifold and review some formulae
which will be used in the later sections. In Section 3, we give the main results of
the paper.

2. Trans-Sasakian manifolds

A differentiable manifold M2n+1 of class C∞ is said to be an almost contact
metric manifold [4], if it admits a (1, 1) tensor fields φ, a contravariant vector field
ξ, a 1-form η and a Riemannin metric g, which satisfy

φ2X = −X + η(X)ξ, φ(ξ) = 0, η(φX) = 0,

g(X, φY ) = −g(φX, Y ), g(X, ξ) = η(X), η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.1)

for all vector fields X,Y on M2n+1.
An almost contact metric manifold M2n+1(φ, ξ, η, g) is said to be a trans-

Sasakian manifold [9] if (M2n+1×R, J,G) belong to the class W4 of the Hermitian
manifolds, where J is the almost complex structure on M2n+1 × R defined by [6]

J

(
Z, f

d

dt

)
=

(
φZ − fξ, η(Z)

d

dt

)
,

for any vector field Z on M2n+1 and smooth function f on M2n+1 × R and G
is Hermitian metric on the product M2n+1 × R. This may be expressed by the
condition [9]

(∇Xφ)Y = α(g(X, Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), (2.2)

for some smooth functions α and β on M2n+1, and we say that trans-Sasakian
structure is of type (α, β). From equation (2.2), it follows that

∇Xξ = −αφX + β(X − η(X)ξ),

(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ).

Further, on such a trans-Sasakian manifold M2n+1 with structure(φ, ξ, η, g), the
following relations hold [5]

S(X, ξ) = (2n(α2 − β2)− ξβ)η(X)− (2n− 1)Xβ − (φX)α,

Qξ = (2n(α2 − β2)− ξβ)ξ − (2n− 1) gradβ + φ(grad α). (2.3)

If ξ is an eigenvector of Q [11] then, we have either
−(2n− 1) gradβ + φ(grad α) = a1ξ, or
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−(2n− 1) grad β + φ(gradα) = 0,
where a1 is to be determined by applying η to both sides. We get

−(2n− 1)η(grad β) = a1,

g(ξ,−(2n− 1) grad β) = a1,

−(2n− 1)ξβ = a1,

hence −(2n− 1) gradβ + φ(grad α) = −(2n− 1)(ξβ)ξ.

S(X, ξ) = 2n(α2 − β2 − ξβ)η(X),

Qξ = 2n(α2 − β2 − ξβ)ξ,

S(φX, φY ) = S(X,Y )− 2n(α2 − β2 − ξβ)η(X)η(Y ). (2.4)

In a trans-Sasakian manifold [6], we also have

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ]

+ (Y α)φX − (Xα)φY − (Y α)φX + (Y β)φ2X − (Xβ)φ2Y,

R(ξ, X)ξ = (α2 − β2 − ξβ)[η(X)ξ −X],

and
2αβ + ξα = 0.

A trans-Sasakian manifold M2n+1 is said to be η-Einstein if its Ricci tensor S is of
the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y )

for any vector fields X and Y , where a, b are smooth functions on M2n+1.

3. Main results

Lemma 3.1. In a trans-Sasakian manifold M2n+1, the following statements
are equivalent,
(a) ξ is an eigenvector of Ricci-operator;
(b) φ(grad α)− (2n− 1) grad β is parallel to ξ or zero.

Proof. From equation (2.9) it is clear that statement (a) implies (b). It is also
clear from equation (2.3) that (b) implies (a).

Lemma 3.2. In a trans-Sasakian manifold M2n+1 if Qφ = φQ, then
φ(grad α)− (2n− 1) grad β is parallel to ξ or zero.

Proof. If Qφ = φQ, then from equation (2.3), we have Qφξ = φQξ,
φ{φ(grad α)− (2n− 1) grad β} = 0l this implies that φ(grad α)− (2n− 1) gradβ is
parallel to ξ or zero.

Lemma 3.3. If ξ is an eigenvector of Ricci-operator Q and (α2−β2−ξβ) 6= 0,
then trans-Sasakian manifold cannot be flat.
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Lemma 3.4. If φ(grad α) = (2n − 1) grad β and (α2 − β2 − ξβ) 6= 0, then
trans-Sasakian manifold cannot be flat.

Due to these reasons, we have studied φ-conformally flat, φ-conharmonically
flat and φ-projectively flat trans-Sasakian manifolds.

Definition 3.5. [10] A differentiable manifold M2n+1, (n > 1), satisfying the
condition

φ2C(φX, φY )φZ = 0, (3.1)

is called φ-conformally flat.

In [1], the authors studied (k, µ)-contact metric manifolds satisfying equation
(3.1). Now our aim is to find the characterization of trans-Sasakian manifolds
satisfying the condition (3.1).

Definition 3.6. A differentiable manifold M2n+1, (n > 1), satisfying the
condition

φ2K(φX, φY )φZ = 0, (3.2)

is called φ-conharmonically flat.

In [2], the authors considered (k, µ)-contact manifolds satisfying condition
(3.2). Now we will study the condition (3.2) on trans-Sasakian manifold.

Theorem 3.7. Let M2n+1, (n > 1), be a φ-conformally flat trans-Sasakian
manifold. Then M2n+1 is an η-Einstein manifold if ξ is an eigenvector of Q.

Proof. Suppose that M2n+1 is a φ-conformally flat trans-Sasakian mani-
fold. Then it is easy to see that φ2C(φX, φY )φZ = 0 holds if and only if
g(C(φX, φY )φZ, φW ) = 0 for any X,Y, Z ∈ χ(M2n+1). So by the use of equa-
tion (1.2), φ-conformally flat means

g(R(φX, φY )φZ, φW )

=
1

2n− 1
[g(φY, φZ)S(φX, φW )− g(φX, φZ)S(φY, φW )

+ g(φX, φW )S(φY, φZ)− g(φY, φW )S(φX, φZ)]

− r

2n(2n− 1)
[g(φY, φZ)g(φX, φW )− g(φX, φZ)g(φY, φW )].

(3.3)

Let {e1,...,e2n, ξ} be a local orthonormal basis of vector fields in M2n+1. Using that
{φe1,...,φe2n, ξ} is a local orthonormal basis, if we put X = W = ei in equation
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(3.3) and sum up with respect to i, then

2n∑
i=1

g(R(φei, φY )φZ, φei)

=
1

2n− 1

2n∑
i=1

[g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)

+ g(φei, φei)S(φY, φZ)− g(φY, φei)S(φei, φZ)]

− r

2n(2n− 1)

2n∑
i=1

[g(φY, φZ)g(φei, φei)− g(φei, φZ)g(φY, φei)].
(3.4)

It can be easily verified that

2n∑
i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ)− (α2 − β2 − ξβ)g(φY, φZ),

2n∑
i=1

S(φei, φei) = r − 2n(α2 − β2 − ξβ),

2n∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ),

2n∑
i=1

g(φei, φei) = 2n,

2n∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ).

(3.5)

Using equations (3.5), equation (3.4) can be written as

S(φY, φZ) = [
r

2n
− (α2 − β2 − ξβ)]g(φY, φZ). (3.6)

Replacing Y by φY and Z by φZ in equation (3.6), we have

S(Y, Z) =
[ r

2n
− (α2 − β2 − ξβ)

]
g(Y, Z)

−
[ r

2n
− (2n + 1)(α2 − β2 − ξβ)

]
η(Y )η(Z).

Hence, M2n+1 is an η-Einstein manifold. This completes the proof of the theorem.

Corollary 3.8. Let M2n+1, (n > 1), be a φ-conharmonically flat trans-
Sasakian manifold. Then M2n+1 is an η-Einstein manifold with zero scalar curva-
ture if ξ is an eigen vector of Q.

Definition 3.9. A differentiable manifold M2n+1, satisfying the condition

φ2P (φX, φY )φZ = 0,

is called φ-projectively flat.
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Theorem 3.10. Let M2n+1 be a φ-projectively flat trans-Sasakian manifold.
Then M2n+1 is an η-Einstein manifold if ξ is an eigenvector of Q.

Proof. Suppose that M2n+1 is a φ-projectively flat trans-Sasakian mani-
fold. Then it is easy to see that φ2P (φX, φY )φZ = 0 holds if and only if
g(P (φX, φY )φZ, φW ) = 0 for any X, Y, Z ∈ χ(M2n+1). So by the use of equa-
tion (1.2) φ-projectively flat means

g(R(φX, φY )φZ, φW ) =
1

2n− 1
[g(φY, φZ)S(φX, φW )− g(φX, φZ)S(φY, φW ).

(3.7)
Let {e1,...,e2n, ξ} be a local orthonormal basis of vector fields in M2n+1. Using that
{φe1,...,φe2n, ξ} is a local orthonormal basis, if we put X = W = ei in equation
(3.7) and sum up with respect to i, then

2n∑
i=1

g(R(φei, φY )φZ, φei)

=
1

2n− 1

2n∑

i=1

[g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)]. (3.8)

Using equations (3.5), equation (3.8) can be written as

S(φY, φZ) =
[

r

2n
− (α2 − β2 − ξβ)

2n

]
g(φY, φZ). (3.9)

Replacing Y by φY and Z by φZ in equation (3.9), we have

S(Y, Z) =
[

r

2n
− (α2 − β2 − ξβ)

2n

]
g(Y, Z)

−
[

r

2n
+

4n2 − 1
2n

(α2 − β2 − ξβ)
]

η(Y )η(Z).

Hence, M2n+1 is an η-Einstein manifold. This completes the proof of the theorem.
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