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TRIGONOMETRIC POLYNOMIAL RINGS AND THEIR
FACTORIZATION PROPERTIES

Ehsan Ullah and Tariq Shah

Abstract. Consider the rings S and S′, of real and complex trigonometric polynomials
over the field Q and its algebraic extension Q(i) respectively. Then S is an FFD, whereas S′ is a
Euclidean domain. We discuss irreducible elements of S and S′, and prove a few results on the
trigonometric polynomial rings T and T ′ introduced by G. Picavet and M. Picavet in [Trigono-
metric polynomial rings, Commutative ring theory, Lecture notes on Pure Appl. Math., Marcel
Dekker, Vol. 231 (2003), 419–433]. We consider several examples and discuss the trigonometric
polynomials in terms of irreducibles (atoms), to study the construction of these polynomials from
irreducibles, which gives a geometric view of this study.

1. Introduction

Trigonometric polynomials are widely used in different fields of engineering
and science, like trigonometric interpolation applied to the interpolation of periodic
functions, approximation theory, discrete Fourier transform, and real and complex
analysis, etc. We are developing this study by keeping in mind the possibility that
studying factorization properties of these polynomials could help studying the above
fields and especially Fourier series, that is, the study of big waves (a trigonometric
polynomial) in terms of small wavelets (irreducibles). The study of Fourier series
is a vast field of study by itself and this study will help to understand a big Fourier
series in terms of smaller Fourier series.

We refer to [10, 11] and reference therein, for a short review of some of the
recent interesting results on nonnegative trigonometric polynomials and their appli-
cations in Fourier series, signal processing, approximation theory, function theory
and number theory. Many applications, especially in mechanical engineering and
in numerical analysis lead to quantifier elimination problems with trigonometric
functions involved (see [22]). Decompositions of trigonometric polynomials with
applications to multivariate subdivision schemes is studied in [12], random almost
periodic trigonometric polynomials and applications to ergodic theory can be found
in [7], a detailed treatment of trigonometric series can be found in [31], and a new
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proof of a theorem of Littlewood concerning flatness of unimodular trigonometric
polynomials is given in [4], this proof is shorter and simpler than Littlewood’s.
Inspired by the above stated applications and a lot more, we investigate trigono-
metric polynomials using an algebraic approach. Throughout this article we follow
the notation and definitions introduced in [23, 30] unless mentioned otherwise.

By a trigonometric polynomial we mean a finite linear combination of sin(nx)
and cos(nx) with n a natural number. The coefficients may be taken as real or
complex. For complex coefficients, there is no difference between such a finite
linear combination and a finite Fourier series. Any function of the form

a0 +
n∑

k=1

(ak cos kx + ibk sin kx) : x ∈ R, ak, bk ∈ C

is called a complex trigonometric polynomial of degree n. The familiar Fourier
coefficient formulas

a0 =
1
2π

∫ π

−π

f(x)dx, an =
1
π

∫ π

−π

f(x) cos nx dx and bn =
1
π

∫ π

−π

f(x) sin nx dx

for n > 0, show that the coefficients are uniquely determined. Using Euler’s formula
the above polynomial can be rewritten as

n∑
k=−n

ckeinx : x ∈ R, ck ∈ C

Analogously, we can define a real trigonometric polynomial and its degree.
The set of all trigonometric polynomials form a ring, in fact an integral domain.
In particular, if we restrict the coefficients to be real even then we get an integral
domain. The degree of a non-zero trigonometric polynomial is defined as the largest
value of n for which an and bn are not both zero. The degrees behave just like
ordinary polynomials, that is, the product of two trigonometric polynomials of
degree m and n respectively, is a trigonometric polynomial of degree m + n.

In polynomial rings, factorization properties of integral domains have been a
frequent topic of recent mathematical literature. Following Cohn [6], an integral
domain, say D, is atomic if each non-zero non-unit of D is a product of irreducible
elements (atoms) of D, and it is well known that UFDs, PIDs and Noetherian
domains are atomic domains. An integral domain D satisfies the ascending chain
condition on principal ideals (ACCP) if there does not exist any infinite strictly
ascending chain of principal integral ideals of D. Every PID, UFD and Noetherian
domain satisfies ACCP and a domain satisfying ACCP is atomic. Grams [15] and
Zaks [29] provided examples of atomic domains which do not satisfy ACCP. An
integral domain D is a bounded factorization domain (BFD) if it is atomic and for
each non-zero non-unit of D, there is a bound on the length of factorization into
products of irreducible elements (cf. [1]). For examples of BFDs are UFDs and
Noetherian or Krull domains, cf. [1, Proposition 2.2].

As we know, an integral domain D is said to be a half-factorial domain
(HFD) if D is atomic and whenever x1, . . . , xm = y1, . . . , yn, where x1, x2, . . . , xm,
y1, y2, . . . , yn are irreducibles in D, then m = n. A UFD is obviously an HFD, but
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the converse fails, since any Krull domain D with CI(D) ∼= Z2 is an HFD [28], but
not a UFD. Moreover, a polynomial extension of an HFD is not an HFD, for exam-
ple Z[

√−3][X] is not an HFD, as Z[
√−3] is an HFD but not integrally closed [9].

Following [1], an integral domain D is an idf-domain if each non-zero element of D
has at most a finite number of non-associate irreducible divisors. Also an integral
domain is a finite factorization domain (FFD) if each non-zero non-unit of D has
only a finite number of non-associate divisors and hence, only a finite number of
factorizations up to order and associates. Moreover an integral domain D is an
FFD if and only if D is atomic and an idf-domain [1, Theorem 5.1].

In general,

UFD =⇒ idf − domain ⇐= FFD =⇒ BFD =⇒ ACCP =⇒ Atomic.

But none of the above implications is reversible. In this study we investigate the
factorization properties of trigonometric polynomial rings. The basic concepts,
notions and terminology are as standard in [23, 26, 27], unless mentioned otherwise.
In [24, Theorem], J. F. Ritt deduced the following: “If 1 + a1e

α1x + · · · + aneαnx

is divisible by 1 + b1e
β1x + · · · + bre

βrx with no b = 0, then every β is a linear
combination of α1, . . . , αn with rational coefficients”. Recently G. Picavet and M.
Picavet [23] investigated some factorization properties in trigonometric polynomial
rings. Actually, when we replace all αk above by im, with m ∈ Z, we obtain
trigonometric polynomials. Whereas

T ′ =
{ n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak, bk ∈ C
}

and

T =
{ n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak,bk ∈ R
}

are the trigonometric polynomial rings over C and R, respectively. Here T ′ is a
Euclidean domain and T is a Dedekind half factorial domain (see [23, Theorem 2.1
& Theorem 3.1].

In our previous papers [26] and [27], this study is extended to factorization
properties of subrings in T ′ and T , where we introduce subrings S′0 and S′1 of T ′.
We have also proved that S′0 is a Noetherian HFD and S′1 is a Euclidean domain. In
this paper, we continue the above investigations to find the factorization properties
in trigonometric polynomial rings, begun in [23] and extended in [26, 27]. Moreover,
we establish the study of factorization properties of trigonometric polynomials with
coefficients from the field Q and its algebraic extension Q(i), instead of R and C,
that is, we set

S′ =
{ n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak, bk ∈ Q(i)
}

and

S =
{ n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak,bk ∈ Q
}

.

Note that while studying the factorization properties of trigonometric polynomials
over the field Q(i), instead of C, we are left with less results, as Q(i) is not alge-
braically closed. This paper is a continuation of [26], where we have already studied
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the factorization properties of the subrings S′1 (Euclidean domainw (Q[X])X) and
S′0 (Noetherian HFDw (Q+XQ(i)[X])X) of S′, where S′1 ⊆ S′0 ⊆ S′.

Indeed, sin2 x = (1− cosx)(1 + cos x) shows that two different non-associated
irreducible factorizations of the same element may appear. Throughout we denote
by cos kx and sin kx the two functions x 7→ cos kx and x 7→ sin kx (defined over
R). Also from basic trigonometric identities, it is obvious that for each n ∈ N\{1},
cos nx represents a polynomial in cos x with degree n and sin nx represents the
product of sin x and a polynomial in cos x with degree n − 1. Conversely, by
trigonometric linearization formulas, it follows that any product cosn x sinp x can
be written as:

q∑
k=0

(ak cos kx + bk sin kx), where q ∈ N and ak, bk ∈ Q.

Hence S = Q[cos x, sin x] ⊆ R[cos x, sin x] = T and S′ = Q(i)[cos x, sin x] ⊆
C[cos x, sin x] = T ′.

Let us describe what is ahead of us. In Section 2 we prove that the ring S
is an FFD being a Dedekind domain and in Section 3 we prove that the ring S′

is a Euclidean domain (isomorphic to Q(i)[X]
αX

). In Section 4 we establish few
results on localization of T . In Section 5 we construct several interesting examples.
Some of these examples also verify the results of [23], on T . Finally, in Section 6,
we discuss the trigonometric polynomials in terms of irreducibles (atoms), which
turns the direction of this study towards geometry. In some sense, in this section
our aim is to study the geometrical behavior of trigonometric polynomials. In this
section we have used computer package Mathematica [19] to draw trigonometric
polynomials.

2. The ring Q[ cos x, sin x]

In what follows, we consider the ring S of real trigonometric polynomials over
the field Q. We prove that S is a finite factorization Dedekind domain. We also
describe irreducible elements and units in S.

The ring of real trigonometric polynomials T possesses some interesting fea-
tures, for instance the identity sin2 x = (1− cos x)(1 + cos x) provides an example
of non-unique factorization. But this identity breaks down over the ring of complex
trigonometric polynomials T ′. Now consider the ring S of real trigonometric polyno-
mials over the field Q. The identity sin2 x = (1−cos x)(1+cos x) again provides an
example of non-unique factorization in the ring S. The degree of a non-zero trigono-
metric polynomial of S, is defined as the largest value of n for which an and bn are
not both zero. The degrees behave just like ordinary polynomials, that is, the prod-
uct of two trigonometric polynomials of degree m and n respectively, is a trigono-
metric polynomial of degree m+n. Actually, for each n ∈ N \{1}, we get cos nx as
a polynomial in cosx of degree n and sin nx as the product of sin x by a polynomial
in cos x of degree n− 1. So each polynomial P =

∑n
k=0(ak cos kx + bk sin kx) ∈ S

can be put in the form P = A(cos x) + sin xB(cos x), where A(cos x) and B(cosx)
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are polynomials in cos x of degree k and k − 1 respectively. This can be seen more
clearly from the following definition.

Definition 1. Let P =
n∑

k=0

ak cosk x +
( p∑
j=0

bj cosj x
)
sinx, ak, bj ∈ Q. The

degree of P is defined as

δ(P ) =
{

sup{k, j + 1/ak, bj 6= 0}, if P 6= 0,

−∞, if P = 0.

This definition is due to the fact that the family {cosk x, sin x cosk x} is a basis
of S over Q and gives δ(PQ) = δ(P ) + δ(Q), for any P, Q ∈ S. In particular, a
trigonometric polynomial of degree one is irreducible and Q \ {0} is the set of unit
elements of S. This gives us the following proposition.

Proposition 1. The trigonometric polynomial ring S forms an integral do-
main. Furthermore,
(i) the units (invertible elements) in this domain are the elements of degree zero,

that is, the constant functions,
(ii) the elements of degree one are irreducible.

Proof. The proof is straightforward, just as with ordinary polynomials, and
we leave the details to the reader.

Theorem 1. The integral domain Q[ cos x, sin x] is an FFD.

Proof. Consider the substitution morphism g : Q[X,Y ] → Q[cos x, sin x],
defined by g(X) = cos x and g(Y ) = sin x, such that g(X2 + Y 2 − 1) =
g(X2) + g(Y 2)− 1 = cos2 x + sin2 x− 1 = 0, this implies (X2 + Y 2 − 1) =Ker(g),
therefore Q[cos x, sin x] w Q[X,Y ]/(X2 + Y 2 − 1). Since Q[X, Y ]/(X2 + Y 2 −
1) w Q[X][Y ]/(X2 + Y 2 − 1), with Q[X] factorial and 1 − X2 is square free
in Q[X], Q[X, Y ]/(X2 + Y 2 − 1) is integrally closed [13, Lemma 11.1]. Also
Q[X,Y ]/(X2+Y 2−1) is one dimensional and Noetherian. Therefore, Q[ cos x, sin x]
is a Dedekind domain and hence a Krull domain. Since a Krull domain is both
atomic and an idf-domain, so it is an FFD [1, Theorem 5.1].

Remark 1. We have the following interesting remarks for the real trigono-
metric polynomial rings.
(1) R[cos x, sin x] is an HFD [23, Theorem 3.1], whereas Q[cos x, sinx] is an FFD.
(2) S is a free Q[cos x]-module and has a basis {1, sin x}.
(3) Q[cos x] is a Euclidean domain because Q[cos x] w Q[X], therefore the FFD

S lies between the two Euclidean domains Q[cos x] and Q(i)[cos x, sin x] (see
Theorem 2).

(4) S′ is a free S-module and has a basis {1, i}.
(5) T is an S-module, also T ′ is an S-module.
(6) T ′ is an S′-module.



306 E. Ullah, T. Shah

(7) The quotient field of Q[cos x, sin x] is Q(cos x)[sin x] and the quotient field of
Q(i)[cos x, sin x] is Q(i)(cos x)[sin x].

3. The ring Q(i)[cosx, sin x]

Consider the ring S′ of complex trigonometric polynomials over the field Q(i).
We will prove that S′ is a Euclidean domain and describe the irreducible elements
of S′. The complex exponential forms of sine and cosine shows that the ring of
trigonometric polynomials with coefficients from Q(i) is the same as the ring of
polynomials in positive and negative powers of z = eix with coefficients from the
field Q(i). To see that this is a unique factorization ring, we define the degree
of a polynomial in z and z−1 as the difference between the largest and smallest
exponents appearing in non-zero terms. According to this definition, the elements
of degree zero are the monomials, which are exactly the invertible elements in this
ring. The usual proof that ordinary polynomials over a field form a Euclidean
domain then goes through with no essential change. To prove this we proceed as
follows.

Consider the isomorphism f : Q(i)[X]X → S′ defined through the substitution
morphism X → eix. Note that this isomorphism exists for more general case, that
is, if we replace X by αX with α ∈ Q(i), then again we have the isomorphism
f : Q(i)[X]αX → S′ through the same substitution morphism X → eix.

An arbitrary element z ∈ Q(i)[cos x, sin x] has the form e−inxP (eix), n ∈
N, where P (X) ∈ Q(i)[X] and deg(P ) = 2n, which is obtained by the complex
exponential forms of sine and cosine, i.e. the relations cosx = eix+e−ix

2 and sin x =
eix−e−ix

2i .

Conversely, as eix = cos x + i sin x, so it follows e−inxP (eix) ∈ S′, n ∈ N,
P (X) ∈ Q(i)[X]. Hence, we can find an isomorphism f : Q(i)[X]αX → S′ through
the substitution morphism X → eix, where α ∈ Q(i) such that αX ∈ Q(i)[X].
As each element z ∈ Q(i)[X]αX can be written uniquely as (αX)kP (X), k ∈ Z,
P (X) ∈ Q(i)[X] and P (0) 6= 0.

The mapping φ defining the Euclidean domain Q(i)[X]αX is given by φ(z) =
deg(P ) [25, Proposition 7]. A consequence of these observations is the following
theorem.

Theorem 2. The integral domain Q(i)[cosx, sin x] is a Euclidean domain with
quotient field Q(i)(cos x)[sin x]. The irreducible elements of S′ are, up to units,
trigonometric polynomials of the form cosx + i sin x− a, a ∈ Q(i) \ {0}.

As a generalization of Ritt’s factorization theorem the following corollary tells
us about the factorization of elements in T ′ = C[cos x, sin x], which first appeared
in [23, Corollary 1].

Corollary 1. Let

z =
n∑

k=0

(ak cos kx + bk sin kx), n ∈ N \ {1}, ak, bk ∈ C with (an, bn) 6= (0, 0).
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Let d be a common divisor of the integers k such that (ak, bk) 6= (0, 0). Then z has
a unique factorization

z = λ(cos nx− i sin nx)

2n
d∏

j=1

(cos dx + i sin dx− αj), where λ, αj ∈ C \ {0}.

Remark 2. The factorization in [23, Corollary 1] is possible due to the fact
that C is algebraically closed. Now there is a natural question whether there exists
a similar type of factorization for the elements of S′ = Q(i)[cos x, sin x]. The answer
is negative because Q(i) is not algebraically closed. So we are not able to find the
same kind of irreducible decomposition for the elements of S′. But this would be
quite interesting to find out such a irreducible factorization.

Remark 3. As we showed that the mapping φ which defines the Euclidean
domain S′ = Q(i)[cosx, sin x] is given by φ(z) = deg(P ), where P (X) ∈ Q(i)[X]
is such that z = f [XkP (X)] with k ∈ Z and P (0) 6= 0, for any z ∈ S′ \ {0}. The
restriction of φ to Q[cos x] provides that Q[cos x] is a Euclidean domain if we define
φ(P (cosx)) = 2 deg(P ), where P (cos x) ∈ Q[cos x] and P ∈ Q[X], whereas

P (cos x) =
n∑

k=0

ak cosk x, n ∈ N, ak ∈ R, an 6= 0, then

P (cos x) =
n∑

k=0

ak

(
eix + e−ix

2

)k

=
n∑

k=0

ak

(
ei2x + 1

2eix

)k

.

By using the substitution morphism X → eix, we have

P (cos x) = f

(
n∑

k=0

ak

(
X2 + 1

2X

)k)
= f

(
2nXn

2nXn

n∑
k=0

ak

(
X2 + 1

2X

)k)

= f(X−n2−n
n∑

k=0

ak(X2 + 1)k(2X)n−k) = f(X−nh(X)),

where

h(X) = 2−n
n∑

k=0

ak(X2 + 1)k(2X)n−k

= 2−nan(X2 + 1)n +
n−1∑
k=1

ak(X2 + 1)k(2X)n−k.

Therefore h(0) = 2−nan 6= 0 and hence φ[P (cos x)] = 2n = 2deg(P ).

4. Ideals generated by irreducibles

Consider the rings T and T ′ of real and complex trigonometric polynomials
over the field R and its algebraic extension C respectively. Then T is a Dedekind
Half factorial domain, whereas T ′ is a Euclidean domain (see [23, Theorem 2.1 &
Theorem 3.1]). We prove a few results on localization of T with respect to the
ideals generated by irreducibles. Furthermore we give an example of fraction ring
in T .
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Proposition 2. Let z = a cos x + b sin x + c ∈ T = R[cos x, sin x], with
(a, b) 6= (0, 0) and c2 > a2 + b2 such that mo = (z). Then Tmo

is a principal ideal
domain.

Proof. The irreducible element z = a cosx + b sin x + c ∈ T , with (a, b) 6=
(0, 0) and c2 > a2 + b2 generates a maximal ideal [23, Theorem 3.8]. Since T =
R[cos x, sin x] is a Dedekind domain, therefore by [3, p. 494], Tmo is a PID.

Proposition 3. For each z = a cos x + b sin x + c ∈ T = R[cos x, sin x] with
(a, b) 6= (0, 0) and c2 = a2 + b2, T/(z) is local with all its elements nilpotent.

Proof. Let z = a cosx + b sin x + c ∈ T = R[cos x, sin x] and (a, b) 6= (0, 0).
Then (z) is the square of a maximal ideal if and only if c2 = a2 + b2 [23, Theorem
3.8]. Since (z) is an ideal of T which is a square of a maximal ideal, so T/(z) has a
unique prime ideal and therefore is local [16, Exercise 14, p. 148], and every element
of T/(z) is nilpotent [16, Exercise 15, p. 148].

Remark 4. The ring T/(z) has a minimal prime ideal which contains all zero
devisors, and all non units of T/(z) are zero divisors [16, Exercise 15, p. 148]. Thus
the non units of T/(z) are contained in a minimal prime ideal. Also every zero
divisor of T/(z) is nilpotent, therefore (z) is a primary ideal [30, p. 152].

Proposition 5. Let z = a cos x + b sin x + c ∈ T = R[cos x, sin x], with
(a, b) 6= (0, 0) and c2 > a2 + b2 such that mTm 6= (0) where m = (z). Then
mTm-adic completion T̂m of Tm is a discrete valuation ring.

Proof. The irreducible element z ∈ T , where z = a cos x + b sinx + c with
(a, b) 6= (0, 0) and c2 > a2 + b2 generates a maximal ideal [23, Theorem 3.8].
Since T = R[cos x, sin x] is a Dedekind domain, therefore for every maximal ideal
m = (z), Tm is either a field or a discrete valuation ring [3, Theorem 1, p. 494]. As
mTm 6= (0), so Tm is not a field, which implies that Tm is a discrete valuation ring
having only one maximal ideal mTm, hence the mTm-adic completion T̂m of Tm is
again a discrete valuation ring [20, Exercise, p. 85].

Remark 5. By [23, p. 422], we observe that the elements of T are classes, so
there must be an equivalence relation on T . Also the ideal generated by cos2 x +
sin2 x− 1 gives R[cos x, sin x] w R[cos x, sin x]/(cos2 x + sin2 x− 1).

5. Some examples

Trigonometric polynomial rings give rise to some interesting examples. A very
much familiar example of non-unique factorization in an integral domain is (2)(3) =
(1+

√−5)(1−√−5). If we consider real trigonometric polynomials, another obvious
example of a non-unique factorization is sin2 x = 1− cos2 x = (1− cos x)(1 + cosx)
as sin x, 1 − cos x and 1 + cos x are irreducibles in T . This identity asserts that
two different looking pairs of factors have the same product. Actually it is a valid
example of non-unique factorization in the integral domain T . In this section we
discuss some examples one by one.
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Example 1. A ring of algebraic integers can sometimes be enlarged to another
one in such a way that it restores unique factorization, although the question of how
and when it can be done is not elementary. As an example, consider the ring Z[−3]
consisting of numbers of the form a + b

√−3, where a and b are integers. This ring
does not have the unique factorization, as the equation 2 ·2 = (1+

√−3)(1−√−3)
shows. We can restore unique factorization by enlarging the ring Z[−3] to the ring
of all algebraic integers in the field Q(

√−3), which is Z[w], where w = (1+
√−3)
2

is a complex cube root of unity. But this does not work for the ring Z[−5] used
above, because that is already the ring of all algebraic integers in the field Q(

√−5).
The ring of all algebraic integers in the enlarged field Q(

√−5, i), however, which
can be shown to be the ring Z[θ], where θ = (i+

√−5)
2 is a root of x4 + 3x2 + 1, is

an enlargement of Z[
√−5] that does have unique factorization. The proof of last

assertion can be easily established by standard arguments based on Minkowski’s
estimate, as described in [2, Chapter 12], [5, Chapter 13], or [18, Chapter 5].

Example 2. Consider the ring of real trigonometric polynomials which pro-
vides the non-unique factorization sin2 x = 1−cos2 x = (1−cos x)(1+cos x), where
sin x, 1 − cosx and 1 + cos x are irreducibles in T . This example breaks down if
we consider the ring of complex trigonometric polynomials T ′. So the change of
coefficients alters the nature of factorization in the ring. Introducing complex co-
efficients produces more units. All the non-zero constant multiples of powers of
z = cos x + i sin x and z−1 = cos x − i sin x are units in T ′. Our example breaks
down because the factors involved cease to be irreducible. We have

sin x =
z − z−1

2i
=

z−1(z − 1)(z + 1)
2i

,

1− cos x =
−z + 2− z−1

2
=
−z−1(z − 1)2

2
,

1 + cos x =
z−1(z + 1)2

2
,

so both sides become
−z−2(z − 1)2(z + 1)2

4
,

when expressed as a product of irreducible factors.

Example 3. Apparently the polynomial P = cos2 x + sin2 x has degree 2 in
R[cos x, sin x], but this is not true because φ(P ) = φ(cos2 x + sin2 x) = cos2 x + 1−
cos2 x = 1, which implies that δ(P ) = δ(1) = 0.

Example 4. R◦ = R[cos2 x, cos3 x] is an FFD which is not an HFD. If M◦ =
(cos2 x, cos3 x), then M◦ is a maximal ideal of R◦. Also, A = (R◦)M◦ is a 1-
dimensional local domain, hence a G-domain. This example is a consequence of
the fact that R[X] w R[ cos x].

Example 5. R = Z+ cos xQ[cos x] is a GCD domain [8, Corollary 1.3]. Also,
R is 2-dimensional and the complete integral closure of R is Q[cos x] [14, Exercise
2, p. 144].
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Following [23, p. 425], if z ∈ T is irreducible, then we have three possibilities:
(z) is a maximal ideal, (z) is a square of a maximal ideal or (z) is a product of two
distinct maximal ideals. The following examples demonstrate this fact.

Example 6. Consider cos2 x = (1 − sin x)(1 + sin x). The two irreducible
elements 1 − sin x and 1 + sin x generate the ideals (1 − sin x) and (1 + sin x)
respectively, which are the squares of maximal ideals [23, Theorem 3.8]. Therefore
we have two maximal ideals M1 = (1 − sin x, cos x) and M2 = (1 + sin x, cos x).
So three irreducible elements cosx, 1 − sin x and 1 + sin x generate the following
products M1M2, M2

1 and M2
2 , where M2

1 , M2
2 are principal ideals [23, Corollary

3.9]. Also M1M2 is a principal ideal [23, Proposition 3.10].

6. The geometrical behavior of trigonometric polynomials

6.1. Real trigonometric polynomials. Consider the ring of real trigono-
metric polynomials T = R[cos x, sin x]. T is an HFD, therefore it is an atomic do-
main, that is, every element can be expressed as a product of irreducibles (atoms).
So we can study P ∈ T as a product of atoms. For this, first we discuss a general
irreducible element of the form a cosx+b sin x+c, (a, b, c) ∈ R3 with (a, b) 6= (0, 0).

6.1.1. The behavior of irreducible elements. The irreducible element a cos x +
b sin x + c, (a, b, c) ∈ R3 with (a, b) 6= (0, 0) represents a wave, where constant c
has a direct relation with the translation of the wave. An increase in constant c
translates the wave upward and vice versa. It follows that, if we change the sign of
constant c, we get the same wave with a downward translation, whereas the shape
of the wave remains the same.

The coefficient a of cos x in a cos x+b sin x+c, (a, b, c) ∈ R3 plays a double role.
Firstly it represents the properties of cos x in the wave, the greater be the value of
a, the greater is the resemblance of wave with cos x and vice versa. Secondly, it has
a direct relation with the amplitude of wave, that is, the greater be the value of a,
the greater is the amplitude of the wave and vice versa, whereas the shape of the
wave remains the same. Similarly the coefficient b of sin x in a cos x + b sin x + c,
(a, b, c) ∈ R3 also plays a double role in the same manner as cos x.

Observation. For each P ∈ T , all irreducibles in the factorization of P have
the same wavelength, that is, 2π.

6.1.2. Behavior of a trigonometric polynomial in terms of its atoms. Consider
the three non-associated irreducible factorizations of cos 3x given in example 5:

cos 3x = (2 cos x−
√

3)(2 cos x +
√

3) cos x

= (1− 2 sinx)(1 + 2 sin x) cos x

= (cos x−
√

3 sin x)(cos x +
√

3 sin x) cos x.

In the following three figures, we have shown the waves for above three different
factorizations respectively. Whereas the wave with minimum amplitude represents
cos 3x. We have used Mathematica to draw trigonometric polynomials.
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Fig. 1

Fig. 2

Fig. 3

Let P ∈ T . As T is an atomic domain so there exist finite number of irreducible
elements of the form a cos x + b sin x + c, (a, b, c) ∈ R3 with (a, b) 6= (0, 0) such that
P = P1 . . . , Pn where Pi = a cosx + b sin x + c, (a, b, c) ∈ R3 with (a, b) 6= (0, 0).

Note that, each one of P, P1, . . . , Pn constitutes a wave, that is why we are
studding a trigonometric polynomial as a wave.

Observation. Let k and t represent the number of crests and troughs in
the wave P , whereas k1, . . . , kn and t1, . . . , tn represent the number of crests and
troughs in the waves P1, . . . , Pn respectively. Then we have

k =
n∑

i=1

ki and t =
n∑

i=1

ti.

Remark 6. The repetition of Pi in the factorization of P compels P to behave
like Pi, greater be the exponent of Pi, greater is the resemblance between P and Pi.
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Also note the presence of symmetry in the wave P ∈ T , especially the irreducible
factors (atoms), which appear in pairs in the factorization of P observe symmetry
with each other. One factor in this pair occurs with positive sign and the other with
a negative sign. In some cases this pair of factors behave very similar to each other,
do not intersect even at a single point, distance between them remains constant at
each point and in some cases it behave quite opposite, and intersect at so many
points. For example, consider the following two factorizations of cos 3x,

cos 3x = (2 cos x−
√

3)(2 cos x +
√

3) cos x

= (1− 2 sin x)(1 + 2 sin x) cos x.

Fig. 1 and Fig. 2 depicts that (1 + 2 sin x) and (1 − 2 sin x) behave oppositely,
where (2 cos x +

√
3) and (2 cos x − √3) behave in a symmetric way and make no

intersection.
Remark 7. Three types of irreducible elements can occur in the factorization

of a trigonometric polynomial, and they are a cos x+c, (a, c) ∈ R2, a 6= 0, b sin x+c,
(b, c) ∈ R2, b 6= 0 and a cosx + b sin x + c, (a, b, c) ∈ R3, a 6= 0, b 6= 0. These three
types of irreducible elements give three different types of waves. The first two,
a cos x+ c, (a, c) ∈ R2, a 6= 0 and b sin x+ c, (b, c) ∈ R2, b 6= 0 produce waves which
resemble with the waves cos x and sin x respectively, and the third one produces a
wave that have a mixed behavior.

Observation. For each P ∈ T , wavelength of P = 2π
n , where 2π is the

wavelength of Pi and n is the total number of irreducible factors in the factorization
of P .

Another question which is still unanswered is, can we identify the relation
between the amplitude of wave P and its irreducibles Pi. We do not know the
answer but we have the following observations.

Remark 8. When we talk about the amplitude of a single factor, we come to
know that amplitude of the factors a cos x + c, (a, c) ∈ R2, a 6= 0 and b sin x + c,
(b, c) ∈ R2, b 6= 0 is a and b, respectively. Also the amplitude of a cos x+ b sin x+ c,
(a, b, c) ∈ R3, a 6= 0, b 6= 0 depends upon both a and b, the greater be the values of
a and b, the greater is the amplitude.

6.2. Complex trigonometric polynomials Consider the ring of complex
trigonometric polynomials T ′ = C[cos x, sin x]. Since T ′ is a UFD, therefore we can
study P ∈ T ′ as a product of irreducibles with irreducible elements of the form
cos x + i sin x− a, a ∈ C \ {0}. Geometrically these irreducible elements represent
circles in plane, where constant a denotes the translation along one of the two
axis. Now question is how we can study the geometrical behavior of trigonometric
polynomials in T ′ by considering its factorization into irreducible elements. To
answer this, we make the following discussion.

As above, the irreducible element cos x+i sin x−a, a ∈ C\{0} is a circle. What
happens to this circle when we form a polynomial by multiplying these irreducible
elements? The answer is that each polynomial P ∈ T ′ is a geometric figure, whose
starting point coincides with its end point. Actually, there is a 1-1 correspondence
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between polynomials in T ′ and the number of figures that can be formed by a
circle, by translating it or molding it in any shape, without braking it at any point.
The most known figures, which can be formed are ellipse and flowers with different
number of leaves etc. So we conclude that each P ∈ T ′ is a circle molded into some
shape.

6.3. Future work and applications. It is exciting that at the end of this
paper, there are still some directions for future research work. In polynomial rings,
factorization properties of integral domains have been a frequent topic of recent
mathematical literature but the study of factorization properties in trigonometric
polynomials has not been addressed that much. So it seems to be really interesting
to investigate factorization properties of trigonometric polynomial rings and this
can open a new challenge for the researchers.

In addition to the applications mentioned in the introduction, we would like
to highlight an application of trigonometric polynomials in symbolic computation.
In [21], J. Mulholland and M. Monagan presented algorithms for simplifying ratios
of trigonometric polynomials and algorithms for dividing, factoring and computing
greatest common divisors of trigonometric polynomials. The provided algorithms
do not always lead to the simplest form. A possible direction of study could be to
provide enough general algorithms for finding a simplest form.
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