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AN ITERATIVE APPROXIMATION OF FIXED POINTS
OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS
IN BANACH SPACES

Yekini Shehu

Abstract. We prove strong convergence of an iterative scheme for approximation of fixed
point of A-strict pseudocontractive mapping in a uniformly smooth real Banach space (which is
not necessarily uniformly convex). We apply our result to approximation of common fixed point
of a finite family of strictly pseudocontractive mappings. Our result extends the results of Li
and Yao [M. Li, Y. Yao, Strong convergence of an iterative algorithm for A-strictly pseudocon-
tractive mappings in Hilbert spaces, An. St. Univ. Ovidius Constanta 18 (2010), 219-228] and
complements other new interesting results in the literature.

1. Introduction

Let E be a real Banach space and E* its dual space. We denote by J,, (¢ > 1)

the generalized duality mapping from E into 28" given by
Jo(x) ={f € B : (z, f) = |l2|* and ||f]| = ||=[|"""},

where E* denotes the dual space of E and (.,.) denotes the generalized duality
pairing. In particular, J; is called the normalized duality mapping and it is usually
denoted by J. It is well known (see, for example, [8, 17]) that J,(z) = ||z||72J(x) if
x # 0, and that if E* is strictly convex then Jj is single valued. It is well known that
if F' is uniformly smooth then J, is norm-to-norm uniformly continuous on bounded
sets (see, e.g., [3, 19]). In the sequel we shall denote single-valued generalized
duality mapping by j,.

A mapping T with domain D(T') and range R(T) in E is called strictly pseu-
docontractive in the terminology of Browder and Petryshy [2] if there exists A > 0

(Tw =Ty, j(@ —y)) < o=y = Nz —y — (Tz = Ty)|? (1.1)
for all x,y € D(T) and for some j(z —y) € J(x —y). If I denotes the identity
operator, then (1.1) can be written in the form

(I =Tz~ (I =Ty, j(x —y) 2 Al = T)x — (I = Tyl (1.2)
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In Hilbert spaces, (1.1) (and hence (1.2)), for A € (0,3), is equivalent to the
inequality
1Tz — Ty||* < llo = yl* + k(I — T)x — (I =Ty, (1.3)

where k = (1 — 2)\) < 1. T is said to be L-Lipschitzian or Lipschitz if there exists
L > 0 such that
[Tz = Ty|| < Lllz - y| (1.4)

for all x,y € D(T). If L = 1 then T is called nonezpansive. Clearly, in Hilbert
spaces, every nonexpansive mapping is strictly pseudocontractive.

If F is a g-uniformly smooth Banach space with (single-valued) generalized du-
ality mapping j, : E — E*, we say that T : C' — E is (g)--strict pseudocontractive
(briefly a (g)-strict pseudocontraction) if for all z,y € C

(Tz =Ty, jo(x —y)) < llv —yll? = Az —y — (Tz = Ty)|*. (1.5)

REMARK 1.1. We note that for ¢ = 2, the class of (g)-strict pseudocontractions
coincides with that of strict pseudocontractions. For ¢ < 2, (g)-strict pseudocon-
tractions do represent a subclass of strict pseudocontractions (see Lemma 3 of [9]).

Browder and Petryshyn [2] introduced the class of A-strict pseudocontractive
mappings in 1967 and proved existence and convergence theorem in real Hilbert
spaces. They proved the following theorem.

THEOREM BP. [2] Let H be a real Hilbert space and K a nonempty closed
convex and bounded subset of H. Let T : K — K a A-strict pseudocontractive
mappings for some 0 < X\ < 1. Then for any fixred v € (1 — A\, 1), the sequence
{xn}22, generated from an arbitrary xo € K by

Tpg1 =YCn + (1 =) T2p
converges weakly to a fixed point of T

It is well known that for a nonexpansive mapping T with F(T) := {z € K :
Tz =z} # (), the classical Picard iteration sequence Tpi1 = T2y, x1 € D(T) does
not always converge. An iterative process commonly used for finding fixed points of
nonexpansive mappings is the following: For a convex subset K of a Banach space
E and T : K — K, the sequence {z,,}22 ; is defined iteratively by z; € K,

Tnt1 = (1 - an)xn + anTxvun > 13 (16)

where {a, 152, is a sequence in [0, 1] satisfying the following conditions:

(i) limp oo @y = 0; (4) Yoo oy = 0o. The sequence of (1.6) is generally
referred to as the Mann sequence in the light of [11].

Construction of fixed points for A-strict pseudocontractive mappings using the
Mann iteration (1.6) has been studied extensively by many authors (see, for exam-
ple, [1, 4-7, 1214, 23, 24] and the references contained therein). It is well known
that in an infinite-dimensional Hilbert space, the Mann iteration (1.6) has only
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weak convergence, in general, even for nonexpansive mappings. In order to obtain
strong convergence, one has to modify the Mann iteration (1.6).

In 2007, Marino and Xu [12] obtained weak convergence results using Mann
iteration (1.6) for A-strict pseudocontractive mappings in Hilbert spaces and used
the “CQ” algorithm to obtain the strong convergence in Hilbert spaces. Further-
more, Acedo and Xu [1] used Mann iteration process to obtain weak convergence
for finite family of A-strict pseudocontractive mappings in Hilbert spaces and later
used the “CQ” algorithm to obtain the strong convergence for the finite family of
this class of mappings.

In 2008, Zhou [24] proved weak convergence theorem for approximation of
A-strict pseudocontractive mappings and later made a modification of the Mann
iteration to obtain strong convergence results for A-strict pseudocontractive map-
pings in a real 2-uniformly smooth Banach space. Thus, he extended the results
of [12] from Hilbert spaces to 2-uniformly smooth Banach spaces. Zhang and Guo
[21] furthermore obtained weak convergence result for A-strict pseudocontractive
mappings in a real g-uniformly smooth and uniformly convex Banach space which
also improved on the result of Osilike and Udemene [13].

In 2009, Zhang and Su [23] extended the results of [24] and obtained weak con-
vergence results using Mann iteration (1.6) for A-strict pseudocontractive mappings
in real g-uniformly smooth Banach space and further obtained strong convergence
results for finite family of this same class of maps in g-uniformly smooth Banach
space using a modification of normal Mann iteration (see [22]). For the strong
convergence result, they proved the following theorem.

THEOREM 1.2. [22] Let K be a nonempty closed convex subset of a q-uniformly
smooth real Banach space E and let T; : K — K, i = 1,2,...,N be a finite
family of \;-strict pseudocontractive mappings such that F := ﬂf\il F(T;) # 0. Let
A:=min{)\; : 1 <1i < N}. Assume for each n, {771(")}1-1\;1 is a finite sequence of
positive numbers such that Zf\il 775") =1 for alln > 1 and inf,>; n(n) > 0, for all

%

1 < i< N. For arbitrary fized u € K, define a sequence {x,}°, by 1 € K,
()
Yn = (1 - O‘n)zn + ap Z n; Tixy,
i=1

Tn+l = ﬁnu + TnTn + 6nyn7
for all n > 1, where {an}%q, {Bn}5y, {2, and {0,152, are sequences in
(0,1) satisfying (i) limp—oo B = 0, (i4) >.oo, Bn = oo, (#d) lim, oo |api1 —
an| =0, (i) oL, SN, " = ] < oo, (v) 0 < liminfy o
limsup, o7 < 1, (Vi) Bp+ v + 0, = 1, (vii) 0 < a < «a, < u, u

1

A

min {1, (%) o } Then {x,}52, converges strongly to a common fixed point z
of {T;}N., where 2 = Qpu and QF : K — F is the unique sunny nonexpansive
retraction from K onto F.

Furthermore, Yao et al. [20] proved path convergence for a nonexpansive map-
ping in a real Hilbert space. In particular, they proved the following theorem.
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THEOREM 1.3. [20] Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let T : C — C be a nonexpansive mapping with F(T) # 0. Fort € (0,1),
let the net {x:} be generated by vy = TPc[(1 — t)x:], then ast — 0, the net {z:}
converges strongly to a fixed point of T.

Furthermore, they applied Theorem 1.3 to prove the following theorem.

THEOREM 1.4. [20] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C — C be a nonexpansive mapping such that F(T) # 0. Let
{an 352, and {8,152, be two real sequences in (0,1). For arbitrary x1 € C, let the
sequence {x,}°2 ;1 be generated iteratively by

{ Yn = Pol(1 — an)zy]

1.7
Tn+1 = (1 - ﬂn)xn + BnTyn, n 2> 1, ( )

Suppose the following conditions are satisfied:

(a) lima, =0 and Y7 | o, = 00;

(b) 0 < liminf, o0 B, < limsup,_,o, Bn < 1. Then the sequence {x,}>2,
generated by (1.7) converges strongly to a fived point of T.

In 2010, Chidume and Shahzad [5] obtained weak convergence results for A-
strict pseudocontractive mappings in some real uniformly smooth Banach space
which is also uniformly convex. Thus, they extended the results of [12, 24, 23]
and [21] to a real uniformly smooth Banach space which is also uniformly convex.
However, Cholamjiak and Suantai [7] pointed out that the result of [5] (and hence
the recent result of Sahu and Petrusel [15]) does not hold in real Hilbert spaces.
Hence, Cholamjiak and Suantai improved and extended the results of [5] from a real
uniformly smooth and uniformly convex Banach space to a real uniformly convex
Banach space which has the Fréchet differentiable norm.

Motivated by the result of Yao et al. [20], Cholamjiak and Suantai [6] recently
extended the result [20, Theorem 1.4] to countable family of A-strict pseudocon-
tractive mappings in g-uniformly smooth and uniformly convex real Banach space
which also admits weakly sequentially continuous duality mapping j,. We remark
that the result of [6] does not hold in L,, 3 < p < cc.

In [10], Li and Yao introduced the following iterative scheme
Tn+1 = (1 - ﬁn - an)x7L + ﬂnwau n>1, (18)

where {a,} and {f8,} are sequences in (0, 1) satisfy some appropriate conditions.
Furthermore, they proved that the sequence {x,} defined iteratively by (1.8) con-
verges strongly to a fixed point of a A-strictly pseudo-contractive mapping 7" in a
real Hilbert space H, where T : H — H and F(T) # 0.

Motivated by the results of [10], we prove strong convergence of the scheme for
approximation of fixed point of A-strict pseudocontractive mapping in a uniformly
smooth real Banach space (which is not necessarily uniformly convex). Our results
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extend the results of [10] from real Hilbert spaces to uniformly smooth real Banach
spaces and complements other new interesting results in the literature.

2. Preliminaries

In the sequel, we shall need the following.

Let E be a real normed space and let S := {z € E : ||z|| = 1}. E is said to
have a Gateauz differentiable norm (and E is called smooth) if the limit

Nz + gl o

t—0 t
exists for each =,y € S; F is said to have a uniformly Gateaur differentiable norm
if for each y € S the limit is attained uniformly for € S. Further, F is said to be
uniformly smooth if the limit exists uniformly for (z,y) € S x S. The modulus of
smoothness of E is defined by

aup {0l
p
2

Equivalently, E is said to be smooth if pg(7) >0, V7> 0. Let ¢ > 1. E is said to
be g-uniformly smooth (or to have a modulus of smoothness of power type ¢ > 1)
if there exists ¢ > 0 such that pg(r) < cr?. Hilbert spaces, L, (or [,) spaces,
1 < p < oo, and the Sobolev spaces, WP 1 < p < oo, are g-uniformly smooth.
Hilbert spaces are 2-uniformly smooth while

pu(T) = Liflall =1, gl =7} >0,

I ' — p-uniformly smooth if 1 <p <2
plor £p) or Wi, is { 2-uniformly smooth if p > 2.

It is shown in [19] that there is no Banach space which is g-uniformly smooth
with ¢ > 2. It is also known that every uniformly smooth space (e.g., L, space,
1 < p < 00) has uniformly Géateaux differentiable norm.

We need the following lemmas in the sequel.

LEMMA 2.1. [21] Let E be a real Banach space and C a nonempty closed convez
subset of E. For each 1 <i < N, let T; : C — C be a \;-strict pseudocontraction.
Assume that {n;}I\, is a sequence of positive numbers such that Eivzl n; = 1. Then,
Zi]\il 0 T; is a A-strict pseudocontraction with A := min{)\; : 1 < ¢ < N}. If in
addition, {T;}X_, has a common fived point, then F(Zf\il nT;) = ﬂf\il F(T;).

LEMMA 2.2. Let E be a real normed linear space. Then the following inequality
holds

lz +ylI? < llel® + 20y, (@ +y) YV e,y € B, ¥ jlz +y) € J(z +y).

LEMMA 2.3. [18] Let {a,} be a sequence of nonnegative real numbers satisfying
the following relation

An+41 S (1 - an)an + QApOp, N Z 17
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where {a,}o2, C [0,1] and {0, }32, is a sequence in R satisfying:

(1) 22 am = o0;
(79) limsupo, <0 or Y Jano,| < 0.

Then, a, — 0 as n — oo.

LEMMA 2.4. [3, p. 21] Let E be a real Banach space and J be the normalized
duality map on E. Then J(Ax) = AJ(x),VA € R,Vz € E.

LEMMA 2.5. [16] Let C be a nonempty closed convex subset of a Banach
space E with a uniformly Gateaux differentiable, and T : C' — C be a continuous
pseudocontractive mapping with a fized point. If there exists a bounded sequence
{zn} such that lim, . ||zn — Ta,|| = 0, and p = limy_.¢ 2, ewists, where {z} is
defined by zy = tu+ (1 — t)Tz;. Then

lim sup(u — p, j(z,, — p)) < 0.

n— oo

LEMMA 2.6. [7] Let E be a real Banach space with Fréchet differentiable norm.
Forxz € E, let 8*(t) be defined for 0 <t < co by

g (0) = sup { | LEEEZ IR oy =1} @

Then, lim;_o+ 5*(t) = 0 and
I+ hl* < Jlz)|* + 2(h, (=) + [R16*(|Al])
for all h € E\ {0}.

REMARK 2.7. In a real Hilbert space, we see that §*(t) = ¢ for ¢t > 0.

In the result of Cholamjiak and Suantai [7], the authors assumed that 5*(t) <
2t for t > 0. This naturally leads to this important question.

QUESTION. What uniformly smooth Banach spaces (except Hilbert spaces)
satisfy the assumption §*(t) < 2t for ¢t > 0? In particular, do L, spaces, 1 < p < 0o
satisfy it?

In E=1L,2<p< oo, we know that
lz +ylI* < llel® + 2(y, 5 (@) + (0 = Vllyl?, Va,y € E.
Then §* in (2.1) is estimated by §*(¢t) < (p — 1)t for t > 0.

In our more general setting, throughout this paper, we will assume that
B*(t) < ct, t > 0 and for some ¢ > 1,
where 5* is the function appearing in (2.1).

LEMMA 2.8. Let C be a nonempty convex subset of a real Banach space E with
Fréchet differentiable norm and T : C — C be a A-strict pseudo-contraction. For
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a € (0,1), we define Tox := (1 —a)x+ oTx. Then, as « € (0, p], p := min {1, %},
T, : C — C is nonexpansive such that F(T,) = F(T).

Proof. For any x,y € C, we compute
1Tox — Tay|* = I(1 — a)(z — y) + a(Tz - Ty)|®

=(z—y) —ale —y— (Tz - Ty)|?

< o —yl? = 2a(z —y = (Tz = Ty),j(z - y))
tolz—y— Tz =Ty (e —y — (Tz = Ty)|)

<z —yl* = 2a(z —y — (Tz — Ty), j(z — y))
+ca’|le —y — (T — Ty)|?

< o —yl? = a(2X — ca)llz —y — (Tz — Ty)||?

< o —yl?,

which shows that T, is a nonexpansive mapping.
It is obvious that © = T,z < x = Tx. This proves the assertion. m

REMARK 2.9. Our Lemma 2.8 extends Lemma 2.2 of Zhang and Su [22] from
g-uniformly smooth Banach space to real Banach space E with Fréchet differen-
tiable norm and Proposition 4.1 of Sahu and Petrusel [15] from uniformly smooth
Banach space to real Banach space E with Fréchet differentiable norm. Further-
more, boundedness assumption imposed on C' in [15, Proposition 4.1] is dispensed
with in this our more general setting.

3. Main results

Using our Lemma 2.8 in place of Lemma 2.2 of Zhang and Su [22] and following
the same line of proof of Theorem 3.1 of [22], the following theorem can easily be
proved.

THEOREM 3.1. Let K be a nonempty closed convex subset of a uniformly
smooth real Banach space E and let T; : K — K, i = 1,2,...,N be a finite
family of \;-strict pseudocontractive mappings such that F := ﬂlj\il F(T;) #0. Let
A:=min{); : 1 <i < N}. Assume that, for each n, {ngn)}ﬁil is a finite sequence
of positive numbers such that Z]\Ll ngn) =1 for alln > 1 and inf,,>; n(n) > 0, for
all 1 <i < N. For arbitrary fixred u € K, define a sequence {x,}2, by 1 € K,

7 [

N

Yo = (1= )z + 0 Y 0" Ti
=1
I e 671” + YnTn + 5nyna

for all n > 1, where {a,}22 1, {Bn}S2q, {1}, and {6,}52, are sequences in
(0,1) satisfying: (i) limy, oo B = 0, (i) Doy Bn = 00, (40i) limy oo |1 —
anl = 0, () L S " =0 < oo, (0) 0 < lminfsoyn <
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limsup,, oo ¥n <1, (Vi) Bn+n+6n =1, (vit)) 0<a < ap < p, p= min{l7 % .
Then {z,}2°, converges strongly to a common fived point z of {T;},, where
z = Qru and Qr : K — F is the unique sunny nonexpansive retraction from K
onto F.

REMARK 3.2. Our Theorem 3.1 extends the results of Zhang and Su [22, 23]
from g-uniformly smooth Banach spaces to uniformly smooth Banach spaces.

Furthermore, using our Lemma 2.8 in place of Proposition 4.1 of [15] and
following the same line of proof of Theorems 4.5 and 4.7 of [15], the following
theorems can easily be proved.

THEOREM 3.3. Let C be a nonempty, closed and convex subset of a real umni-
formly smooth Banach space E and let T : C' — C' be a \-strictly pseudocontractive
mapping. Given u,x1 € C, a sequence {x,} in C is defined by

Tnt1 = Tw[(1 — an)n + anul,

where T, = (1 — w)I +wT for some w € (0,4, := min {1,22} and {a,} is a
sequence in (0, 1] satisfying the following condition

Gngr | 0 or 2?21 ‘O‘nJrl - an' < 0.

(C1) lim,— 00 o, = 0 and either lim,, _, ‘1 —

Then {x,} converges strongly to Qp(ry(u), where Qp(ry is the sunny nonerpansive
retraction from C onto F(T').

THEOREM 3.4. Let C be a nonempty, closed and convex subset of a real umni-
formly smooth Banach space E and let T : C' — C' be a \-strictly pseudocontractive
mapping. Given u,x1 € C, a sequence {x,} in C is defined by

Tnt1 = Tw[(1 — an)n + anul,
where T, = (1 — w)I + wT for some w € (0,p], p := min{1,2} and {a,} is a
sequence in (0,1] satisfying the condition (C1). Then {x,} converges strongly to
Qrery(u), where Qp(ry is the sunny nonexpansive retraction from C onto F(T).

REMARK 3.4. The boundedness assumption on Theorem 4.5 and Theorem 4.7
of [15] is dispensed within our Theorems 3.3 and 3.4.

LEMMA 3.6. Let C be a nonempty, closed and convex subset of a real Banach
space E with Fréchet differentiable norm and T : C — C' be a A-strict pseudo-
contraction such that F(T) # 0. Let {ca,} and {B,} be two real sequences in (0,1).
Assume that the following conditions are satisfied:

(C1) limy,— o0 atyy = 0;
(C2) Y07 oy = 005
(C3) B € e, u(1 — o)), p:=min {1, %} for some € > 0.
For a fizxed u € C, let the sequence {x,}52, be generated iteratively by x1 € C,
Tnt1 = (1 = Bn)xn + BuTx, — an(z, —u), n>1. (3.1)

Then the sequence {x,} is bounded.
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Proof. Take p € F(T), then we have from (3.1) that

Hxn—i-l _pH - ||(1 — Qp — ﬂn)( Tn _p) +ﬂn(Txn _p) + O‘n(” _p)H
<N = an = Bn)(@n —p) + Ba(Txy — p)|| + anllu —p|
= (1 — an)(@n = p) = Bulzn — Ton)|| + anllu — pl|. (32)

Furthermore, we obtain from 3.2, (1.2) and Lemma 2.4 that

(1= an)(@n —p) = Bn(zn — TfEn)”2

<({- O‘n)QHIn - p”2 + ﬁiCHxn - TanQ = 26,1 — an)(zn — Ty, j(zn — p))
<(1- an)QHxn - p||2 + 6721‘3||$n - Tan2 =276 (1 — )@y, — Txn||2

= (1= an)?[lzn = plI” = Ba(2A(1 = ) = cBp) |20 — Ty |?

< (1= a2 - plP. (33)

It follows from (3.2) and (3.3) that

[#nt1 = pll < (1 = an)llen = pll + anllu—pl
< max{||z, — pl|, [« — pl}

max{[|z, —pl, [lu = p|[}-
Hence {z,} is bounded and also is {7z, }. m

THEOREM 3.7. Let C be a nonempty, closed and convex subset of a uniformly
smooth real Banach space E and T : C — C be a A-strict pseudo-contraction such
that F(T) # 0. Let {an} and {B,} be two real sequences in (0,1). Assume that the
following conditions are satisfied:

(C1) limy—oo vy = 0;
(C2) Y07 | oy = 005
(C3) B € [e, u(1 — o)), p 2= min {1, %} for some € > 0.
For a fixed u € C, let the sequence {x, 152, be generated iteratively by x1 € C,
Tp41 = (1 - ﬁn)xn + 5nTxn - an(mn - ’LL)7 n > 1.
Then the sequence {xy,} converges strongly to a point of F(T).

Proof. Using Lemmas 2.2 and 2.6, and (3.1), we have

2041 = pl1* = [I(1 = Ba) (@0 = p) + Ba(T2n —p) — an(, —u)|®
= |[(zn =) = Bu(Tzn — ) — atn(@n —u)|?
< lwn = pl? = 280wy — Ty, j(z0 — p))
+ Cﬁinmn - TCL’n”2 - 20‘ﬂ<33n — U, J(Try1 — P)>
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< lzn = plI* = 28020 — Tn || + By ||2n — Tp|?
—2ap{xy — U, j(Tny1 — D))
= llzn = plI* = Ba(2A = ¢Ba) |25 — Tnlf?
= 20 {@y, — U, J(Tpy1 — P)).
Since {x,} is bounded, then there exists M > 0 such that
lwns1 = plI* = llzn = pI* < anM — Ba(2X = cBi)|zn — Tanl|*.
This implies that
0 < e(2A(1 — ) — eBn) ||z — Ty ||?
< Bu(2X = cB)llzn — Tzn?
< anM + [lzn = pl* = [|lznsr — pl*. (34)
The rest of the proof will be divided into two parts.
Case 1. Suppose that there exists ng € N such that {||z,, — p||}32,, is nonin-

n=no
creasing. Then {||x,, —p||}52, converges and ||z,, — p||* — [|[Zn+1 — || — 0, n — oco.
This implies from (3.4) and condition (C3) that

|xn — Tan| — 0, n — co.
By Lemma 2.5, we have that

limsup(u — p, j(z, — p)) < 0.

n—oo

Using Lemma 2.2 and (3.1) in (3.1), we have

|z = plI* = [[(1 = an = Bu) (@0 = p) + Bu(Tzn — p) + an(u—p)|?
< (X = an = Bu)(@n = p) + Bu(Tan — p)|I* + 200 (u — p, j(2nt1 — )
< (1= ag)l|lzn = pl? + 2an(u = p, j(zni1 —p)).

By Lemma 2.3, we have that z,, — p as n — oo.

Case 2. Assume that {||z, — p||} is not monotonically decreasing sequence.
Set I', == ||z, — p||* and let 7 : N — N be a mapping for all n > ng for some ng
large enough by
T(n) =max{k e N: k <n,I'y <Tyi1}.

Clearly, 7 is a non-decreasing sequence such that 7(n) — oo asn — oo and I'; () <
I (ny41 for n > ng. From (3.4), it is easy to see that

— 0

(2)‘(1 - O‘7’(71)) - Cﬂr(n)) ,

thus ||, () — T2;(n)|| — 0. By similar argument as above in Case 1, we conclude
immediately that

127 (n) — TTr (|| < -

lim sup{u — p,j(l’T(n) —p)) <0.

n—oo
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At the same time, we note that for all n > ng,

0 < lzrmyrr = 2lI* = [2r(ny — 2
< a‘r(n)(<u - paj(x‘r(n)+1 _p)> - ||x‘r(n) - p||2)
Hence, we deduce that lim, . ||2;() — p|| = 0. Therefore,

lim FT(n) = lim FT(n)-H =0.

n—oo

Furthermore, for n > nyg, it is easy to see that I'z(,y < T'r(ny41 if n # 7(n) (that is,
T(n) < n), because I'; > T';j 41 for 7(n) +1 < j < n. As a consequence, we obtain
for all n > ny,

0< Fn < ma'X{F‘r(n)aFT(n)+l} = F‘r(n)+1~

Hence, lim,, o I';, = 0, that is, {z,} converges strongly to p. This completes the
proof. m

COROLLARY 3.8. Let C be a nonempty, closed and convexr subset of a 2-
uniformly smooth real Banach space E and T : C — C be a A-strict pseudo-
contraction such that F(T) # 0. Let {a,} and {8} be two real sequences in (0,1).
Assume that the following conditions are satisfied:

(C1) limy,— 00 ay, = 0;
(C2) 3205, an = o0
(C3) B € [e; (1 — a)), == min {1,22} for some € > 0.
For a fized u € C, let the sequence {x,}22, be generated iteratively by x1 € C,
Tnt1 = (1 = Bn)xn + BuTx, — an(z, —u), n> 1.
Then the sequence {x,} converges strongly to a point of F(T).

By following the same line of proof of Theorem 3.6, we can prove the following
corollary.

COROLLARY 3.9. [10] Let H be a real Hilbert space. Let T : H — H be a
A-strictly pseudo-contractive mapping such that F(T) # 0. Let {a,} and {8,} be
two real sequences in (0,1). Assume that the following conditions are satisfied:

(C1) limy,— o0 vy = 0;
(C2) 3202 an = 00
(C3) Bn €6,2M(1 — ) for some € > 0.

Let the sequence {x,}52, be generated iteratively by x1 € H,
Tn+l = (1 - ﬁn - an)xn + ﬁnTxna n Z 1.
Then the sequence {x,} converges strongly to a point of F(T).

We next apply the result of Theorem 3.6 to approximate the common fixed
point of a finite family of A-strict pseudocontractive mappings in real Banach spaces.
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THEOREM 3.10. Let C' be a nonempty, closed and convex subset of a uniformly
smooth real Banach space E. For each i = 1,2,... ,N, let T; : C — C be a \;-
strict pseudocontractive mapping such that NN, F(T;) # 0. Assume that {k;}, is
a finite sequence of positive numbers such that Zi\;l ki=1. Let {a,} and {B,} be
two real sequences in (0,1). Assume that the following conditions are satisfied:

(C1) limy,— oo vy = 0;
(C2) Y0 oy = 005
(C3) B € [e,u(l — ), :=min {1, 22} for some e > 0.
For a fized u € C, let the sequence {x,}°2, be generated iteratively by x1 € C,

N
Tpt1 = (1 = Bp)xn + Bn Zlel‘T” —ap(z, —u), n>1. (3.5)

i=1
Then the sequence {x,} converges strongly to a common point p in NN, F(T;).

Proof. Define A := vazl k;T;. Then, by Lemma 2.6, A is A-strict pseudo-
contractive mapping and F(A) = ﬂfvzl F(T;). We can rewrite the scheme (3.5)
as

Tnt1 = (1= Bn)xn + BnAzy, — an(zn, —u), n > 1.
Now, Theorem 3.6 guarantees that {z,} converges strongly to a common fixed
point of the family {T;}}¥ . m

REMARK 3.11. Our Corollary 3.9 extends the result of [10] from approxima-
tion of fixed points of a A-strictly pseudocontractive mapping in a Hilbert space
to approximation of fixed points of a A-strictly pseudocontractive mapping in a
uniformly smooth real Banach space.

REMARK 3.12. The prototypes of our control sequences in Theorem 3.6 are

n 22 n
>1 and — (7 _
, n> and [, =€+ b

n+1 n+1

Ay =

e), n > 1.
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