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ON MONOTONICITY OF RATIOS
OF SOME q-HYPERGEOMETRIC FUNCTIONS

Khaled Mehrez and Sergei M. Sitnik

Abstract. In this paper we prove monotonicity of some ratios of q-Kummer confluent
hypergeometric and q-hypergeometric functions. The results are also closely connected with Turán
type inequalities. In order to obtain main results we apply methods developed for the case
of classical Kummer and Gauss hypergeometric functions in [S.M. Sitnik, Inequalities for the
exponential remainder, preprint, Institute of Automation and Control Process, Far Eastern Branch
of the Russian Academy of Sciences, Vladivostok 1993 (in Russian)] and [S.M. Sitnik, Conjectures
on Monotonicity of Ratios of Kummer and Gauss Hypergeometric Functions, RGMIA Research
Report Collection 17 (2014), Article 107].

1. Introduction

In this paper we prove results on monotonicity of ratios of some q-hyper-
geometric functions. These results are generalizations of our previous results on
monotonicity of ratios of classical hypergeometric functions in [11, 12] and [8]. Also
it is demonstrated that these results on monotonicity of ratios of hypergeometric
functions are stronger than so-called Turán type inequalities for such functions. So
it is a way to prove Turán type inequalities for different types of functions.

To start with formulations of our results on monotonicity of ratios of classical
hypergeometric functions from [8, 11, 12] let us consider the simplest case of the
series for the exponential function

exp(x) = ex =
∞∑

k=0

xk

k!
, x ≥ 0,

its section Sn(x) and series remainder Rn(x) in the form

Sn(x) =
n∑

k=0

xk

k!
, Rn(x) = exp(x)− Sn(x) =

∞∑

k=n+1

xk

k!
, x ≥ 0. (1)
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Besides simplicity and elementary nature of these functions many mathemati-
cians studied problems for them, including G. Szegö, S. Ramanujan, G. Hardy,
W. Gautschi.

In the preprint [11] in 1993, inequalities of the form

m(n) ≤ fn(x) =
Rn−1(x)Rn+1(x)

[Rn(x)]2
≤ M(n), x ≥ 0. (2)

were thoroughly studied. The search for the best constants m(n) = mbest(n),
M(n) = Mbest(n) has some history. The left-hand side of (2) was first proved by
K. Menon with m(n) = 1

2 (not best) and by H. Alzer with

mbest(n) =
n + 1
n + 2

= fn(0); (3)

cf. [11] for the more detailed history. It was also shown in [11] that the inequality
(2) with the sharp lower constant (3) is a special case of a stronger inequality proved
earlier in 1982 by W. Gautschi.

It seems that the right-hand side of (2) was first proved in [11] with Mbest =
1 = fn(∞). Several generalizations of inequality (2) and related results were also
proved in [11]. Maybe it was the first example of so called Turan-type inequality
(cf. [1, 4, 5, 9]) for special case of Kummer hypergeometric functions.

Obviously the above inequalities are consequences of the following conjecture,
originally formulated in [11] in 1993 and recently revived in [12].

Conjecture. The function fn(x) in (2) is increasing for x ∈ [0;∞), n ∈ N.
So the next inequality is valid

n + 1
n + 2

= fn(0) ≤ fn(x) < 1 = fn(∞). (4)

The above conjecture may be reformulated in terms of Kummer hypergeometric
functions. Only recently, in 2014, the above conjecture and its generalizations to
Kummer, Gauss and generalized hypergeometric functions were proved in [8].

In this paper we prove q-versions as generalizations of these results. We also
demonstrate that from the results on monotonicity of ratios of hypergeometric
functions, the so-called Turán type inequalities (cf. [1, 4, 5, 9]) for such functions
follow. So a way to prove monotonicity of ratios of hypergeometric functions is also
a way to prove Turán type inequalities.

2. Notation and preliminaries

Throughout this paper we fix q ∈]0, 1[. We refer to [3] for the definitions,
notation and properties of the q-shifted factorials and q-hypergeometric functions.

Next, let us recall the following results which will be used in the sequel.

Lemma 1. Let (an) and (bn) (n = 0, 1, 2 . . . ) be real numbers such that
bn > 0, n = 0, 1, 2, . . . and

(
an

bn

)
n≥0

is increasing (decreasing). Then
(

a0+···+an

b0+···+bn

)
n

is also increasing (decreasing).
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Lemma 2. (cf. [2, 10]) Let (an) and (bn) (n = 0, 1, 2 . . . ) be real numbers and
let the power series A(x) =

∑∞
n=0 anxn and B(x) =

∑∞
n=0 bnxn be convergent for

|x| < r. If bn > 0, n = 0, 1, 2, . . . and if the sequence
(

an

bn

)
n≥0

is (strictly) increas-

ing (decreasing), then the function A(x)
B(x) is also (strictly) increasing (decreasing) on

[0, r[.

2.1. Basic symbols. For a ∈ R, let q-shifted factorials be defined by

(a; q)0 = 1, (a; q)n =
n−1∏

k=0

(1− aqk), (a; q)∞ =
∞∏

k=0

(1− aqk),

and write
(a1, a2, . . . , ap; q) = (a1; q)n(a2; q)n · · · (ap; q)n, n = 0, 1, 2, . . .

Note that for q → 1 the expression (qa;q)n

(1−q)n tends to (a)n = a(a + 1) · · · (a + n− 1).

2.2. q-Kummer confluent hypergeometric functions. The q-Kummer
confluent hypergeometric function is defined by

φ(qa, qc; q, x) =1 φ1(qa, qc; q, (1− q)x) =
∑

n≥0

(qa; q)n(1− q)n

(qc; q)(q; q)n
xn, (5)

for all a, c ∈ R and x > 0, which for q → 1 is reduced to the Kummer confluent
hypergeometric function

1F1(a; c; x) =
∞∑

n=0

(a)n

(c)nn!
xn.

2.3. q-hypergeometric functions. The q-hypergeometric series or basic
hypergeometric series is defined by ([3])

pΦr(a1, . . . , ap; b1, . . . , br; q; x)

=
∞∑

n=0

(a1; q)n(a2; q)n . . . (ap; q)n

(b1; q)n(b2; q)n . . . (br, q)n(q; q)n

[
(−1)nq(n

2 )
]1+r−p

xn, (6)

with (n
2 ) = n(n−1)

2 , ak, bk ∈ R ∈ C, bk 6= q−n, k = 1, . . . , r, n ∈ N0, 0 < |q| < 1.
The left-hand side of (6) represents the q-hypergeometric function pφr where the
series converges. Assuming 0 < |q| < 1, the following conditions are valid for the
convergence of (6) (cf. [3]).
• p < r + 1: the series converges absolutely for x ∈ C,
• p = r + 1: the series converges for |x| < 1,
• p > r + 1: the series converges only for x = 0, unless it terminates.

Since for q → 1 the expression (qa;q)n

(1−q)n tends to (a)n = a(a + 1) · · · (a + n− 1),
we evaluate

lim
q→1

pΦr(qa1 , . . . , qap ; qb1 , . . . , qbr ; q; x) =p Fr(a1, . . . , ap; b1, . . . , br; x)

=
∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (br)nn!
xn,

where pFr stands for the generalized hypergeometric function.
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3. Monotonicity of ratios of q-Kummer hypergeometric functions

In this section we consider the function

h(a, b, c, q, x) =
φ(qa, qb−c, q, x)φ(qa, qb+c, q, x)

[φ(qa, qb, q, x)]2
, (7)

for all a, b ∈ R and x > 0, The following theorem is the q-version of [8, Theorem 1].

Theorem 1. Let q ∈]0, 1[, and a, b, c be real numbers. If c > 0, then the
function x 7→ h(a, b, c, q, x) is increasing on [0,∞[. In particular, for q ∈]0, 1[ the
following Turán type inequality[

φ(qa, qb, q, x)
]2 ≤ φ(qa, qb−c, q, x)φ(qa, qb+c, q, x) (8)

is valid for all a, b, c ∈ R such that c > 0.

Proof. For convenience, let us write φ(qa, qb, q, x) as

φ(qa, qb, q, x) =
∞∑

n=0

un(a, b, q)xn,

where un(a, b, q) =
(qa; q)n(1− q)n

(qb; q)n(q; q)n
. Then

h(a, b, c, q, x) =
(
∑∞

n=0 un(a, b− c, q)xn) (
∑∞

n=0 un(a, b− c, q)xn)

(
∑∞

n=0 un(a, b, q)xn)2
=

=
∑∞

n=0 vn(a, b, c, q)xn

∑∞
n=0 wn(a, b, q)xn

,

with vn(a, b, c, q) =
∑n

k=0 uk(a, b− c, q)un−k(a, b + c, q) and
wn(a, b, q) =

∑n
k=0 uk(a, b, q)un−k(a, b, q). Let us define a sequences (An,k)k≥0 by

An,k(a, b, c, q) =
uk(a, b− c, q)un−k(a, b + c, q)

uk(a, b, q)un−k(a, b, q)
=

(qb; q)k(qb; q)n−k

(qb−c; q)k(qb+c; q)n−k

and evaluate
An,k+1(a, b, c, q)
An,k(a, b, c, q)

=
(qb; q)k+1(qb; q)n−k−1(qb−c; q)k(qb+c; q)n−k

(qb−c; q)k+1(qb+c; q)n−k−1(qb; q)k(qb; q)n−k

=
(

(qb; q)k+1

(qb; q)k

)
.

(
(qb−c; q)k

(qb−c; q)k+1

)
.

(
(qb; q)n−k−1

(qb; q)n−k

)
.

(
(qb+c; q)n−k

(qb+c; q)n−k

)

=
(

1− qb+k

1− qb−c+k

)
.

(
1− qb+c+n−k−1

1− qb+n−k−1

)
.

Since q ∈]0, 1[ and c > 0 it follows that An,k+1(a,b,c,q)
An,k(a,b,c,q) ≥ 1 and consequently the

sequence (An,k(a, b, c, q))k≥0 is increasing. We conclude that Cn defined by Cn =
un

vn
is increasing by Lemma 1. Thus the function x 7→ h(a, b, c, q, x) is increasing on

[0,∞[ by Lemma 2. Furthermore,
lim
x→0

h(a, b, q, x) = 1,

and Turán type inequality (8) follows. So the proof of Theorem 1 is complete.
Remark 1. The inequality (8) is interesting as a consequence of monotonicity

property we consider. This inequality itself is not new and may be found in [7].



Monotonicity of ratios of q-hypergeometric functions 229

4. Monotonicity of ratios of q-hypergeometric functions

In this section we consider the function hr(a, b, c, q) defined by

hr(a, b, c, q) =

φ(qa1 , . . . , qar+1 ; qb1−c1 , . . . , qbr−cr ; q, x)φ(qa1 , . . . , qar+1 ; qb1−c1 , . . . , qbr−cr ; q, x)

[φ(qa1 , . . . , qar+1 ; qb1 , . . . , qbr ; q, x)]2 (9)

where a = (a1, . . . , ar+1) b = (b1, . . . , br) and c = (c1, . . . , cr) for all ak, bk, ck ∈ R,
bk 6= q−n, k = 1, . . . , r, n ∈ N0, 0 < q < 1.

Theorem 2. Let r ∈ N, q ∈ (0, 1), a = (a0, . . . , ar), b = (b1, . . . , br), c =
(c1, . . . , cr). If ci > 0 for i = 1, . . . , r, then the function hr(a, b, c, q) is strictly
increasing in x on [0, 1[. Moreover, if ci > 0, and q ∈ (0, 1), then the next Turán
type inequality holds

[
φ(qa1 , . . . , qar+1 ; qb1 , . . . , qbr ; q, x)

]2
<

φ(qa1 , . . . , qar+1 ; qb1−c1 , . . . , qbp−cp ; q, x)φ(qa1 , . . . , qap+1 ; qb1−c1 , . . . , qbr−cr ; q, x).
(10)

Proof. By using the equality (9), we can write hr in the form

hr(a, b, q, x)

=

(∑∞
n=0

(qa1 ;q)n...(qar+1 ;q)nxn

(qb1−c1 ;q)n...(qbr−cr ;q)n(q;q)n

)

(∑ (qa1 ;q)n...(qar+1 ;q)nxn

(qb1 ;q)n...(qbr ;q)n(q;q)n

)2 ·
( ∞∑

n=0

(qa1 ; q)n . . . (qar+1 ; q)nxn

(qb1+c1 ; q)n . . . (qbr+cr ; q)n(q; q)n

)

=
∑∞

n=0 An(a, b, c, q)∑∞
n=0 Bn(a, b, c, q)

xn,

with use of the following notation

An(a, b, c, q) =
n∑

k=0

Uk(a, b, c, q)

=
n∑

k=0

∏r+1
j=1(q

aj ; q)n−k(qaj ; q)k

(q; q)k(q; q)n−k

∏r
j=1(qbj−cj ; q)k(qbj+cj ; q)n−k

and

Bn(a, b, c, q) =
n∑

k=0

Vk(a, b, c, q)

=
n∑

k=0

∏r+1
j=1(q

aj ; q)n−k(qaj ; q)k

(q; q)k(q; q)n−k

∏r
j=1(qbj ; q)k(qbj ; q)n−k

.

For fixed n ∈ N we define a sequence (Wn,k(a, b, c, q))k≥0 by

Wn,k(a, b, c, q) =
Uk(a, b, c, q)
Vk(a, b, c, q)

=
r∏

j=1

(qbj ; q)k(qbj ; q)n−k

(qbj−cj ; q)k(qbj+cj ; q)n−k
.
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For n, k ∈ N we evaluate

Wn,k+1(a, b, c, q)
Wn,k(a, b, c, q)

=
r∏

j=1

[
(qbi ; q)k+1

(qbj ; q)k

]
.

[
(qbj ; q)n−k−1

(qbj ; q)n−k

]
.

[
(qbj−cj ; q)k

(qbj ; q)k+1

]
.

[
(qbj+cj ; q)n−k

(qbj+cj ; q)n−k−1

]

=
r∏

j=1

[
1− qbj+k

1− qbj−cj+k

]
.

[
1− qbj+cj+n−k−1

1− qbj+n−k−1

]
.

Since 0 < q < 1 and cj > 0 for j = 1, . . . , r we conclude that (Wn,k)k is increasing

and consequently
(
Cn = An

Bn

)
n≥0

is increasing too, by Lemma 1. Thus the function

x 7→ hr(a, b, c, q) is increasing on [0, 1[ by Lemma 2. Therefore the inequality (10)
follows immediately from the monotonicity of the function hr(a, b, c, q).

There are applications of considered inequalities in the theory of transmuta-
tion operators for estimating transmutation kernels and norms [6, 13, 14] and for
problems of function expansions by systems of integer translations of Gaussians
[7, 15].
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