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ON RELATIVE GORENSTEIN HOMOLOGICAL DIMENSIONS
WITH RESPECT TO A DUALIZING MODULE

Maryam Salimi

Abstract. Let R be a commutative Noetherian ring. The aim of this paper is studying
the properties of relative Gorenstein modules with respect to a dualizing module. It is shown
that every quotient of an injective module is GC -injective, where C is a dualizing R-module with
idR(C) ≤ 1. We also prove that if C is a dualizing module for a local integral domain, then every
GC -injective R-module is divisible. In addition, we give a characterization of dualizing modules
via relative Gorenstein homological dimensions with respect to a semidualizing module.

1. Introduction

Throughout this paper R is a commutative ring and all modules are unital.
The notion of a “semidualizing module” is one of the most central notion in the
relative homological algebra. This notion was first introduced by Foxby [6]. Then
Vasconcelos [16] and Golod [7] rediscovered these modules using different termi-
nology for different purposes. This notion has been investigated by many authors
from different points of view; see for example [1, 4, 8, 14].

Among various research areas on semidualizing modules, one basically focuses
on extending the “absolute” classical notion of homological algebra to the “rela-
tive” setting with respect to a semidualizing module. For instance, this has been
done for the classical and Gorenstein homological dimensions mainly through the
works of Golod [7], Holm and Jørgensen [8] and White [17], and (co)homological
theories have been extended to the relative setting with respect to a semidualizing
module mainly through the works of Takahashi and White [14], Salimi, Tavasoli,
Yassemi [11] and Salimi et al. [10].

Following this idea, the present paper aims at studying the properties of rela-
tive Gorenstein modules with respect to a dualizing module which actually strength-
ens the classical results. In particular, in Proposition 3.6, it is shown that every
quotient of an injective module is GC-injective, where C is a dualizing R-module

2010 Mathematics Subject Classification: 13D05, 13D45, 18G20
Keywords and phrases: Semidualizing; dualizing; C-injective; GC -injective.

118



On relative Gorenstein homological dimensions 119

with idR(C) ≤ 1. We also prove that if C is a dualizing module for an integral
domain, then every GC-injective R-module is divisible, see Proposition 3.7. In ad-
dition, Theorem 3.10 is investigated whether the relative Gorenstein homological
dimensions with respect to a semidualizing module have the ability to detect when a
semidualizing module is dualizing. Finally, we prove that the GC-projective dimen-
sion of a finitely generated R-module is closely related to its depth, see Theorem
3.12.

2. Preliminaries

Throughout this paper R is a commutative Noetherian ring and M(R) denotes
the category of R-modules. We use the term “subcategory” to mean a “full, additive
subcategory X ⊆ M(R) such that, for all R-modules M and N , if M ∼= N and
M ∈ X , then N ∈ X”. Write P(R), I(R) and F(R) for the subcategories of all
projective, injective and flat R-modules, respectively.

An R-complex is a sequence

X = · · · ∂X
n+1−→ Xn

∂X
n−→ Xn−1

∂X
n−1−→ · · ·

of R-modules and R-homomorphisms such that ∂X
n−1∂

X
n = 0 for each integer n.

Definition 2.1. Let X be a class of R-modules and let M be an R-module.
An X -resolution of M is a complex of R-modules in X of the form

X = · · · ∂X
2−→ X1

∂X
1−→ X0 −→ 0

such that H0(X) ∼= M and Hn(X) = 0 for n ≥ 1. The X -projective dimension of
M is the quantity

X - pdR(M) = inf{sup{n | Xn 6= 0} | X is an X -resolution of M}.
In particular, X - pdR(0) = −∞. The modules of X -projective dimension zero are
the non-zero modules in X .

Dually, an X -coresolution of M is a complex of R-modules in X of the form

X = 0 −→ X0
∂X
0−→ X−1

∂X
−1−→ · · ·

such that H0(X) ∼= M and Hn(X) = 0 for n ≤ −1. The X -injective dimension of
M is the quantity

X - idR(M) = inf{sup{n | Xn 6= 0} | X is an X -coresolution of M}.
In particular, X - idR(0) = −∞. The modules of X -injective dimension zero are the
non-zero modules in X .

When X is the class of projective R-modules we write pdR(M) for the associ-
ated homological dimension and call it the projective dimension of M . Similarly,
the injective dimension and flat dimension of M are denoted idR(M) and fdR(M)
respectively.
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The notion of semidualizing modules, defined next, goes back at least to Vas-
concelos [16], but was rediscovered by others.

Definition 2.2. A finitely generated R-module C is called semidualizing if
the natural homothety homomorphism χR

C : R → HomR(C, C) is an isomorphism
and Ext≥1

R (C,C) = 0. An R-module D is called dualizing if it is semidualizing and
has finite injective dimension.

Fact 2.3 A free R-module of rank 1 is semidualizing, and indeed this is the
only semidualizing module over a Gorenstein local ring.

For a semidualizing R-module C, we set

PC(R) = {P ⊗R C | P is a projective R-module},
FC(R) = {F ⊗R C | F is a flat R-module},
IC(R) = {HomR(C, I) | I is an injective R-module}.

The R-modules in PC(R), FC(R) and IC(R) are called C-projective, C-flat and
C-injective, respectively.

The next definition is due to Holm and Jørgensen [8].

Definition 2.4. Let C be a semidualizing R-module. A complete ICI-
resolution is a complex Y of R-modules satisfying the following:
(i) Y is exact and HomR(I, Y ) is exact for each I ∈ IC(R), and
(ii) Yi ∈ IC(R) for all i ≥ 0 and Yi is injective for all i < 0.
An R-module M is GC-injective if there exists a complete ICI-resolution Y such
that M ∼= coker(∂Y

1 ); in this case Y is a complete ICI-resolution of M . The class
of all GC-injective R-modules is denoted by GIC(R). In the case C = R, we use
the more common terminology “complete injective resolution” and “Gorenstein
injective module” and the notation GI(R).

A complete PPC-resolution is a complex X of R-modules such that:
(i) X is exact and HomR(X, P ) is exact for each P ∈ PC(R), and
(ii) Xi is projective for all i ≥ 0 and Xi ∈ PC(R) for all i < 0.
An R-module M is GC-projective if there exists a complete PPC-resolution X such
that M ∼= coker(∂X

1 ); in this case X is a complete PPC-resolution of M . The class
of all GC-projective R-modules is denoted by GPC(R). In the case C = R, we use
the more common terminology “complete projective resolution” and “Gorenstein
projective module” and the notation GP(R).

A complete FFC-resolution is a complex Z of R-modules such that:
(i) Z is exact and Z ⊗R I is exact for each I ∈ IC(R), and
(ii) Zi is flat for all i ≥ 0 and Zi ∈ FC(R) for all i < 0.
An R-module M is GC-flat if there exists a complete FFC-resolution Z such that
M ∼= coker(∂Z

1 ); in this case Z is a complete FFC-resolution of M . The class of all
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GC-flat R-modules is denoted by GFC(R). In the case C = R, we use the more
common terminology “complete flat resolution” and “Gorenstein flat module” and
the notation GF(R).

3. Main results

In [10, Proposition 5.2] and [14, Theorem 2.11], the authors demonstrated a
strong connection between the classical homological dimensions and relative homo-
logical dimensions with respect to a semidualizing R-module which are collected in
the following.

Fact 3.1. Let C be a semidualizing R-module, and let M be an R-module.
Then the following statements hold.
(i) PC- pdR(M) = pdR(HomR(C, M)).
(ii) PC- pdR(C ⊗R M) = pdR(M).
(iii) IC- idR(M) = idR(C ⊗R M).
(iv) IC- idR(HomR(C, M)) = idR(M).
(v) FC- pdR(M) = fdR(HomR(C, M)).
(vi) FC- pdR(C ⊗R M) = fdR(M).
(vii) FC- pdR(M) ≤ PC- pdR(M).

In [15, Proposition 2.4 and Corollary 2.5], Tang showed that in the case C is a
dualizing R-module, the connection between the classical homological dimensions
and relative homological dimensions with respect to C is more closed as follows.

Fact 3.2. Let C be a dualizing R-module with idR(C) ≤ n, and let M be an
R-module. Then the following statements hold.
(i) FC- pdR(M) < ∞⇒ PC- pdR(M) ≤ n.
(ii) IC- idR(M) ≤ n ⇔ IC- idR(M) < ∞⇔ fdR(M) < ∞⇔ fdR(M) ≤ n.
(iii) FC- pdR(M) ≤ n ⇔ FC- pdR(M) < ∞⇔ idR(M) < ∞⇔ idR(M) ≤ n.

Using Facts 3.1 and 3.2 we have the following result.

Proposition 3.3. Let C be a dualizing R-module with idR(C) ≤ n, and let
M be an R-module. Then
(i) IC- idR(M) < ∞⇒ pdR(M) ≤ n.
(ii) pdR(M) < ∞⇒ IC- idR(M) ≤ n.
(iii) PC-pdR(M) < ∞⇒ idR(M) ≤ n.
(iv) idR(M) < ∞⇒ PC-pdR(M) ≤ n.

Proof. We just prove (i) and (ii).
(i) Let IC- idR(M) < ∞. Then Fact 3.2 implies that fdR(M) ≤ n. By Fact

3.1, FC- pdR(C⊗RM) ≤ n, and another use of Fact 3.2 implies that PC- pdR(C⊗R

M) ≤ n. Now the assertion follows from Fact 3.1.
(ii) Since pdR(M) < ∞, we have fdR(M) < ∞ and the assertion follows from

Fact 3.2
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In the sequel, we show that if C is a dualizing R-module, then the class of GC-
injective R-modules has nice properties as well as the class of Gorenstein modules
over Gorenstein rings.

Theorem 3.4. Let C be a dualizing R-module with idR(C) = n ≥ 1 and let
G be an R-module. Then G is GC-injective if and only if there exists an exact
sequence

Gn−1 −→ · · · −→ G1 −→ G0 −→ G −→ 0,

where Gn−1, . . . , G0 are GC-injective R-modules.

Proof. The forward implication holds by definition. For the reverse implication,
we just prove the case n = 1. By assumption there exists a short exact sequence
(∗) : 0 → K → G0 → G → 0 where G0 is an GC-injective R-module and K is an
R-module. Let L be an R-module with IC- idR(L) < ∞. Then pdR(L) ≤ 1, by
Proposition 3.3. By applying the functor HomR(L,−) on the exact sequence (∗),
we get that Exti

R(L,G) ∼= Exti+1
R (L,K) for all i ≥ 1. Note that Exti+1

R (L,K) = 0
for all i ≥ 1, since pdR(L) ≤ 1. So, the assertion follows from the dual of [17,
Proposition 2.12].

It is known that IC(R) ⊆ GIC(R) and I(R) ⊆ GIC(R). So we have the
following result.

Corollary 3.5. Let C be a dualizing R-module with idR(C) = n ≥ 1 and let
G be an R-module. Then the following statements hold.
(i) G is GC-injective if and only if there exists an exact sequence

HomR(C,En−1) −→ · · · −→ HomR(C, E1) −→ HomR(C, E0) −→ G −→ 0,

where En−1, . . . , E0 are injective R-modules.
(ii) If there exists an exact sequence

En−1 −→ · · · −→ E1 −→ E0 −→ G −→ 0,

where En−1, . . . , E0 are injective R-modules, then G is GC-injective.

Note that the dual of Theorem 3.4 and Corollary 3.5 hold too.

Proposition 3.6. Let C be a dualizing R-module with idR(C) ≤ 1. Then
every quotient of an injective module is GC-injective.

Proof. Let (∗) : 0 −→ M −→ E −→ E/M −→ 0 be a short exact sequence of
R-modules such that E is injective. Let L be an R-module such that pdR(L) < ∞.
Using Proposition 3.3, we conclude that pdR(L) ≤ 1. By applying the functor
HomR(L,−) on the sequence (∗), we have the following long exact sequence

0 −→ HomR(L, M) −→ HomR(L,E) −→ HomR(L,E/M) −→ · · · .

Therefore we get Exti
R(L,E/M) ∼= Exti+1

R (L, M) = 0 for all i ≥ 1. By dual of [17,
Proposition 2.12] and Proposition 3.3, we get the assertion.
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It is known that over an integral domain R, every injective R-module is divis-
ible. In [2, Lemma 5], it is shown that over local Gorenstein integral domain R of
krull dimension at most one, an R-module is Gorenstein injective if and only if it
is divisible. In the following proposition we prove the relative counterpart of this
result.

Proposition 3.7. Let R be an integral domain and let C be a dualizing R-
module. Then every GC-injective R-module is divisible.

Proof. Let M be a GC-injective R-module and let 0 6= r ∈ R. Then
pdR(R/rR) ≤ 1. By dual of [17, Proposition 2.12] and Proposition 3.3, we have
Ext1R(R/rR, M) = 0. Hence M

r−→ M −→ 0 is exact and therefore M is divisible.
It is known that in local regular rings, every module has finite homological

dimensions. In [12, Corollary 3.2], it is shown that the IC-injective dimension
and PC-projective dimension have the ability to detect the regularity of R, where
C is a semidualizing R-module. In addition, finiteness of Gorenstein homological
dimensions characterizes Gorenstein local rings as follows.

Theorem 3.8. [5, Theorem 2.19 and Corollary 3.23] Let (R, m, k) be a local
ring. Then the following statements are equivalent:
(i) R is Gorenstein.
(ii) GpdR(M) < ∞ for all R-modules M .
(iii) GpdR(k) < ∞.
(iv) GidR(M) < ∞ for all R-modules M .
(v) GidR(k) < ∞.

In the following theorem, we show that the relative Gorenstein homological
dimensions with respect to a semidualizing module have also the ability to detect
when a semidualizing module is dualizing. First, we recall the notion of trivial
extension of the ring R by an R-module. If M is an R-module, then the direct sum
R⊕M can be equipped with the product:

(a, m)(a′,m′) = (aa′, am′ + a′m),

where a, a′ ∈ R and m, m′ ∈ M . This turns R ⊕ M into a ring which is called
the trivial extension of R by M and denoted R n M . There are canonical ring
homomorphisms R À R n M , which enable us to view R-modules as (R n M)-
modules and vice versa.

Let C be a semidualizing module. In [8], it is shown that the three GC-
dimensions always agree with the changed ring dimensions as follows.

Fact 3.9. [8, Theorem 2.16] Let C be a semidualizing R-module. The follow-
ing statements hold for every R-module M .
(i) GIC- idR(M) = GidRnC(M).
(ii) GPC- pdR(M) = GpdRnC(M).
(iii) GFC- pdR(M) = GfdRnC(M).
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For an R-module M , Reiten and Foxby in [6] and [9] proved that R nM is
Gorenstein if and only if R is Cohen-Macaulay and M is a dualizing module. Now
Theorem 3.8 and Fact 3.9 imply the following result.

Proposition 3.10. Let (R, m, k) be a local ring and let C be a semidualizing
R-module. Then the following statements are equivalent:
(i) C is dualizing.
(ii) GPC-pdR(M) < ∞ for all R-modules M .
(iii) GPC-pdR(k) < ∞.
(iv) GIC- idR(M) < ∞ for all R-modules M .
(v) GIC- idR(k) < ∞.

The projective dimension of a finitely generated R-module is closely related
to its depth. This is captured by the Auslander-Buchsbaum Formula [3, Theorem
1.3.3], which states that for every finitely generated R-module M of finite projective
dimension there is an equality pdR(M) = depth R − depthR M . The Gorenstein
counterpart actually strengthens the classical result; this is a recurring theme in
Gorenstein homological algebra as follows.

Theorem 3.11. [5, Theorem 1.25 and Proposition 2.16] Let R be a local
ring and let M be a finitely generated R-module with finite Gorenstein projective
dimension. Then

GpdR(M) = depth R− depthR M.

In the following theorem, we show that the GC-projective dimension of a finite-
ly generated R-module is also closely related to its depth.

Theorem 3.12. Let C be a semidualizing module for local ring R and let M
be a finitely generated R-module with finite GC-projective dimension. Then

GPC-pdR(M) = depth R− depthR M.

Proof. By Fact 3.9, we have GPC- pdR(M) = GpdRnC(M) and Theorem
3.11 implies that GPC- pdR(M) = depth(RnC)−depthRnC(M). Note that by [3,
Exercise 1.2.26], depthRnC(M) = depthR M and by [13, Theorem 2.2.6], depth(Rn
C) = min{depth R, depthR C} = depth R, which implies the assertion.

Proposition 3.13. Let R be a local ring and let C be a dualizing R-module.
If M is a finitely generated R-module, then M is GC-projective if and only if M is
maximal Cohen-Macaulay.

Proof. Note that R is Cohen-Macaulay, since R has a finitely generated module
of finite injective dimension. For the forward implication, 0 = GPC- pdR(M) =
depth R − depthR M . So, depthR M = depth R = dim R which implies that M is
maximal Cohen-Macaulay. For the reverse implication, we have GPC- pdR(M) <
∞ by Proposition 3.10. Now the assertion follows from Theorem 3.12.
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