STRONG LINEAR PRESERVERS OF UT-TOEPLITZ WEAK MAJORIZATION ON \mathbb{R}^n

Mina Jamshidi

Abstract. Let $x,y \in \mathbb{R}^n$, we say x is ut-Toeplitz weak majorized by y (written as $x \prec_{uT} y$) if there exists an upper triangular substochastic Toeplitz matrix A such that $x = Ay$. In this paper, we characterize all linear functions that strongly preserve \prec_{uT} on \mathbb{R}^n.

1. Introduction

Majorization is one of the interesting concepts in matrix analysis and there are special researches on it and its linear preservers in recent years. Considering $M_n(\mathbb{R})$ as the space of all real $n \times n$ matrices, $D \in M_n(\mathbb{R})$ is called doubly (sub)stochastic if its entries are all nonnegative and the sum of its entries in each row and column is (less than or) equal to 1. Let \mathbb{R}^n be the vector space of all real $n \times 1$ vectors. For $x,y \in \mathbb{R}^n$, it is said that x is (weak) majorized by y and denoted by $(x \prec_w y) x \prec y$ if there is a doubly (sub)stochastic matrix D such that $x = Dy$. It is well known that $x \prec y$ if and only if $\sum_{j=1}^{n} x[j] \leq \sum_{j=1}^{n} y[j]$, for $k = 1,2,\ldots,n - 1$, and $\sum_{j=1}^{n} x[j] = \sum_{j=1}^{n} y[j]$, and $x \prec_w y$ if and only if $\sum_{j=1}^{k} x[j] \leq \sum_{j=1}^{k} y[j]$, for $k = 1,2,\ldots,n$, where $x[j]$ is the j^{th} largest element of vector x. For more study see [8].

Definition 1.1. A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is called a linear preserver of a relation \sim on \mathbb{R}^n if for all $x,y \in \mathbb{R}^n$ $x \sim y \Rightarrow Tx \sim Ty$, and it is called a strongly linear preserver of the relation if $x \sim y \iff Tx \sim Ty$.

There are some researches on characterization of linear or nonlinear preservers of special kinds of (weak) majorization. For example, in [1, 3] authors have characterized strong linear preservers and linear preservers of g-tridiagonal majorization.

2010 Mathematics Subject Classification: 15A04, 15A21

Keywords and phrases: Substochastic matrix; ut-Toeplitz weak majorization; linear preserver.
respectively. In [10] authors have characterized strong linear preservers and linear pre-
servers of circulant majorization. In [9] authors have characterized nonlinear preserver
of some special weak majorization, and also in [2, 4, 5, 7] authors have characterized
linear preservers of some other special majorizations.

In this paper we introduce ut-Toeplitz weak majorization and characterize all
linear maps that strongly preserve upper triangular Toeplitz weak majorization. Ac-
tually this kind of majorization is a particular case of that introduced by Ilkhanizadeh
Manesh in [6].

2. Preliminaries and notations

The k^{th} diagonal of a matrix $A = [a_{i,j}]$ is the collection of entries $a_{i,j}$ where $j - i = k$. The 0^{th} diagonal of a matrix is known as the main diagonal. A matrix A is called
Toeplitz if all entries of each diagonal are equal. We denote a Toeplitz matrix by
$A = [a_{-n,-n-1}] \cdots [a_0 \backslash a_1 \cdots a_{n-1}]$ where a_i is the amount of the i^{th} diagonal, and
if the Toeplitz matrix is upper triangular we use the notation $A = [a_0 \backslash a_1 \cdots a_{n-1}]$.

Definition 2.1. Let $x, y \in \mathbb{R}^n$. We say that x is ut-Toeplitz weak majorized by
y (written as $x \preceq \text{uT} y$) if there exists an upper triangular substochastic Toeplitz matrix
$D \in M_n(\mathbb{R})$ such that $x = Dy$.

For $x \in \mathbb{R}^n$ we use the notation $x \geq 0$ if all entries of x are nonnegative. Obviously
if x is weak majorized by y and $y \geq 0$, then $x \geq 0$. Also if $x \preceq \text{uT} y$, then $x = 0$.

We use $\phi(x)$ for the vector space generated by \{ $y \in \mathbb{R}^n : y \preceq \text{uT} x$ \}. Also the linear
operator $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is identified with its matrix representation under the canonical
basis, e_1, \ldots, e_n, in \mathbb{R}^n.

In this paper we also use the following special upper triangular substochastic
Toeplitz matrices.

$U_0 = I, \quad U_1 = \begin{pmatrix}
0 & 1 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}, \ldots, U_{n-1} = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}$

Actually every upper triangular substochastic Toeplitz matrix is the form of $\sum_{i=0}^{n-1} c_i U_i$, where $0 \leq c_i \leq 1$ and $\sum_{i=0}^{n-1} c_i \leq 1$.

3. Linear preservers of ut-Toeplitz majorization

We start this section by stating some preliminaries and properties of ut-Toeplitz weak majorization on \mathbb{R}^n. We will use these properties to prove our main theorem. The
following lemma describes vectors that are ut-Toeplitz weak majorized by some special vectors in \mathbb{R}^n.

Lemma 3.1. Let $x, y \in \mathbb{R}^n$ and $x \prec_{uT} y$. If $y \geq 0$ and k is the largest index such that $y_k \neq 0$, then:

(i) $x_i = 0$, $\forall i > k$;
(ii) $\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i$, $\forall 1 \leq i \leq k$.

Proof. Since $x \prec_{uT} y$ there is a substochastic upper triangular Toeplitz matrix $T = [t_0 \ t_1 \ \cdots \ t_{n-1}]$ such that $x = Ty$.

Obviously $x_i = 0$ for each $i \geq k$ and $x_j = \sum_{i=1}^{k-j+1} t_{i-1} y_{i+j-1}$. Considering $\sum_{i=1}^{n} t_{i-1} \leq 1$, we have

$$\sum_{i=1}^{k} x_i = t_0 y_1 + \cdots + t_{k-1} y_k + \cdots + t_0 y_{k-1} + t_1 y_k + t_0 y_k$$

$$= t_0 y_1 + (t_0 + t_1) y_{k+1} + \cdots + (\sum_{i=1}^{k-l+1} t_{i-1}) y_k \leq \sum_{i=1}^{k} y_i. \qed$$

Lemma 3.2. Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Then k is the largest index that $x_k \neq 0$ if and only if $\phi(x) = (e_1, \ldots, e_k)$.

Proof. Let k be the largest index such that $x_k \neq 0$. We know $U_i x \prec_{uT} x$. Since $x_j = 0$ for each $j > k$, $U_0 x = x_1 e_1 + \cdots + x_k e_k, \ldots, U_{k-2} x = x_{k-1} e_1 + x_k e_2, U_{k-1} x = x_k e_1$ and $U_i x = 0, \forall j \geq k$. Hence $\phi(x)$ contains e_1, \ldots, e_k, which means $(e_1, \ldots, e_k) \subseteq \phi(x)$. On the other hand by part (i) of Lemma 3.1 if $y \prec_{uT} x$, then $y_i = 0$ for each $i > k$, which means that each $y \in \phi(x)$ is a linear combination of e_1, \ldots, e_k. Hence $\phi(x) = (e_1, \ldots, e_k)$. Proof of the converse is obvious. \qed

Lemma 3.3. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map strongly preserves \prec_{uT}. Then T is an invertible upper triangular matrix.

Proof. First we prove that T is invertible. Let $Tx = 0$. Since T is a linear operator $T(0) = 0 = T(x)$. Considering that T strongly preserves \prec_{uT}, implies $x \prec_{uT} 0$. Hence $x = 0$.

To prove that T is an upper triangular matrix we apply the induction principle. By Lemma 3.2 we know that $\phi(e_1) = (e_1)$. Since T is invertible, $dimT\phi(e_1) = dimT(e_1) = 1$. Since T strongly preserves \prec_{uT}, we have

$$T\phi(e_1) = \{\{Tx : x \prec_{uT} e_1\}\} = \{\{Tx : Tx \prec_{uT} Te_1\}\} = \phi(T(e_1)).$$

Hence considering $dimT\phi(e_1) = 1$ and Lemma 3.2, we have $Te_1 = (a_{11}, 0, \ldots, 0)^t$.

Suppose that $Te_i = (a_{i1}, \ldots, a_{ii}, 0, \ldots, 0)^t$, for each $i < k$. Now we prove for k. By Lemma 3.2 we have $\phi(e_k) = (e_1, \ldots, e_k)$. Since T is invertible, $dimT\phi(e_k) = dimT(e_1, \ldots, e_k) = k$. Obviously $e_i \prec_{uT} e_k$, for each $i < k$, hence $e_1, \ldots, e_{k-1} \in \phi(e_k)$, that means $T(e_1, \ldots, e_{k-1}) \subseteq T^\phi(e_k)$.

Considering the hypothesis of induction, we have $Te_i = (a_{i1}, \ldots, a_{ii}, 0, \ldots, 0)^t$, for each $i < k$, which means $T(e_1, \ldots, e_{k-1}) = (e_1, \ldots, e_{k-1})$. Now if the index of the largest nonzero entry of Te_k is less than k, then $Te_k \notin T(e_1, \ldots, e_{k-1})$ and
consequently \(\dim T\phi(e_k) < k \) that is not true. On the other hand let the index of the largest nonzero entry of \(T e_k \) be greater than \(k \). Since \(T \) strongly preserves \(\prec_{uT} \), \(T\phi(e_k) = \{(Tx : x \prec_{uT} e_k)\} = \{(Tx : Tx \prec_{uT} Te_k)\} = \phi(T(e_k)) \) which implies \(\dim T\phi(e_k) > k \) that is impossible.

Hence \(T e_k = (a_{1,k}, \ldots, a_{k,k}, 0, \ldots, 0)^t \) for each \(1 \leq k \leq n \), that means \(T \) is an upper triangular matrix.

\[\text{Theorem 3.4. Let } T : \mathbb{R}^n \to \mathbb{R}^n \text{ be a linear operator. If } T \text{ is an upper triangular Toeplitz matrix then } T \text{ preserves } \prec_{uT}. \text{ Moreover } T \text{ strongly preserves } \prec_{uT} \text{ if and only if } T \text{ is an invertible upper triangular Toeplitz matrix.} \]

\[\text{Proof. Let } T \text{ be an upper triangular Toeplitz matrix and } T_n \text{ be the set of all nonsingular, upper triangular Toeplitz matrices of size } n. \text{ It is well known that } T_n \text{ is an Abelian group. Let } T \in T_n \text{ and } x, y \in \mathbb{R}^n \text{ be such that } x \prec_{uT} y. \text{ Then } x = Dy \text{ for some substochastic matrix } D \in T_n. \text{ We obtain } Tx = TDy = DTy \text{ so that } Tx \prec_{uT} Ty, \text{ that is } T \text{ is a linear preserver of } \prec_{uT}. \]

Now let \(T \) be an invertible upper triangular Toeplitz matrix. To prove \(T \) strongly preserves \(\prec_{uT} \), it suffices to show that if \(Tx \prec_{uT} Ty \), then \(x \prec_{uT} y \). \(Tx \prec_{uT} Ty \) implies \(Tx = DTy \) for some substochastic matrix \(D \in T_n \), hence \(Tx = TDy \). Since \(T \) is invertible we have \(x = Dy \), hence \(x \prec_{uT} y \), and the proof is complete.

To prove the converse of the theorem, let \(T \) strongly preserves \(\prec_{uT} \). Then by Theorem 3.3, \(T \) is an invertible upper triangular matrix. To show \(T \) is Toeplitz, first we show that all entries on the main diagonal are equal. Since \(T \) is an invertible upper triangular matrix \(a_{i,i} \neq 0 \), for each \(1 \leq i \leq n \). We assume that \(a_{n,n} > 0 \) (proof for the case \(a_{n,n} < 0 \) is similar). Consider an arbitrary natural number \(1 \leq k \leq n \). Obviously \(e_k \prec_{uT} e_n \), hence \(T e_k \prec_{uT} T e_n \) that means there is an upper triangular substochastic Toeplitz matrix \(W = [w_0, \ldots, w_{n-1}] \) such that \(T e_k = W T e_n \).

\[T e_k = (a_{1,k}, a_{2,k}, \ldots, a_{k,k}, 0, \ldots, 0)^t \]

\[= (\sum_{j=1}^{n} w_{j-1} a_{j,n}, \ldots, \sum_{j=1}^{n-k+1} w_{j-1} a_{j+k-1,n}, \ldots, w_{0} a_{n,n})^t \]

We have \(w_0 a_{n,n} = 0 \). Since \(a_{n,n} \neq 0 \), we obtain \(w_0 = 0 \). Considering the \((n-1)th\) entry of \(W T e_n \), i.e. \(w_0 a_{n-1,n} + w_1 a_{n,n} = w_1 a_{n,n} = 0 \), implies \(w_1 = 0 \). Continuing this process we have \(w_{i-1} = 0 \) for each \(1 \leq i \leq n - k \). Consequently the \(k \)th entry of \(T W e_n \) is equal to \(w_{n-k} a_{n,n} \). Hence by the equation (1) we have \(a_{k,k} = w_{n-k} a_{n,n} \), which implies that \(a_{k,k} \leq a_{n,n} \).

Since \(T \) is onto, there is \(y \in \mathbb{R}^n \) such that \(Ty = U_k T e_n \). Also since \(T \) strongly preserves \(\prec_{uT} \) and \(Ty \prec_{uT} T e_n \), we have \(y \prec_{uT} e_n \). Hence there is an upper triangular substochastic Toeplitz matrix \(W = [w_0, \ldots, w_{n-1}] \) such that \(y = W e_n \) which implies that \(U_k T e_n = Ty = T W e_n \). We have the following equation:

\[(a_{k,n}, \ldots, a_{n,n}, 0, \ldots, 0)^t = (\sum_{j=1}^{n} a_{1,j} w_{n-j}, \ldots, \sum_{j=k}^{n} a_{k,j} w_{n-j}, \ldots, a_{n,n} w_0) \]

Like the above argument we have \(w_{i-1} = 0 \) for each \(1 \leq i \leq n - k \) and hence
Since $a_{n,n} = w_{n-k}a_{kk}$ which implies that $a_{n,n} \leq a_{k,k}$. Hence we proved $a_{k,k} = a_{n,n}$ for each $1 \leq k \leq n$.

Suppose that the entries of ith diagonal for each $1 \leq i \leq k$ are all equal to a constant number a_i. We show that the entries of $(k+1)th$ diagonal are equal. To reach this aim we show that $a_{n-k,n} = a_{j-k,j}$ for each $k + 1 \leq j \leq n-1$. We know $Te_j \prec_u T T e_n$, hence $(a_{1,j}, \ldots, a_{j-k,j}, a_{k,k}, \ldots, a_{1,n}, 0, \ldots, 0)^T \prec_u (a_{1,n}, \ldots, a_{n-k,n}, a_{k,k}, \ldots, a_{1,1})^T$ for $j \geq k + 1$. Hence we have $w_0a_1 = 0$. Since T is invertible, $a_1 \neq 0$ and this implies $w_0 = 0$. In a similar way we have $w_0a_2 + w_1a_1 = 0$ which implies $w_1 = 0$ and continuing this process we have $w_{i-1} = 0$ for $1 \leq i \leq n - j$. Now we have $w_0a_{j,n} + w_1a_{j+1,n} + \cdots + w_{n-j-1}a_2 + w_{n-j}a_1 = a_1$ hence $w_{n-j} = 1$. Also $w_0a_{j-1,n} + w_1a_{j,n} + \cdots + w_{n-j}a_2 + w_{n-j+1}a_1 = a_2$ which implies $w_{n-j+1} = 0$. Again continuing this process we have $w_{n-j} = \cdots = w_{n-j+k-1} = 0$. Hence $W = [0 \ \cdots \ 0 \ \cdots \ 0 \ \cdots \ 0 \ \cdots \ w_{n-j+k} \ w_{n-j+1} \ w_{n-1}]$, where 1 is in $(n-j)$th position. Now we have $w_0a_{j-k,n} + \cdots + w_{n-j}a_{n-k,n} + w_{n-j+1}a_k + \cdots + w_{n-j+k}a_1 = a_{j-k,j}$. Hence $a_{n-k,n} + w_{n-j+k}a_1 = a_{j-k,j}$, which implies
\[
a_{n-k,n} \leq a_{j-k,j}
\]

Since T is onto, there is $y \in \mathbb{R}^n$ such that $Ty = U_t T e_n$, where $1 \leq t \leq n - k$. Since T strongly preserves $\prec_u T$ and $Ty \prec_u T Te_n$, we have $y \prec_u e_n$. Hence there is an upper triangular substochastic Toeplitz matrix $W = [w_0 \ \cdots \ w_{n-1}]$ such that $y = We_n$. Consequently $U_t T e_n = Ty = TW e_n$. We have:

\[
TW e_n = \begin{pmatrix} \sum_{j=1}^{k} a_j w_{n-j+1} + \sum_{j=k+1}^{n} a_{1,j} w_{n-j+1} \\ \sum_{j=2}^{k+1} a_{j-1} w_{n-j+1} + \sum_{j=k+2}^{n} a_{2,j} w_{n-j+1} \\ \vdots \\ a_1 w_{k+1} + a_2 w_k + \cdots + a_k w_2 + a_{n-k,n} w_1 \\ a_1 w_k + a_2 w_{k-1} + \cdots + a_k w_1 \\ \vdots \\ a_1 w_2 + a_2 w_1 \\ a_1 w_1 \end{pmatrix} = \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{n-k,n} \\ a_k \\ \vdots \\ a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = U_t T e_n
\]

Since $a_1 w_1 = 0$ implies $w_1 = 0$ and $a_1 w_2 + a_2 w_1 = 0$ implies $w_2 = 0$, continuing this process, we have $w_1 = \cdots = w_{n-1} = 0$. Now $a_1 w_t + a_2 w_{t-1} + \cdots + a_k w_{t-k+1} + a_{n-t+1,n-t+k+1} w_{t-k} + \cdots + a_{n-t+1,n} w_1 = a_1$. Hence $w_t = 1$ and like the above argument we conclude $w_{t+1} = \cdots = w_{1+k-1} = 0$. We have $a_1 w_{t+k} + a_2 w_{t+k-1} + \cdots + a_k w_{t+1} + a_{n-t-k+1,n-t-k+1} w_1 + \cdots + a_{n-t-k+1,n} w_1 = a_{n-k,n}$. Hence $a_{n-t-k+1,n-t+1} \leq a_{n-k,n}$. If we consider $j = n - t + 1$, then
\[
a_{j-k,j} \leq a_{n-k,n}.
\]

By inequalities (2) and (3) we have $a_{j-k,j} = a_{n-k,n}$, $\forall k + 1 \leq j \leq n$, and the proof is completed.

Acknowledgement. The author would like to thank anonymous referees for helpful comments and remarks.
REFERENCES

(received 30.04.2017; in revised form 18.10.2017; available online 24.11.2017)

Department of Mathematics, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran

E-mail: m.jamshidi@kgut.ac.ir