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Abstract. In earlier works we have investigated the densest packings and the thinnest
coverings by congruent hyperballs based on the regular prism tilings in n-dimensional hy-
perbolic space Hn (3 ≤ n ∈ N).

In this paper we study a large class of hyperball packings in H3 that can be derived
from truncated tetrahedron tilings. In order to get an upper bound for the density of the
above hyperball packings, it is sufficient to determine this density upper bound locally, e.g.
in truncated tetrahedra.

Thus we prove that if the truncated tetrahedron is regular, then the density of the densest
packing is ≈ 0.86338. This is larger than the Böröczky-Florian density upper bound for balls
and horoballs. Our locally optimal hyperball packing configuration cannot be extended to the
entire hyperbolic space H3, but we describe a hyperball packing construction, by the regular
truncated tetrahedron tiling under the extended Coxeter group [3, 3, 7] with maximal density
≈ 0.82251.

Moreover, we show that the densest known hyperball packing, related to the regular
p-gonal prism tilings, can be realized by a regular truncated tetrahedron tiling as well.

1. Introduction

Let Xn denote any of n-dimensional spaces of constant curvature: sphere Sn, Eu-
clidean space En, or hyperbolic space Hn (2 ≤ n ∈ N).

In the space Xn let dn(r) be the density of n + 1 mutually touching spheres of
radius r with respect to the simplex spanned by their centres. L. Fejes Tóth and
H. S. M. Coxeter conjectured that the packing density of balls of radius r in Xn

cannot exceed dn(r). This conjecture has been proved by C. A. Rogers for Euclidean
space En. The 2-dimensional spherical case was settled by L. Fejes Tóth in [8]. In Hn
there are 3 kinds of “generalized balls (spheres)”: the usual balls (spheres), horoballs
(horospheres) and hyperballs (hyperspheres). A hypersphere is the set of all points in
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212 Hyperball packings in hyperbolic 3-space

Hn, lying at a certain distance, called its height, from a hyperplane, on both sides of
the hyperplane (cf. [27] for the planar case).

K. Böröczky proved the following generalization for ball and horoball packings for
n = 3, and claimed the analogous statement for any n.

Theorem 1.1. ( [5]) In an n-dimensional space of constant curvature consider a
packing of spheres of radius r. In spherical space suppose that r < π

4 . Then the
density of each sphere in its Dirichlet-Voronoi cell cannot exceed the density of n+ 1
spheres of radius r mutually touching one another with respect to the simplex spanned
by their centers.

The above greatest density in H3 is ≈ 0.85328 which is not realized by packing
with equal balls. However, it is attained by the horoball packing (in this case r =∞)

of H3
where the ideal centers of horoballs lie on the absolute figure of H3

. This ideal
regular tetrahedron tiling is given with Coxeter-Schläfli symbol [3, 3, 6]. Ball packings
of hyperbolic n-space and of other Thurston geometries are extensively discussed in
the literature, see e.g. [1,5,7,15], where the reader can find further references as well.

In a previous paper [11] we proved that the above known optimal horoball packing
arrangement in H3 is not unique. We gave several new examples of horoball packing
arrangements based on totally asymptotic Coxeter tilings that yield the above Börö-
czky–Florian packing density upper bound [6]. Two horoballs in a horoball packing
are of the “same type” iff the local densities of the horoballs to the corresponding cell
(e.g. D-V cell or ideal simplex) are equal (see [20]).

We have also found that the Böröczky-Florian type density upper bound for
horoball packings of different types is no longer valid for fully asymptotic simplices in
higher dimensions n > 3 (see [19]). For example in H4, the density of such optimal,
locally densest horoball packing is ≈ 0.77038, larger than the analogous Böröczky-
Florian type density upper bound of ≈ 0.73046. However, these horoball packing
configurations are only locally optimal and cannot be extended to the whole hyper-
bolic space H4.

In the paper [12] we have continued our previous investigation in H4 allowing
horoballs of different types. In that paper we considered horoball packings in 4-
dimensional hyperbolic space, and showed that it was possible to exceed the conjec-
tured 4-dimensional realizable packing density upper bound due to L. Fejes-Tóth [8].
We gave seven examples of horoball packing configurations that yield higher densities
(≈ 0.71645) where horoballs are centered at ideal vertices of certain Coxeter simplices,
and are invariant under the actions of their respective Coxeter groups.

In [21–23] we have studied the regular prism tilings and the corresponding optimal
hyperball packings. Their metric data and their densities have also been determined.

In hyperbolic plane H2 the universal upper bound of the hypercycle packing den-

sity is 3
π , and the universal lower bound of hypercycle covering density is

√
12
π , proved

by I. Vermes in [26–28]. Recently, to the best of author’s knowledge, candidates for
the densest hyperball packings in the 3, 4 and 5-dimensional hyperbolic spaces are
derived by the regular prism tilings [21–23].



J. Szirmai 213

We observe that some extremal properties of hyperball packings naturally belong
to the regular truncated tetrahedron (or simplex, in general, see Lemma 3.2 and
Lemma 3.3). Therefore, in this paper we study hyperball packings in truncated
tetrahedra, and prove that if the truncated tetrahedron is regular, then the density of
the densest packing is ≈ 0.86338 (see Theorem 5.1). However, these hyperball packing
configurations are only locally optimal, and cannot be extended to the whole space
H3. Moreover, we show that the densest known hyperball packing, dually related to
the regular prism tilings, introduced in [21], can be realized by a regular truncated
tetrahedron tiling.

We have an extensive program of finding globally and locally optimal ball packings
in the eight Thurston geometries, arising from Thurston’s geometrization conjecture
[14,18–20,25]. The packing density δ is defined (see [8,21,23,27,28]) as the reciprocal
of the ratio of the volume of a fundamental domain for the symmetry group of a
tiling to the volume of the ball pieces contained in the fundamental domain (δ < 1).
Similarly the covering density ∆ > 1 is defined. A large class of truncated tetrahedron
(or simplex) tilings is studied, e.g. in [17], on the base of [16].

2. The projective model and saturated hyperball packings of H3

We use for H3 (and analogously for Hn, n ≥ 3) the projective model in the Lorentz
space E1,3 that denotes the real vector space V4 equipped with the bilinear form of
signature (1, 3), 〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3, where the non-zero vectors
x = (x0, x1, x2, x3) ∈ V4 and y = (y0, y1, y2, y3) ∈ V4, are determined up to real
factors, for representing points of P3(R). Then H3 can be interpreted as the interior
of the conical quadric Q = {(x) ∈ P3|〈x, x〉 = 0} =: ∂H3 in the real projective space
P3(V4,V4) (here V4 is the dual space of V4). Namely, for an interior point y there
holds 〈y, y〉 < 0. (Restricting this model to the hyperplane x0 = 1 we obtain the
usual collinear, i.e., Cayley-Klein model.)

Points of the boundary ∂H3 in P3 are called points at infinity, or at the absolute
of H3. Points lying outside ∂H3 are said to be outer points of H3 relative to Q. Let
(x) ∈ P3, a point (y) ∈ P3 is said to be conjugate to (x) relative to Q if 〈x, y〉 = 0
holds. The set of all points which are conjugate to (x) form a projective (polar)
hyperplane pol(x) := {(y) ∈ P3|〈x, y〉 = 0}. Thus the quadric Q induces a bijection
(linear polarity V4 → V4) from the points of P3 onto their polar hyperplanes.

Point X(x) and hyperplane α(a) = {(x0, x1, x2, x3)|
∑3
i=0 x

iai = 0} are incident
if xa = 0 (x ∈ V4 \ {0}, a ∈ V 4 \ {0}).

The hypersphere (or equidistant surface) is a quadratic surface at a constant dis-
tance from a plane (base plane) in both halfspaces. The infinite body bounded by
the hypersphere, containing the base plane, is called hyperball.

The half hyperball (i.e., the part of the hyperball lying on one side of its base plane)
with distance h to a base plane β is denoted by Hh+. The volume of the intersection
of Hh+(A) and the right prism with base a 2-polygon A ⊂ β can be determined by
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the classical formula (1) of J. Bolyai [2, 3].

Vol(Hh+(A)) =
1

4
Area(A)

[
k sinh

2h

k
+ 2h

]
, (1)

The constant k =
√
−1
K is the natural length unit in H3, where K denotes the constant

negative sectional curvature. In the following we may assume that k = 1.
Let {Hhi } be a hyperball packing in H3 with congruent hyperballs of height h. The

density of packing can be heuristically improved by adding hyperballs as long as there
is sufficient room to do so. The hypersphere packing is saturated if no new congruent
hypersphere can be added to it, retaining the packing property. We always assume that
our packings are saturated. For a packing of hyperballs {Hhi } their base planes are
denoted by βi. Thus in a hyperball packing the distance between two ultraparallel
base planes d(βi, βj) is at least 2h (where for the natural indices there holds i < j
and d is the hyperbolic distance function). Furthermore, if the packing is saturated,
then there does not exist a hyperplane at distance at least 2h from all base planes.

3. On hyperball packings in a truncated tetrahedron

We consider a saturated hyperball packing {Hhi } of hyperballs in H3 which can be
derived from a truncated tetrahedron tiling T (see [21–24,27]). One truncated tetrahe-
dron of T is S=C1

1C
1
2C

1
3 C

2
1C

2
2C

2
3 C

3
1C

3
2C

3
3 C

4
1C

4
2C

4
3 illustrated in Figure 1a. The ver-

tices Bi (i = 1, 2, 3, 4) lie outside of the model, and the truncating facets Ci1C
i
2C

i
3 ⊂ βi

are orthogonal to the edges of the tetrahedron, “joining” the vertices Bi to the other
vertices Bj of the tetrahedron.

The ultraparallel base planes of Hhi (i = 1, 2, 3, 4) are denoted by βi. The distance
between two base planes d(βi, βj) =: eij ≥ 2h, i < j ∈ {1, 2, 3, 4}. Moreover, let the
volume of the truncated tetrahedron S be Vol(S). We introduce the local density
function δ(S(h)) related to S:

Definition 3.1. δ(S(h)) :=
∑4

i=1 Vol(Hh
i ∩S)

Vol(S) .

It is clear that supS∈T δ(S(h)) provides a universal upper bound to the density,
associated to this cell decomposition and to this density, of the considered hyper-
ball packing {Hhi } in space H3. The problem of determining supS δ(S) seems to be
complicated in general, but we can formulate some important assertions.

1. The area of each rectangular hexagon face, e.g. Area(C1
1C

1
2C

3
1C

3
2C

2
2C

2
1 ) is π.

2. If we restrict ourselves to the above rectangular hexagon F = C1
1C

1
2 C

3
1C

3
2C

2
2C

2
1

then the intersections of Hhi (i = 1, 2, 3) with F form in F a partial hypercycle
packing (see Figure 1b).

It is clear that the density δ(F(h)) of the hypercycle packing in F is maximal

if the area
∑3
i=1 Area(Hhi ∩ F) is maximal, because Area(F) = π is fixed.
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I. Vermes in [27] noticed that the density δ(F(h)) is maximal if the lengths of
the common perpendiculars are equal e12 = e23 = e13 = 2h. We note here,
that in this “regular” case

∑3
i=1 bi is maximal as well, where bi are the “base

segments” of the hypercycle domains Hhi ∩ F (Figure 1b). I. Vermes proved
in [27] that

δ(F(h)) =
6 sinh(h)arcsinh 1

2 sinh(h)

π
, lim

h→∞
(δ(F(h))) =

3

π
, increasingly.

The above statement holds of course for the other regular hexagonal facets of S, as
well. From the above considerations there follows

Lemma 3.2. The “regular” truncated tetrahedron provides the densest hypercycle pac-
king in the rectangular hexagons of S. The density of the hypercycle packing in the
regular hexagonal facets of S is at most that of the above hypercycle packings, i.e.
δ(F(h)), which is an increasing function of h ∈ (0,∞) where the distance between
two base planes is eij = 2h (for each i < j ∈ {1, 2, 3, 4}).

The dihedral angles of the truncated tetrahedron S at the edges BiBj , (i, j ∈
{1, 2, 3, 4} where i < j) are denoted by ωij . If we assume that the sum of the dihedral
angles ωij is constant: Ω, then the surface area of S is 8π − 2Ω constant as well. (At
the truncations the other dihedral angles of S are π

2 ). We obtain the following lemma
as a consequence of the above assertions and formula (1).

Lemma 3.3.
∑4
k=1 Vol(Hhk ∩ S) is maximal if eij = 2h (i < j ∈ {1, 2, 3, 4}).

Although this lemma does not provide an explicit estimate yet (h depends on the
ωij ’s), it motivates the following additional assumption: let the truncated tetrahedron
be regular. Then h can also be calculated as will follow in Section 5.
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Figure 1: Truncated tetrahedron and one of its rectangular hexagonal faces
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4. Characteristic orthoschemes for the volume of a truncated regular
tetrahedron

An orthoscheme O in Hn n ≥ 2 in classical sense is a simplex bounded by n + 1
hyperplanes H0, . . . ,Hn such that [4] Hi⊥Hj , for j 6= i− 1, i, i+ 1.

Remark 4.1. This definition is equivalent to the following (see [10]): A simplex O
in Hn is an orthoscheme iff the n+ 1 vertices of O can be labelled by R0, R1, . . . , Rn
in such a way that span(R0, . . . , Ri) ⊥ span(Ri, . . . , Rn) for 0 < i < n− 1.

Geometrically, complete orthoschemes of degree m = 0, 1, 2 can be described as
follows:

1. For m = 0, they coincide with the class of classical orthoschemes introduced by
L. Schläfli. The initial and final vertices, R0 and Rn of the orthogonal edge-path
RiRi+1, i = 0, . . . , n − 1, are called principal vertices of the orthoscheme (see
Remark 4.1).

2. A complete orthoscheme of degree m = 1 can be constructed from an or-
thoscheme with one outer principal vertex, say Rn, which is truncated by its
polar plane pol(Rn) (see Figure 2b). In this case the orthoscheme is called
simply truncated with outer vertex Rn.

3. A complete orthoscheme of degree m = 2 can be constructed from an or-
thoscheme with two outer principal vertices R0, Rn truncated by its polar
hyperplanes pol(R0) and pol(Rn). In this case the orthoscheme is called doubly
truncated (see [10]).
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Figure 2: Truncated tetrahedron with a complete orthoscheme of degree m = 1

In the following we use the “3-dimensional simply truncated orthoschemes” whose
volume formula is derived by the next Theorem of R. Kellerhals (extending the formula
of N.I. Lobachevsky [13] for classical orthoschemes).
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Theorem 4.2. ( [10, Theorem II]) The volume of a three-dimensional hyperbolic com-
plete orthoscheme (except Lambert cube cases, i.e. complete orthoschemes of degree
m = 2 with outer edge) O ⊂ H3 is expressed by the essential angles α01, α12, α23,
(0 ≤ αij ≤ π

2 ) (Figure 2b) in the following form:

Vol(O) =
1

4
{L(α01 + θ)− L(α01 − θ) + L(

π

2
+ α12 − θ)+

+ L(
π

2
− α12 − θ) + L(α23 + θ)− L(α23 − θ) + 2L(

π

2
− θ)},

where θ ∈ [0, π2 ) is defined by:

tan(θ) =

√
cos2 α12 − sin2 α01 sin2 α23

cosα01 cosα23
,

and where L(x) := −
x∫
0

log |2 sin t|dt denotes the Lobachevsky function.

In the following we assume that the ultraparallel base planes βi of Hh(p)i (i =
1, 2, 3, 4, and 6 < p ∈ R) generate a “regular truncated tetrahedron” Sr with outer
vertices Bi (see Figure 2a) whose non-orthogonal dihedral angles are equal to 2π

p , and

the distances between two base planes d(βi, βj) =: eij (i < j ∈ {1, 2, 3, 4}) are equal
to 2h(p) depending on the angle π

p .
The truncated regular tetrahedron Sr can be decomposed into 24 congruent simply

truncated orthoschemes; one of them O = Q0Q1Q2P0P1P2 is illustrated in Figure 2a
where P0 is the center of the “regular tetrahedron” Sr, P1 is the center of a hexagonal
face of Sr, P2 is the midpoint of a “common perpendicular” edge of this face, Q0 is the
center of an adjacent regular triangle face of Sr, Q1 is the midpoint of an appropriate
edge of this face and one of its endpoints is Q2.

In our case the essential dihedral angles of orthoschemes O are the following:
α01 = π

p , α12 = π
3 , α23 = π

3 (see Figure 2b). Therefore, the volume Vol(O) of the

orthoscheme O and the volume Vol(Sr) = 24 ·Vol(O) can be computed for any given
parameter p (6 < p ∈ R) by Theorem 4.2.

5. Packing with congruent hyperballs in a regular truncated tetrahedron

In this case for a given parameter p the length of the common perpendiculars h(p) =
1
2eij (i < j, i, j ∈ {1, 2, 3, 4}) can be determined by the machinery of projective
metric geometry. (In the following x ∼ c ·x with c ∈ R\{0} represent the same point
X = (x ∼ c · x) of P3.)

The points P2(p2) and Q2(q2) are proper points of hyperbolic 3-space and Q2 lies
on the polar hyperplane pol(B1)(b1) of the outer point B1 thus

q2 ∼ c · b1 + p2 ∈ b1 ⇔ c · b1b
1 + p2b

1 = 0⇔ c = −p2b
1

b1b
1 ⇔

q2 ∼ −
p2b

1

b1b
1b1 + p2 ∼ p2(b1b

1)− b1(p2b
1) = p2h33 − b1h23,
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where hij is the inverse of the Coxeter-Schläfli matrix

(cij) :=


1 − cos πp 0 0

− cos πp 1 − cos π3 0

0 − cos π3 1 − cos π3
0 0 − cos π3 1

 (2)

of the orthoscheme O. The hyperbolic distance h(p) can be calculated by the following
formula:

coshh(p) = coshP2Q2 =
−〈q2,p2〉√
〈q2,q2〉〈p2,p2〉

=
h223 − h22h33√
h22〈q2,q2〉

=

√
h22 h33 − h223

h22 h33
.

We get that the volume Vol(Sr), the maximal height h(p) of the congruent hyper-

balls lying in Sr and
∑4
i=1 Vol(Hhi ∩ Sr)) all depend only on the parameter p of the

truncated regular tetrahedron Sr.
Therefore, the density δ(Sr(h(p))) depends only on p (6 < p ∈ R). Moreover,

the total volume of the parts of the four hyperballs lying in Sr can be computed by
formula (1), and the volume of Sr can be determined by Theorem 4.2.
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Figure 3: The density function δ(Sr(h(p))), p ∈ (6,∞)

Finally, we obtain the plot after careful analysis of the smooth density function
(cf. Figure 3) and we obtain the following.

Theorem 5.1. The density function δ(Sr(h(p))), p ∈ (6,∞) attains its maximum
at popt ≈ 6.13499, and δ(Sr(h(p))) is strictly increasing in the interval (6, popt), and
strictly decreasing in (popt,∞). Moreover, the optimal density δopt(Sr(h(popt))) ≈
0.86338 (see Figure 3).

Remark 5.2. 1. In our case limp→6(δ(Sr(h(p)))) is equal to the Böröczky-Florian
upper bound of the ball and horoball packings in H3 [6] (observe that the dihe-
dral angles of Sr for the case of the horoball equal 2π/6).
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2. δopt(Sr(h(popt))) ≈ 0.86338 is larger than the Böröczky-Florian upper bound
δBF ≈ 0.85328; but these hyperball packing configurations are only locally
optimal and cannot be extended to the entire hyperbolic space H3.

5.1 Tilings with regular truncated tetrahedra in hyperbolic 3-space

In the papers [21–24] we have studied the hyperball packings and coverings associated
to regular prism tilings in n-dimensional (n = 3, 4, 5) hyperbolic space and determined
the corresponding densest hyperball packings and thinnest hyperball coverings. From
the definitions of the prism tilings and the complete orthoschemes of degree m = 1 it
follows that a regular prism tiling exists in space Hn if and only if there exists a com-
plete Coxeter orthoscheme of degree m = 1 with two ultraparallel faces (in Figure 2a
these are P0P1P2 and Q0Q1Q2). The complete Coxeter orthoschemes were classified
by Im Hof in [9] by generalizing the methods of Coxeter and Böhm appropriately.
The truncated tetrahedron tilings are studied in [17] on the base of [16].

The hyperball packings in the regular truncated tetrahedra under the extended
reflection groups with Coxeter-Schläfli symbol [3, 3, p], investigated in this paper, can
be extended to the entire hyperbolic space if p is an integer parameter bigger than 6.
They coincide with the hyperball packings given by the regular p-gonal prism tilings in
H3 with extended Coxeter-Schläfli symbols [p, 3, 3], see in [21]. As we know, [3, 3, p]
and [p, 3, 3] are dually isomorphic extended reflection groups, just with the above
frustum of orthoscheme as fundamental domain (Figure 2b, matrix (cij) in formula
(2)).

In the following table we summarize the data of the hyperball packings for some
parameters p (6 < p ∈ N), where A is a trigonal face of the truncated tetrahedron
(Figure 1).

Table 1: Hyperball packings for various parameters p

p h Vol(O) Vol(Hh
+(A)) δ

7 0.78871 0.08856 0.07284 0.82251

8 0.56419 0.10721 0.08220 0.76673

9 0.45320 0.11825 0.08474 0.71663
...

...
...

...
...

20 0.16397 0.14636 0.06064 0.41431
...

...
...

...
...

50 0.06325 0.15167 0.02918 0.19240
...

...
...

...
...

100 0.03147 0.15241 0.01549 0.10165

p→∞ 0 0.15266 0 0

The problems of the densest horoball and hyperball packings in hyperbolic n-space
n ≥ 3 with horoballs of different types and hyperballs have not been settled yet, in
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general (see e.g. [11, 12,19,20]).
Optimal ball (sphere) packings in other homogeneous Thurston geometries repre-

sent another huge class of open problems. For these non-Euclidean geometries only
very few results are known (e.g. [25] and the references given there). Detailed studies
are the objective of ongoing research. Applications of the above projective method
seem to be interesting in (non-Euclidean) crystallography as well, a topic of much
current interest.

Acknowledgement. The author thank Prof. Emil Molnár for his helpful com-
ments and suggestions to this paper.
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