MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 70, 4 (2018), 338–343 December 2018

research paper оригинални научни рад

NON-NORMAL *p*-BICIRCULANTS, *p* A PRIME

Majid Arezoomand

Abstract. A graph Γ is called a semi-Cayley graph over a group G, if there exists a semiregular subgroup R_G of Aut(Γ) isomorphic to G with two orbits (of equal size). We say that Γ is normal if R_G is a normal subgroup of Aut(Γ). Semi-Cayley graphs over cyclic groups are called bicirculants. In this paper, we determine all non-normal bicirculants over a group of prime order.

1. Introduction and result

For a graph Γ , we let $V(\Gamma)$, $E(\Gamma)$, $\operatorname{Aut}(\Gamma)$ and Γ^c denote the vertex set, the edge set, the full automorphism group and the complement of Γ , respectively. We say that Γ is vertex-transitive, primitive or imprimitive when $\operatorname{Aut}(\Gamma)$ acts transitively, primitively or imprimitively on $V(\Gamma)$, respectively. Our notation and terminology are standard. For the group-theoretic and graph-theoretic terminology not defined here we refer the reader to [3] and [5], respectively. Throughout the paper all graphs are finite and simple. Also, for a group G we denote $G \setminus \{1_G\}$ by G^* and we use the multiplicative notation for cyclic groups.

Let G be a finite group and $S = S^{-1} \subseteq G^*$. The Cayley graph $\Gamma = \text{Cay}(G, S)$ of G with respect to S has vertex set G and edge set $\{(g, sg) \mid g \in G, s \in S\}$. It is well-known that the right regular representation R(G) of G is a regular subgroup of $\text{Aut}(\Gamma)$. If R(G) is a normal subgroup of $\text{Aut}(\Gamma)$, then Γ is called a normal Cayley graph over G [13]. The study of normality of Cayley graphs, which plays an important role in the investigation of various symmetry properties of graphs, was started by Xu in [13] and it is still an active topic in algebraic graph theory. We encourage the reader to consult [4] for a survey up to 2008.

By a theorem of Sabidussi [12], a graph Γ is a Cayley graph of a group G if and only if there exists a regular subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to G. In analogy to the Sabidussi's Theorem, a graph Γ is called a *semi-Cayley* graph over a group G if there exists a semi-regular subgroup R_G of $\operatorname{Aut}(\Gamma)$ isomorphic to G with two orbits

²⁰¹⁰ Mathematics Subject Classification: 05C25, 20B25

Keywords and phrases: Semi-Cayley graph; bicirculant; normal semi-Cayley graph.

M. Arezoomand

(of equal size) [11]. Semi-Cayley graphs are called by some authors bi-Cayley graphs, see for example [14]. Recently, some authors studied the structure of automorphism group of semi-Cayley graphs [1,14]. In analogy to the concept of normality of Cayley graphs, Arezoomand and Taeri defined normal semi-Cayley graphs. A semi-Cayley graph Γ over a group G is called normal if R_G is a normal subgroup of Aut(Γ) [1]. It is clear that Γ is a normal semi-Cayley graph over a group G if and only if its complement, Γ^c , is a normal semi-Cayley graph over G. An important subclass of semi-Cayley graphs are bicirculants, which are semi-Cayley graphs over cyclic groups. For an equivalent definition of bicirculants see [9]. Recently, the study of bicirculants have been the object of many papers, see for example [6]–[10]). In [9], the symmetry structure of bicirculants over a group of prime order p is determined. In this paper, our aim is to classify non-normal bicirculants over a group of prime order p.

Resmini and Jungnickel [11] determined the structure of semi-Cayley graphs: A graph Γ is a semi-Cayley graph over a group G if there exist subsets $R = R^{-1} \subseteq G^*$, $L = L^{-1} \subseteq G^*$ and S of G such that $\Gamma \cong SC(G; R, L, S)$ where SC(G; R, L, S) is a graph with vertex set $G \times \{1, 2\}$ and edge set $E_R \cup E_L \cup E_S$, where

$\{\{(x,1),(y,1)\} \mid yx^{-1} \in R\}$	(right edges),
$\{\{(x,2),(y,2)\} \mid yx^{-1} \in L\}$	(left edges),
$\{\{(x,1),(y,2)\}\mid yx^{-1}\in S\}$	(spoke edges).

Let $g \in G$ and ρ_g be a permutation of the vertex set of SC(G; R, L, S) such that $(x, i)^{\rho_g} = (xg, i)$ for all $x \in G$ and i = 1, 2. Then $R_G = \{\rho_g \mid g \in G\}$ is a semi-regular subgroup of Aut(SC(G; R, L, S)) isomorphic to G with two orbits $G \times \{1\}$ and $G \times \{2\}$. Hence, we may denote a semi-Cayley graph over a group G by SC(G; R, L, S) for some suitable subsets R, L and S of G. We denote the subgraph of $\Gamma = SC(G; R, L, S)$ induced by all the edges of Γ having one end-vertex in $G \times \{1\}$ and the other in $G \times \{2\}$ (in other words when $R = L = \emptyset$) with BCay(G, S). Note that in BCay(G, S) maybe $S \neq S^{-1}$. But if S is inverse-closed then $BCay(G, S) \cong Cay(G, S) \otimes K_2$, where \otimes denotes the tensor product of graphs [2, Lemma 3.2]. Note that in [9], a bicirculant $SC(G; R, L, S), G \times \{1\}, G \times \{2\}$ and BCay(G, S) are denoted by [R, L, S], U, W and [U, W], respectively.

Using the classification of p-bicirculants, p a prime, given in [9], we classify all non-normal bicirculants over a group of prime order p:

THEOREM 1.1. Let Γ be a non-normal bicirculant over a group $G = \langle x \rangle$ of prime order p. Then Γ is one of the following graphs.

- (a) Γ or $\Gamma^c = \mathrm{SC}(G; G^*, G^*, G) \cong K_4, p = 2.$
- (b) Γ or $\Gamma^c = SC(G; G^*, G^*, \{1_G\}), p = 2.$
- (c) Γ or $\Gamma^c = \operatorname{BCay}(G, \{1_G\}), p = 2.$
- (d) Γ or $\Gamma^c \cong \Gamma_1 + \Gamma_2$, where Γ_i are two non-isomorphic Cayley graphs of order p, Aut $(\Gamma) \cong Aut(\Gamma_1) \times Aut(\Gamma_2)$ and p > 2.

Non-normal p-bicirculants, p a prime

- (e) Γ or $\Gamma^c = SC(G; G^*, \emptyset, S)$ and $BCay(G, S) \cong pK_2$, in which case $Aut(\Gamma) \cong S_p$ and p > 3.
- (f) Γ or $\Gamma^c = SC(G; G^*, \emptyset, S)$ and $BCay(G, S) \cong B(PG(n, q))$ where $p = \frac{q^n 1}{q 1}$, in which $Aut(\Gamma) = P\Sigma L(n, q)$ and p > 3.
- (g) Γ or $\Gamma^c = SC(G; G^*, \emptyset, S)$ and $BCay(G, S) \cong B(H(11))$, in which case $Aut(\Gamma) \cong PSL(2, 11)$ and $S = \{x, x^3, x^4, x^5, x^9\}$, p = 11.
- (h) Γ or $\Gamma^c \cong 2pK_1$, pK_2 or 2X, where X is connected Cayley graph of order p and p > 2.
- (i) Γ or $\Gamma^c \cong P$, where P is the Petersen graph, p = 5.
- (j) Γ or $\Gamma^c \cong Y[2K_1]$, where Y is a Cayley graph of order p and p > 2.
- (k) Γ or $\Gamma^c \cong B(PG(n,q))$ or C(PG(n,q)) where $p = \frac{q^n-1}{q-1}$, in which $Aut(\Gamma) = P\Gamma L(n,q)$ and p > 3.
- (l) Γ or $\Gamma^c \cong B(H(11))$ or C(H(11)), in which $\operatorname{Aut}(\Gamma) = PGL(2, 11)$ and p = 11, where the incidence graph of the projective space PG(n,q) and the Hadamard design H(11) on 11 points are denoted by B(PG(n,q)) and B(H(11)) and their non-incidence graphs are denoted by C(PG(n,q)) and C(H(11)), respectively.

2. Preliminaries

In this section we recall some preliminaries and results which are used in the proof of Theorem 1.1. Let $\Gamma = \mathrm{SC}(G; R, L, S)$ and X be the set of all maps $\psi : V(\Gamma) \to V(\Gamma)$, where $(x, 1)^{\psi} = (x^{\sigma}, 1)$ and $(x, 2)^{\psi} = (gx^{\sigma}, 2)$, for some $g \in G$ and $\sigma \in \mathrm{Aut}(G)$ such that $R^{\sigma} = R$, $L^{\sigma} = g^{-1}Lg$, and $S^{\sigma} = g^{-1}S$. Also, let Y be the set of all maps $\varphi : V(\Gamma) \to V(\Gamma)$, where $(x, 1)^{\varphi} = (x^{\theta}, 2)$ and $(x, 2)^{\varphi} = (hx^{\theta}, 1)$, for some $h \in G$ and $\theta \in \mathrm{Aut}(G)$ such that $R^{\theta} = L$, $L^{\theta} = h^{-1}Rh$ and $S^{\theta} = h^{-1}S^{-1}$ with the convention that if one of the pair sets R, L is empty and the other is non-empty or $S = \emptyset$, we put $Y = \emptyset$. Also if in the above equalities, one of the subsets is empty, then we omit the equality including it. The structure of normalizer of R_G in $\mathrm{Aut}(\Gamma)$ is determined in [1] as follows:

THEOREM 2.1. ([1, Theorem 1]) Let $\Gamma = SC(G; R, L, S)$ be a semi-Cayley graph over a group G, and X, Y be the sets defined above. Then $N_{Aut(\Gamma)}(R_G) = ZR_G$, where $Z = X \cup Y$. Furthermore, $R_G \cap Z = \{1_G\}$.

PROPOSITION 2.2. ([1, Proposition 2]) Let $\Gamma = SC(G; R, L, S)$ be a semi-Cayley graph over G. Then

(1) $R_G \trianglelefteq \operatorname{Aut}(\Gamma)$ if and only if $\operatorname{Aut}(\Gamma) = ZR_G$,

M. Arezoomand

(2) if $R_G \leq \operatorname{Aut}(\Gamma)$, then $\operatorname{Aut}(\Gamma)_{(1,1)} = X$ and the converse holds if $\operatorname{Aut}(\Gamma)$ is not transitive on $V(\Gamma)$.

COROLLARY 2.3. ([1, Corollary 3.2]) Let Γ be a normal semi-Cayley graph over a group G such that $\operatorname{Aut}(G)$ is solvable. Then $\operatorname{Aut}(\Gamma)$ is solvable. In particular, the automorphism group of every normal semi-Cayley graph over a cyclic group is solvable.

The symmetry structure of bicirculants over a group of prime order is fully given in [9]. We collect its result as follows. Note that in the following theorem the lexicographic product and the disjoint union of graphs Γ_1 and Γ_2 are denoted by $\Gamma_1[\Gamma_2]$ and $\Gamma_1 + \Gamma_2$, respectively.

THEOREM 2.4. ([9, Theorem 2.1, Theorem 2.2]) Let Γ be a bicirculant over a group $G = \langle x \rangle$ of prime order p. Then one of the following occurs.

- (1) Γ or $\Gamma^c = SC(G; R, L, \emptyset) \cong Cay(G, R) + Cay(G, L)$, where Cay(G, R) and Cay(G, L) are two non-isomorphic Cayley graphs of order p and $Aut(\Gamma) \cong Aut(Cay(G, R)) \times Aut(Cay(G, L))$.
- (2) Γ or $\Gamma^c = SC(G; G^*, \emptyset, S)$ and $BCay(G, S) \cong pK_2$, in which case $Aut(\Gamma) \cong S_p$.
- (3) Γ or $\Gamma^c = SC(G; G^*, \emptyset, S)$ and $BCay(G, S) \cong B(PG(n, q))$, where $p = \frac{q^n 1}{q 1}$, in which case $Aut(\Gamma) = P\Sigma L(n, q)$.
- (4) $\Gamma \text{ or } \Gamma^c = SC(G; G^*, \emptyset, S) \text{ and } BCay(G, S) \cong B(H(11)), \text{ in which case } Aut(\Gamma) \cong PSL(2, 11) \text{ and } S = \{x, x^3, x^4, x^5, x^9\}, p = 11.$
- (5) There exists $\sigma \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = R_G \rtimes \langle \sigma \rangle \cong \mathbb{Z}_p \rtimes \mathbb{Z}_d$, where d divides p-1 (for more details about the map σ and the structure of Γ , see [9, Theorem 2.1(iii)]).
- (6) Γ or $\Gamma^c \cong 2pK_1$, pK_2 or 2X, where X is a connected Cayley graph of order p.
- (7) Γ or $\Gamma^c \cong P$, where P is the Petersen graph.
- (8) Γ or $\Gamma^c \cong Y[2K_1]$, where Y is a Cayley graph.
- (9) Γ or $\Gamma^c \cong B(PG(n,q))$ or C(PG(n,q)), where $p = \frac{q^n-1}{q-1}$, in which $\operatorname{Aut}(\Gamma) = P\Gamma L(n,q)$.
- (10) Γ or $\Gamma^c \cong B(H(11))$ or C(H(11)), in which case $\operatorname{Aut}(\Gamma) = PGL(2,11)$.
- (11) There exist $\alpha, \sigma \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = \langle \alpha \rangle \rtimes \langle \sigma \rangle \cong \mathbb{Z}_{2p} \rtimes \mathbb{Z}_d$, where d is a divisor of p-1 and $\rho_x = \alpha^{p-1}$, where $R_G = \langle \rho_x \rangle$ (for more details about the maps α and σ and the structure of Γ , see [9, Theorem 2.2(v)]).
- (12) There exists $\omega \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = R_G \rtimes \langle \omega \rangle$ (for more details about the map ω and the structure of Γ , see [9, Theorem 2.2(vi)]).

Non-normal p-bicirculants, p a prime

REMARK 2.5. In Theorem 2.4, all graphs other than (1)–(5) are vertex-transitive. Also in all cases other than (1) and (6), Γ and Γ^c are both connected. Moreover, in the cases (8)–(12), Γ is imprimitive and in case (8), Γ has only 2-blocks and in the cases (9)–(12), Γ has at least one *p*-block (see the proofs of Theorems 2.1 and 2.2 of [9] for more details).

3. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. Let $\Gamma = SC(G; R, L, S)$ be a bicirculant over a group $G = \langle x \rangle$ of prime order p. We denote the vertex set and the automorphism group of Γ by V and A, respectively. Also we assume that X is the set defined in Theorem 2.1.

Proof. Suppose that Γ is non-normal. Then Γ is one of the twelve graphs given in Theorem 2.4. In the cases (5) and (12), Γ is normal. Also, in the case (11), $\langle \alpha \rangle$ is a normal subgroup of A and R_G is a characteristic subgroup of $\langle \alpha \rangle$, which means that $R_G \leq A$, i.e. Γ is normal. So Γ is one of the graphs (1)–(4) or (6)–(10).

First we assume that p = 2 and $G = \langle x \rangle \cong \mathbb{Z}_2$. Then Γ has 4 vertices and $R, L \in \{\emptyset, \{x\}\}, \text{ and } S \in \{\emptyset, \{1\}, \{x\}, G\}$. By considering all possibilities of R, L and S, since Γ is non-normal, we have one of the following cases:

- (a) Γ or $\Gamma^c = \mathrm{SC}(G, G^*, G^*) \cong K_4$,
- (b) Γ or $\Gamma^{c} = SC(G, G^{*}, G^{*}, \{1_{G}\}),$
- (c) Γ or $\Gamma^c = SC(G, \emptyset, \emptyset, \{1_G\}).$

Now suppose that p > 2. First, let Γ be a graph of type (1), i.e. $\Gamma = \mathrm{SC}(G; R, L, \emptyset) = \Gamma_1 + \Gamma_2$, where $\Gamma_1 \cong \mathrm{Cay}(G, R)$ and $\Gamma_2 \cong \mathrm{Cay}(G, L)$. We claim that Γ is non-normal. Let $B = \mathrm{Aut}(\Gamma_1)$ and $C = \mathrm{Aut}(\Gamma_2)$. Then $A = B \times C$. Without loss of generality, we may assume that $V(\Gamma_1) = G \times \{1\}$ and $V(\Gamma_2) = G \times \{2\}$. By [5, Exercise 14.13], $B \ncong \mathbb{Z}_p$. Hence $B_{(1,1)} \neq 1_B$. Choose an element $\varphi \in B_{(1,1)} \setminus \{1_B\}$. Then $(\varphi, 1_C) \in A_{(1,1)}$. Suppose, contrary to our claim, that Γ is normal. Then by Proposition 2.2, there exist $\sigma \in \mathrm{Aut}(G)$ and $g \in G$ such that for all $x \in G$, $(x, 1)^{\varphi} = (x^{\sigma}, 1)$ and $(x, 2)^{1_C} = (gx^{\sigma}, 2)$. The second equation implies that $g = 1_G$ and $\sigma = 1_{\mathrm{Aut}(G)}$. Hence $\varphi = 1_B$, a contradiction.

Now let Γ be a graph of type (6) or (7). Then Γ is primitive, by Remark 2.5, and so by [3, Theorem 1.6A(v)], Γ is non-normal. If Γ is of type (8), then by Remark 2.5 and [3, Theorem 1.6A(i)], Γ is non-normal. In the cases (4) and (10), since PSL(2, 11) and PGL(2, 11) are not solvable, by Corollary 2.3, Γ is non-normal.

Finally, we examine the remaining graphs Γ of types (2), (3) and (9). First note that if $\operatorname{Aut}(\Gamma) \cong S_3$, then Γ is normal. Hence $\operatorname{Aut}(\Gamma) \ncong S_3$. In the cases (3) and (9), $p = \frac{q^n - 1}{q - 1}$ is a prime. If p = 3, then n = q = 2 and $\operatorname{P}\Gamma\operatorname{L}(n, q) \cong \operatorname{P}\Sigma\operatorname{L}(n, q) \cong S_3$, contradicting the non-normality of Γ . Hence p > 3. Since S_p has no normal subgroup of order p, the graph (2) is non-normal. In the cases (3) and (9), $p = \frac{q^n - 1}{q - 1}$ is a prime

342

M. Arezoomand

and the assumption p > 3 implies that $(n,q) \neq (2,2)$. Since $\frac{q^n-1}{q-1}$ is a prime, we conclude that $(n,q) \neq (2,2), (2,3)$. Since PG(n,q) and PSL(n,q) are solvable only when $(n,q) \in \{(2,2), (2,3)\}$, and PGL(n,q) and PSL(n,q) are isomorphic to a normal subgroup of $P\Gamma L(n,q)$ and $P\Sigma L(n,q)$, respectively, we conclude that $P\Gamma L(n,q)$ and $P\Sigma L$ are not solvable and so the graphs of type (3) and (9) are non-normal, by Corollary 2.3. We have showed that in the case p > 3, the graphs (2), (3) and (9) are non-normal, which completes the proof.

References

- [1] M. Arezoomand, B. Taeri, Normality of 2-Cayley digraphs, Discrete Math., 338 (2015), 41-47.
- [2] M. Arezoomand, B. Taeri, A classification of finite groups with integral bi-Cayley graphs, Trans. Comb., 4(4) (2015), 55–61.
- [3] J. D. Dixon, B. Mortimer, Permutation Groups, New York, Springer-Verlag, 1996.
- [4] Y. Q. Feng, Z. P. Lu, M. Y. Xu, Automorphism groups of Cayley digraphs, Applications of Group Theory to Combinatorics, CRC Press/Balkema 2008, 13–25.
- [5] F. Harary, Graph Theory, Addison-Welsey Publishing Company, 1969.
- [6] H. Koike, I. Kovács, Isomorphic tetravalent cyclic Haar graphs, Ars Math. Contemp., 7 (2014), 215–235.
- [7] I. Kovács, B. Kuzman, A. Malnič, On non-normal arc transitive 4-valent dihedrants, Acta Math. Sin. Eng. Ser. 26 (2010), 1485–1498.
- [8] I. Kovács, B. Kuzman, A. Malnič, S. Wilson, Characterization of edge-transitive 4-valent bicirculants, J. Graph Theory, 69 (2012), 441–463.
- [9] A. Malnič, D. Marušič, P. Šparl, B. Frelih, Symmetry structure of bicirculants, Discrete Math., 307 (2007), 409–414.
- [10] T. Pisanski, A classification of cubic bicirculants, Discrete Math., 307 (2007), 567-578.
- [11] M. J. de Resmini, D. Jungnickel, Strongly regular semi-Cayley graphs, J. Algebraic Combin., 1 (1992), 217–228.
- [12] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math., 68 (1964), 426–438.
- [13] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182 (1998), 309–319.
- [14] J. X. Zhou, Y. Q. Feng, The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B, 116 (2016), 504–532.

(received 19.11.2017; in revised form 25.06.2018; available online 21.07.2018)

University of Larestan, Larestan, 74317-16137, Iran

E-mail: arezoomand@lar.ac.ir, arezoomandmajid@gmail.com

343