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NON-NORMAL p-BICIRCULANTS, p A PRIME
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Abstract. A graph Γ is called a semi-Cayley graph over a group G, if there exists a
semiregular subgroup RG of Aut(Γ) isomorphic to G with two orbits (of equal size). We
say that Γ is normal if RG is a normal subgroup of Aut(Γ). Semi-Cayley graphs over cyclic
groups are called bicirculants. In this paper, we determine all non-normal bicirculants over
a group of prime order.

1. Introduction and result

For a graph Γ, we let V (Γ), E(Γ), Aut(Γ) and Γc denote the vertex set, the edge set,
the full automorphism group and the complement of Γ, respectively. We say that Γ is
vertex-transitive, primitive or imprimitive when Aut(Γ) acts transitively, primitively
or imprimitively on V (Γ), respectively. Our notation and terminology are standard.
For the group-theoretic and graph-theoretic terminology not defined here we refer the
reader to [3] and [5], respectively. Throughout the paper all graphs are finite and
simple. Also, for a group G we denote G \ {1G} by G∗ and we use the multiplicative
notation for cyclic groups.

Let G be a finite group and S = S−1 ⊆ G∗. The Cayley graph Γ = Cay(G,S)
of G with respect to S has vertex set G and edge set {(g, sg) | g ∈ G, s ∈ S}. It is
well-known that the right regular representation R(G) of G is a regular subgroup of
Aut(Γ). If R(G) is a normal subgroup of Aut(Γ), then Γ is called a normal Cayley
graph over G [13]. The study of normality of Cayley graphs, which plays an important
role in the investigation of various symmetry properties of graphs, was started by Xu
in [13] and it is still an active topic in algebraic graph theory. We encourage the
reader to consult [4] for a survey up to 2008.

By a theorem of Sabidussi [12], a graph Γ is a Cayley graph of a group G if and
only if there exists a regular subgroup of Aut(Γ) isomorphic to G. In analogy to
the Sabidussi’s Theorem, a graph Γ is called a semi-Cayley graph over a group G if
there exists a semi-regular subgroup RG of Aut(Γ) isomorphic to G with two orbits
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(of equal size) [11]. Semi-Cayley graphs are called by some authors bi-Cayley graphs,
see for example [14]. Recently, some authors studied the structure of automorphism
group of semi-Cayley graphs [1,14]. In analogy to the concept of normality of Cayley
graphs, Arezoomand and Taeri defined normal semi-Cayley graphs. A semi-Cayley
graph Γ over a group G is called normal if RG is a normal subgroup of Aut(Γ) [1].
It is clear that Γ is a normal semi-Cayley graph over a group G if and only if its
complement, Γc, is a normal semi-Cayley graph over G. An important subclass of
semi-Cayley graphs are bicirculants, which are semi-Cayley graphs over cyclic groups.
For an equivalent definition of bicirculants see [9]. Recently, the study of bicirculants
have been the object of many papers, see for example [6]– [10]). In [9], the symmetry
structure of bicirculants over a group of prime order p is determined. In this paper,
our aim is to classify non-normal bicirculants over a group of prime order p.

Resmini and Jungnickel [11] determined the structure of semi-Cayley graphs: A
graph Γ is a semi-Cayley graph over a group G if there exist subsets R = R−1 ⊆ G∗,
L = L−1 ⊆ G∗ and S of G such that Γ ∼= SC(G;R,L, S) where SC(G;R,L, S) is a
graph with vertex set G× {1, 2} and edge set ER ∪ EL ∪ ES , where

{ {(x, 1), (y, 1)} | yx−1 ∈ R} (right edges),

{ {(x, 2), (y, 2)} | yx−1 ∈ L} (left edges),

{ {(x, 1), (y, 2)} | yx−1 ∈ S} (spoke edges).

Let g ∈ G and ρg be a permutation of the vertex set of SC(G;R,L, S) such that
(x, i)ρg = (xg, i) for all x ∈ G and i = 1, 2. Then RG = {ρg | g ∈ G} is a semi-regular
subgroup of Aut(SC(G;R,L, S)) isomorphic to G with two orbits G×{1} and G×{2}.
Hence, we may denote a semi-Cayley graph over a group G by SC(G;R,L, S) for some
suitable subsets R,L and S of G. We denote the subgraph of Γ = SC(G;R,L, S)
induced by all the edges of Γ having one end-vertex in G×{1} and the other in G×{2}
(in other words when R = L = ∅) with BCay(G,S). Note that in BCay(G,S) maybe
S 6= S−1. But if S is inverse-closed then BCay(G,S) ∼= Cay(G,S) ⊗ K2, where ⊗
denotes the tensor product of graphs [2, Lemma 3.2]. Note that in [9], a bicirculant
SC(G;R,L, S), G×{1}, G×{2} and BCay(G,S) are denoted by [R,L, S], U , W and
[U,W ], respectively.

Using the classification of p-bicirculants, p a prime, given in [9], we classify all
non-normal bicirculants over a group of prime order p:

Theorem 1.1. Let Γ be a non-normal bicirculant over a group G = 〈x〉 of prime
order p. Then Γ is one of the following graphs.

(a) Γ or Γc = SC(G;G∗, G∗, G) ∼= K4, p = 2.

(b) Γ or Γc = SC(G;G∗, G∗, {1G}), p = 2.

(c) Γ or Γc = BCay(G, {1G}), p = 2.

(d) Γ or Γc ∼= Γ1 + Γ2, where Γi are two non-isomorphic Cayley graphs of order p,
Aut(Γ) ∼= Aut(Γ1)×Aut(Γ2) and p > 2.
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(e) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= pK2, in which case Aut(Γ) ∼= Sp
and p > 3.

(f) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= B(PG(n, q)) where p = qn−1
q−1 , in

which Aut(Γ) = PΣL(n, q) and p > 3.

(g) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= B(H(11)), in which case Aut(Γ) ∼=
PSL(2, 11) and S = {x, x3, x4, x5, x9}, p = 11.

(h) Γ or Γc ∼= 2pK1, pK2 or 2X, where X is connected Cayley graph of order p and
p > 2.

(i) Γ or Γc ∼= P , where P is the Petersen graph, p = 5.

(j) Γ or Γc ∼= Y [2K1], where Y is a Cayley graph of order p and p > 2.

(k) Γ or Γc ∼= B(PG(n, q)) or C(PG(n, q)) where p = qn−1
q−1 , in which Aut(Γ) =

PΓL(n, q) and p > 3.

(l) Γ or Γc ∼= B(H(11)) or C(H(11)), in which Aut(Γ) = PGL(2, 11) and p = 11,
where the incidence graph of the projective space PG(n, q) and the Hadamard
design H(11) on 11 points are denoted by B(PG(n, q)) and B(H(11)) and their
non-incidence graphs are denoted by C(PG(n, q)) and C(H(11)), respectively.

2. Preliminaries

In this section we recall some preliminaries and results which are used in the proof of
Theorem 1.1. Let Γ = SC(G;R,L, S) and X be the set of all maps ψ : V (Γ)→ V (Γ),
where (x, 1)ψ = (xσ, 1) and (x, 2)ψ = (gxσ, 2), for some g ∈ G and σ ∈ Aut(G) such
that Rσ = R, Lσ = g−1Lg, and Sσ = g−1S. Also, let Y be the set of all maps
ϕ : V (Γ)→ V (Γ), where (x, 1)ϕ = (xθ, 2) and (x, 2)ϕ = (hxθ, 1), for some h ∈ G and
θ ∈ Aut(G) such that Rθ = L, Lθ = h−1Rh and Sθ = h−1S−1 with the convention
that if one of the pair sets R,L is empty and the other is non-empty or S = ∅, we
put Y = ∅. Also if in the above equalities, one of the subsets is empty, then we omit
the equality including it. The structure of normalizer of RG in Aut(Γ) is determined
in [1] as follows:

Theorem 2.1. ([1, Theorem 1]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph over
a group G, and X,Y be the sets defined above. Then NAut(Γ)(RG) = ZRG, where
Z = X ∪ Y . Furthermore, RG ∩ Z = {1G}.

Proposition 2.2. ([1, Proposition 2]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph
over G. Then

(1) RG EAut(Γ) if and only if Aut(Γ) = ZRG,
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(2) if RG E Aut(Γ), then Aut(Γ)(1,1) = X and the converse holds if Aut(Γ) is not
transitive on V (Γ).

Corollary 2.3. ( [1, Corollary 3.2]) Let Γ be a normal semi-Cayley graph over
a group G such that Aut(G) is solvable. Then Aut(Γ) is solvable. In particular,
the automorphism group of every normal semi-Cayley graph over a cyclic group is
solvable.

The symmetry structure of bicirculants over a group of prime order is fully given
in [9]. We collect its result as follows. Note that in the following theorem the lexi-
cographic product and the disjoint union of graphs Γ1 and Γ2 are denoted by Γ1[Γ2]
and Γ1 + Γ2, respectively.

Theorem 2.4. ([9, Theorem 2.1, Theorem 2.2]) Let Γ be a bicirculant over a group
G = 〈x〉 of prime order p. Then one of the following occurs.

(1) Γ or Γc = SC(G;R,L, ∅) ∼= Cay(G,R) + Cay(G,L), where Cay(G,R) and
Cay(G,L) are two non-isomorphic Cayley graphs of order p and Aut(Γ) ∼=
Aut(Cay(G,R))×Aut(Cay(G,L)).

(2) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= pK2, in which case Aut(Γ) ∼= Sp.

(3) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= B(PG(n, q)), where p = qn−1
q−1 , in

which case Aut(Γ) = PΣL(n, q).

(4) Γ or Γc = SC(G;G∗, ∅, S) and BCay(G,S) ∼= B(H(11)), in which case Aut(Γ) ∼=
PSL(2, 11) and S = {x, x3, x4, x5, x9}, p = 11.

(5) There exists σ ∈ Aut(Γ) such that Aut(Γ) = RGo〈σ〉 ∼= ZpoZd, where d divides
p− 1 (for more details about the map σ and the structure of Γ, see [9, Theorem
2.1(iii)]).

(6) Γ or Γc ∼= 2pK1, pK2 or 2X, where X is a connected Cayley graph of order p.

(7) Γ or Γc ∼= P , where P is the Petersen graph.

(8) Γ or Γc ∼= Y [2K1], where Y is a Cayley graph.

(9) Γ or Γc ∼= B(PG(n, q)) or C(PG(n, q)), where p = qn−1
q−1 , in which Aut(Γ) =

PΓL(n, q).

(10) Γ or Γc ∼= B(H(11)) or C(H(11)), in which case Aut(Γ) = PGL(2, 11).

(11) There exist α, σ ∈ Aut(Γ) such that Aut(Γ) = 〈α〉o 〈σ〉 ∼= Z2p oZd, where d is
a divisor of p− 1 and ρx = αp−1, where RG = 〈ρx〉 (for more details about the
maps α and σ and the structure of Γ, see [9, Theorem 2.2(v)]).

(12) There exists ω ∈ Aut(Γ) such that Aut(Γ) = RG o 〈ω〉 (for more details about
the map ω and the structure of Γ, see [9, Theorem 2.2(vi)]).
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Remark 2.5. In Theorem 2.4, all graphs other than (1)–(5) are vertex-transitive.
Also in all cases other than (1) and (6), Γ and Γc are both connected. Moreover, in
the cases (8)–(12), Γ is imprimitive and in case (8), Γ has only 2-blocks and in the
cases (9)–(12), Γ has at least one p-block (see the proofs of Theorems 2.1 and 2.2
of [9] for more details).

3. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. Let Γ = SC(G;R,L, S) be a bicirculant over
a group G = 〈x〉 of prime order p. We denote the vertex set and the automorphism
group of Γ by V and A, respectively. Also we assume that X is the set defined in
Theorem 2.1.

Proof. Suppose that Γ is non-normal. Then Γ is one of the twelve graphs given in
Theorem 2.4. In the cases (5) and (12), Γ is normal. Also, in the case (11), 〈α〉 is a
normal subgroup of A and RG is a characteristic subgroup of 〈α〉, which means that
RG EA, i.e. Γ is normal. So Γ is one of the graphs (1)–(4) or (6)–(10).

First we assume that p = 2 and G = 〈x〉 ∼= Z2. Then Γ has 4 vertices and
R,L ∈ {∅, {x}}, and S ∈ {∅, {1}, {x}, G}. By considering all possibilities of R, L and
S, since Γ is non-normal, we have one of the following cases:

(a) Γ or Γc = SC(G,G∗, G∗) ∼= K4,

(b) Γ or Γc = SC(G,G∗, G∗, {1G}),

(c) Γ or Γc = SC(G, ∅, ∅, {1G}).

Now suppose that p > 2. First, let Γ be a graph of type (1), i.e. Γ = SC(G;R,L, ∅) =
Γ1 + Γ2, where Γ1

∼= Cay(G,R) and Γ2
∼= Cay(G,L). We claim that Γ is non-

normal. Let B = Aut(Γ1) and C = Aut(Γ2). Then A = B × C. Without loss of
generality, we may assume that V (Γ1) = G × {1} and V (Γ2) = G × {2}. By [5,
Exercise 14.13], B � Zp. Hence B(1,1) 6= 1B . Choose an element ϕ ∈ B(1,1) \ {1B}.
Then (ϕ, 1C) ∈ A(1,1). Suppose, contrary to our claim, that Γ is normal. Then
by Proposition 2.2, there exist σ ∈ Aut(G) and g ∈ G such that for all x ∈ G,
(x, 1)ϕ = (xσ, 1) and (x, 2)1C = (gxσ, 2). The second equation implies that g = 1G
and σ = 1Aut(G). Hence ϕ = 1B , a contradiction.

Now let Γ be a graph of type (6) or (7). Then Γ is primitive, by Remark 2.5, and
so by [3, Theorem 1.6A(v)], Γ is non-normal. If Γ is of type (8), then by Remark 2.5
and [3, Theorem 1.6A(i)], Γ is non-normal. In the cases (4) and (10), since PSL(2, 11)
and PGL(2, 11) are not solvable, by Corollary 2.3, Γ is non-normal.

Finally, we examine the remaining graphs Γ of types (2), (3) and (9). First note
that if Aut(Γ) ∼= S3, then Γ is normal. Hence Aut(Γ) � S3. In the cases (3) and (9),

p = qn−1
q−1 is a prime. If p = 3, then n = q = 2 and PΓL(n, q) ∼= PΣL(n, q) ∼= S3,

contradicting the non-normality of Γ. Hence p > 3. Since Sp has no normal subgroup

of order p, the graph (2) is non-normal. In the cases (3) and (9), p = qn−1
q−1 is a prime
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and the assumption p > 3 implies that (n, q) 6= (2, 2). Since qn−1
q−1 is a prime, we

conclude that (n, q) 6= (2, 2), (2, 3). Since PG(n, q) and PSL(n, q) are solvable only
when (n, q) ∈ {(2, 2), (2, 3)}, and PGL(n, q) and PSL(n, q) are isomorphic to a normal
subgroup of PΓL(n, q) and PΣL(n, q), respectively, we conclude that PΓL(n, q) and
PΣL are not solvable and so the graphs of type (3) and (9) are non-normal, by
Corollary 2.3. We have showed that in the case p > 3, the graphs (2), (3) and (9) are
non-normal, which completes the proof. �
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