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Abstract. In 1952, S.C. Kleene introduced a Gentzen-type system G3 which is designed
to be suitable for showing that the given sequents (and consequently the corresponding
formulae) are unprovable in the intuitionistic logic. We show that some classes of predicate
formulae are unprovable in the intuitionistic predicate calculus, using the system G3 and
some properties of sequents that remain invariant throughout derivations in this system.
The unprovability of certain formulae obtained by Kleene follows from our results as a
corollary.

1. Introduction

A. Heyting [4] proved that the formula

¬¬∀x(A(x) ∨ ¬A(x)) (1)

is unprovable in intuitionistic logic. S. C. Kleene [5] and D. Nelson [10], showed
unprovability of the formula (1) using the notion of “recursive realisability”. Later,
Kleene [6] announced a different and completely elementary method of establishing the
unprovability of certain formulae within the intuitionistic predicate calculus. Among
them is the formula (1), but also some others, e.g.

∀x(A ∨B(x))→ (A ∨ ∀xB(x)). (2)

Essentially, the main tool used in this method is the cut-elimination theorem (or
Gentzen’s Hauptsatz, see [2]). Kleene [6] explains:

In attempting to find a proof in Gentzen’s normal form (slightly modified
for convenience) for a formula of the predicate calculus, one may actu-
ally find a proof, or one may be able to demonstrate some feature of the
situation which shows that there cannot be any.

Kleene [7], elaborated this method in detail by introducing a Gentzen-type system
G3, in which the structural inference figures are not counted as separate inferences.
He gave a motivation behind this system:
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The system G3 is designed to minimize the number of choices of premise(s)
for a given conclusion, when we are attempting to exhaust the possibilities
for proving a given endsequent, especially in showing the endsequent to
be unprovable.

Another similar applications of Gentzen’s Hauptsatz can be found in the book [1]
by H. B. Curry. A. Mostowski [9] demonstrated unprovability of (2) (and many other
formulae), by an interpretation of the intuitionistic predicate calculus in terms of
“complete Brouwerian” lattices.

In this paper, we generalize the method that Kleene used to show unprovability of
the formulae (1) and (2). As a result, we obtain some wider classes of formulae which
are unprovable in intuitionistic logic. Then, the unprovability of the formulae (1)
and (2) follows from our results as a corollary.

2. Notation and background

Recall that a sequent is a formal expression of the form A1, . . . , Al ` B1, . . . , Bm

where l,m ≥ 0 and A1, . . . , Al, B1, . . . , Bm are formulas. The part A1, . . . , Al is the
antecedent, and B1, . . . , Bm the succedent of the sequent A1, . . . , Al ` B1, . . . , Bm. In
this paper, sequents are restricted to succedents with at most one formula occurrence,
what is characterisation of the intuitionistic logic (see [2]).

In order to talk about the system G3, let us say a few words about the systems
G1 and G2. The system G1 was introduced (under the name LJ) by Gentzen [2].
The system G2 is derived from G1 by replacing the structural rule “cut” with the
rule “mix”. The system G3, which is suitable for showing the unprovability of some
sequents was introduced by Kleene and it was obtained from G1 by rejecting the
structural rules and introducing some changes in the logical rules. Kleene [7] showed
equivalence between the systems G1 and G3.

Postulates for the intuitionistic formal system G3:

Axiom schema: A,Γ ` A

Logical rules:

A,A ∧B,Γ ` Θ

A ∧B,Γ ` Θ
∧`

B,A ∧B,Γ ` Θ

A ∧B,Γ ` Θ
∧`

A,A ∨B,Γ ` Θ B,A ∨B,Γ ` Θ

A ∨B,Γ ` Θ
∨`

A→ B,Γ ` A B,A→ B,Γ ` Θ

A→ B,Γ ` Θ
→`

¬A,Γ ` A
¬A,Γ ` Θ

¬`

Γ ` A Γ ` B
Γ ` A ∧B

`∧

Γ ` A
Γ ` A ∨B

`∨
Γ ` B

Γ ` A ∨B
`∨

A,Γ ` B
Γ ` A→ B

`→

A,Γ `
Γ ` ¬A

`¬
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F (t),∀xF (x),Γ ` Θ

∀xF (x),Γ ` Θ
∀ `

F (a),∃xF (x),Γ ` Θ

∃xF (x),Γ ` Θ
∃`

Γ ` F (a)

Γ ` ∀xF (x)
`∀

Γ ` F (t)

Γ ` ∃xF (x)
`∃

The rules ` ∀ and ∃ ` have restriction on variables: The variable a of the postulate
shall not occur free in its conclusion.

Logical rules we also call “rules of inference”,“inference figures” or just “rules”.
Sequents above the line are the premises, while the sequent bellow the line is the
conclusion. If a rule has two premises, we call it a two-premise rule. The logical rules
constitute introductions of a logical symbol, but sometimes in the succedent (right
column), and sometimes in the antecedent (left column). The formula in which the
logical symbol is introduced is called the principal formula.

A proof is a finite sequence of one or more sequents such that each sequent of the
sequence is either an axiom or an immediate consequence of preceding sequents of the
sequence. A proof is said to be a proof of its last sequent, and this sequent is said to
be provable. We will use a proof in a tree form: the premises for each inference are
written immediately over the conclusion, and no sequent serves as a premise for more
than one inference. A root sequent is a sequent that is not a premise of any inference
in the proof.

Definition 2.1. Two sequents, Γ ` Θ and Γ′ ` Θ′ are cognate if exactly the same
formulae occur in Γ (in Θ) as in Γ′ (in Θ′).

For the system G3 any application of a logical rule will remain an application of the
same logical rule when any sequent is replaced by a cognate sequent.

Definition 2.2. A proof in G3 is irredundant, if it contains no pair of cognate se-
quents in the same branch.

From now on, we consider only irredundant proofs. Hence, if we search for a proof
of a sequent, we are searching for an irredundant proof.

Recall that the formulae that may have arisen in the course of the construction
of a formula, including that formula itself, are called subformulae. For example, the
subformulae of A ∨ ∀xB(x) are A,∀xB(x), A ∨ ∀xB(x) as well as all formulae of the
form B(y), where y represents any free variable. When A is a subformula of B, we
say also that B contains A. Now, we define a subformula of the antecedent.

Definition 2.3. Let Γ ` D be a sequent. We say that A is a subformula of the
antecedent Γ if A is a subformula of some formula in Γ.

3. Two results about unprovability

Let F be a propositional formula unprovable in intuitionistic logic, and let F (x) be the
formula obtained from F by replacing each propositional letter by an atomic formula
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with one and the same free variable x. Let F (a) be the result of the replacement of x
by a in F (x), and for an arbitraty sequence Γ(x) of subformulae of F (x), let Γ(a) be
the result of the replacement of x by a in every formula of Γ(x). For k ≥ 0, let us call
a sequent of the form ¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` ∀xF (x) an expanding sequent,
where ai 6= aj for i 6= j and i, j ∈ {1 . . . k}.

Lemma 3.1. Every G3 proof of an expanding sequent contains an expanding sequent
properly above the root sequent.

Proof. Suppose that the sequent ¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` ∀xF (x) has a proof.
We want to show that at least one branch in that proof has an expanding sequent
properly above the root sequent. Consider the last rule in the proof. If the principal
formula of this rule is in Γi(ai), for some 1 ≤ i ≤ k, then the premises of this rule
will be expanding sequents. Note that the formula ¬∀xF (x) cannot be a principal
formula of the last rule, because we will get an irredundant proof – the premise will
be the same as the conclusion.

If the last rule is ` ∀, then the first step of the proof will be:

2
1

¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` F (ak+1)
` ∀

¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` ∀xF (x)

where ak+1 6= ai, for all 1 ≤ i ≤ k. The formula F (ak+1) is not an atomic formula –
otherwise, for all 1 ≤ i ≤ k, sequence Γi is empty and the root sequent is unprovable.

In order to define a branch with the desired property, we have to choose a premise
every time when we pass through a two-premise rule. Let us assume that Γ,∆(a) `
Θ(a) is the last chosen sequent in our branch, where ∆(a) ` Θ(a) is unprovable intu-
itionisticaly, Θ(a) is either empty or it is a subformula of F (a), ∆(a) is either empty
or it is a sequence of subformulae of F (a) and Γ contains ¬∀xF (x) and subformulae
of F (ai), 1 ≤ i ≤ k, and ai 6= a.

1) If the last rule by which we obtain Γ,∆(a) ` Θ(a) is ` ∧, then Θ(a) is of the form
F1(a) ∧ F2(a). We know that either ∆(a) ` F1(a) or ∆(a) ` F2(a) is unprovable,
otherwise the sequent ∆(a) ` Θ(a) would be provable. Therefore, in the inference

Γ,∆(a) ` F1(a) Γ,∆(a) ` F2(a)
` ∧

Γ,∆(a) ` F1(a) ∧ F2(a)

we choose the left premise if ∆(a) ` F1(a) is unprovable, otherwise we choose the
right premise.

2) If the last rule is→`, then either Γ contains a formula of the form F1(b)→ F2(b),
where b = ai, for some i, 1 ≤ i ≤ k, or ∆(a) contains F1(a)→ F2(a). In the inference:

F1(b)→ F2(b),Γ′,∆(a) ` F1(b) F2(b), F1(b)→ F2(b),Γ′,∆(a) ` Θ(a)
→`

F1(b)→ F2(b),Γ′,∆(a) ` Θ(a)

where Γ′ is obtained from Γ by excluding F1(b)→ F2(b), we choose the right premise,
while in the inference:
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F1(a)→ F2(a),Γ,∆′(a) ` F1(a) F2(a), F1(a)→ F2(a),Γ,∆′(a) ` Θ(a)
→`

F1(a)→ F2(a),Γ,∆′(a) ` Θ(a)

where ∆′(a) is obtained from ∆(a) by excluding F1(a) → F2(a), we choose the left
premise if F1(a)→ F2(a),∆′(a) ` F1(a) is unprovable, otherwise we choose the right
premise.

3) If the last rule is ∨ `, then either Γ contains a formula of the form F1(b) ∨ F2(b),
where b 6= a, or ∆(a) contains F1(a) ∨ F2(a). In the inference:

F1(b),Γ′,∆(a) ` Θ(a) F2(b),Γ′,∆(a) ` Θ(a)
∨ `

F1(b) ∨ F2(b),Γ′,∆(a) ` Θ(a)

where Γ′ is obtained from Γ by excluding F1(b) ∨ F2(b), we can choose any of the
premises, while in the inference:

F1(a), F1(a) ∨ F2(a),Γ,∆′(a) ` Θ(a) F2(a), F1(a) ∨ F2(a),Γ,∆′(a) ` Θ(a)
∨ `

F1(a) ∨ F2(a),Γ,∆′(a) ` Θ(a)

where ∆′(a) is obtained from ∆(a) by excluding F1(a) ∨ F2(a), we choose the left
premise if F1(a), F1(a) ∨ F2(a),∆′(a) ` Θ(a) is unprovable, otherwise we choose the
right premise.

Note that every sequent in our branch is not an axiom. In the case of an one-
premise rule, whose conclusion is Γ,∆(a) ` Θ(a) it is easy to show that the premise is
not an axiom. For example, if this rule is `→, then Θ(a) is of the form F1(a)→ F2(a).
Then the premise is of the form F1(a),Γ,∆(a) ` F2(a), where F1(a),∆(a) ` F2(a) is
unprovable. The premise is not an axiom, because Γ does not contain F2(a). In the
case of a two-premise rule, our choice of a premise guarantees that it is not an axiom.

Consider our branch after application of r − 2 rules of the form ` ¬, ` ∨, ` ∧,
`→, ¬ `, ∨ `, ∧ `, →`, where ¬∀xF (x) is not a principal formula.

r
...

2

1

¬∀xF (x),Γ′
1(a1), . . . ,Γ′

k(ak),Γ(ak+1) ` G(ak+1)

Π
¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` F (ak+1)

¬∀
¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` ∀xF (x).

The sequence Γ(ak+1) is the sequence of subformulae of F (ak+1) and G(ak+1) is
subformula of F (ak+1).

Since the sequent at the r-th line is not an axiom at some point the rule ¬ ` tied
to ¬∀xF (x) must be used. Suppose that the rth rule is ¬ ` whose principal formula
is ¬∀xF (x):
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r + 1

r
...

2

1

¬∀xF (x),Γ′
1(a1), . . . ,Γ′

k(ak),Γ(ak+1) ` ∀xF (x)
¬ `

¬∀xF (x),Γ′
1(a1), . . . ,Γ′

k(ak),Γ(ak+1) ` G(ak+1)

Π
¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` F (ak+1)

` ∀
¬∀xF (x),Γ1(a1), . . . ,Γk(ak) ` ∀xF (x).

The sequent in the line r + 1 is an expanding sequent.

Corollary 3.2. Every expanding sequent is unprovable intuitionisticaly.

Proof. From Lemma 3.1 it follows that every proof of such a sequent contains an
infinite branch. �

Corollary 3.3. The formula ¬¬∀xF (x) is unprovable intuitionisticaly.

Proof. We attempt to construct an irredundant proof of ` ¬¬∀xF (x) in the intuition-
istic system G3 as follows:

3
2
1

¬∀xF (x) ` ∀xF (x)
¬ `

¬∀xF (x) `
` ¬

` ¬¬∀xF (x).
Note that the sequent in line 3 is an expanding sequent. Hence, by Corollary 3.2, the
formula ¬¬∀xF (x) is unprovable. �

Remark 3.4. Since p ∨ ¬p is unprovable in intuitionistic propositional calculus, for
propositional letter p, we obtain directly from Corollary 3.3 that the formula (1) is
unprovable intuitionisticaly. Similarly, using Corollary 3.3, we can find many other
formulae, which are provable in the classical sense, but are unprovable intuitionisticaly,
e.g.

¬¬∀x(¬¬A(x)→ A(x)),

¬¬∀x((A(x)→ B(x)) ∨ (B(x)→ A(x))),

whereA(x) andB(x) are atomic formulae. All formulae that are unprovable intuitioni-
sticaly by Corrolary 3.3 are formulae of the monadic fragment of first-order intuition-
istic logic, but note that this fragment is undecidable (see [8]).

The rest of this section is devoted to the second unprovability result. We start
with some auxiliary notions.

Definition 3.5. We say that a sequent Γ ` D is disjunctively balanced if the following
holds:
(D1) there is the same number k > 0 of appearances of the connective ∨ in Γ and
D, and all disjuncts in Γ are atomic formulae;

(D2) if A is a subformula of both Γ and D, then A is a disjunct of a subformula of Γ;

(D3) the multiset of all disjuncts in Γ can be partitioned into two disjoint multisets
A and B each of which contains exactly one element from each disjunction;
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(D4) the multiset of all disjuncts in D can be partitioned into two multisets C and D
each of which contains exactly one element from each disjunction. Moreover, A = C
and B ∩ D = ∅.

Remark 3.6. Without loss of generality, for a disjunctively balanced sequent Γ ` D,
we may assume that A1∨B1, . . . , An∨Bn are the disjunctions of its antecedent, while
A1 ∨ C1, . . . , An ∨ Cn are the disjunctions in its succedent. Here, Ai 6= Bj 6= Ck for
all i, j, k ∈ {1, . . . , n}. In the sequel, we assume that a disjunctively balanced sequent
Γ ` D is of that form.

Definition 3.7. Let Γ ` D be disjunctively balanced sequent. Let ∆ be a sequence
of subformulae of Γ, and E be some subformula of D. We say that the sequent ∆ ` E
has property λ when the following holds:
(λ1) if E contains Ai for some i ∈ {1, . . . , n}, then Ai does not occur as a formula
in ∆;

(λ2) if E = Bj for some j ∈ {1, . . . , n}, then Bj does not occur as a formula in ∆.

Definition 3.8. Let Γ ` D be a disjunctively balanced sequent. Suppose that the
following holds:
(S1) for every conjunction that is a subformula of Γ, we have that both its conjuncts
are different from Ai, Bi, for all i ∈ {1, . . . , n};

(S2) for every conjunction that is a subformula of E, we have that at least one of its
conjuncts is different from Bi, for all i ∈ {1, . . . , n};

(S3) for every subformula of Γ of the form ∀xF (x) and for every term t, formula
F (t) is different from Ai, Bi, for all i ∈ {1, . . . , n};

(S4) for every subformula of D of the form ∃xG(x) and for every term t, formula
G(t) is different from Bi, for all i ∈ {1, . . . , n}.
Then we say that the sequent Γ ` D is strongly disjunctively balanced.

Theorem 3.9. Let Γ ` D be strongly disjunctively balanced sequent which has prop-
erty λ, and Γ, D contain no logical symbols except ∧,∨,∀ and ∃. Then, the sequent
Γ ` D is unprovable intuitionisticaly.

Proof. We attempt to construct a proof of the sequent Γ ` D in the system G3. The
only rules we can apply in this proof are ∧ `, ` ∧, ∨ `, ` ∨, ∀ `, ` ∀, ∃ ` and
` ∃. Let ∆ ` E be an arbitrary sequent which appears in the proof tree. Note that
we have the following subformula property : all formulae which occur in ∆ must be
subformulae of Γ, and E must be a subformula of D.

From (D2) we can conclude that the only possible axiomatic sequents in the
proof are either of the form Ai,Γ ` Ai or Bi,Γ ` Bi, 1 ≤ i ≤ n. Note that whenever
two-premise rules ∨ ` and ` ∧ are applied, the proof tree will branch.

We show that there always exists at least one branch, called a designated branch,
that cannot be terminated by an axiom. It is defined by specifying the premises of
the applications of the rules ∨ ` and ` ∧. Let us consider first ∨ `. Because of the
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subformula property, the principal formula for the ∨ ` must be Ai ∨ Bi, for some
i ∈ {1, . . . , n}, so we have the following inference figure

Ai, Ai ∨Bi,∆ ` E Bi, Ai ∨Bi,∆ ` E
Ai ∨Bi,∆ ` E.

If the formula E contains Ai, then the premise containing Bi (which we shall call des-
ignated premise) belongs to the designated branch. Otherwise, the premise containing
Ai belongs to the designated branch.

For the rule ` ∧, let F1 ∧ F2 be the principal formula, and let

∆ ` F1 ∆ ` F2

∆ ` F1 ∧ F2

be the corresponding inference figure. From (S2) we know that either F1 or F2 is
different from Bi, for every 1 ≤ i ≤ n. Now, we shall choose for the designated
premise the sequent whose succedent is different from Bi.

It remains to prove that every sequent in the designated branch has property λ,
which will mean that designated branch cannot be terminated by an axiom (since
we can easily see that the axioms Ai,Γ ` Ai and Bi,Γ ` Bi for 1 ≤ i ≤ n do not
have the property λ). Note that the sequent Γ ` D has the property λ according to
the conditions of the theorem. Further, we shall show that all the mentioned rules of
inference preserve property λ in the sense that if the conlusion of the inference has
property λ, so does the premise (or in the case of rules ∨ ` and ` ∧ the designated
premise). Now we shall consider eight cases, one for each rule of inference. Below, ∆
will always denote some sequence of subformulae of Γ, and E will be some subformula
of D.

1) Let the inference figure be

F1, F1 ∧ F2,∆ ` E
F1 ∧ F2,∆ ` E

∧` or
F2, F1 ∧ F2,∆ ` E
F1 ∧ F2,∆ ` E.

∧`

Since the sequent Γ ` D satisfies the condition (S1), we can easily see that the
property λ is preserved in both of previous inferences.

2) Suppose that we have the following inference figure

∆ ` F1 ∆ ` F2

∆ ` F1 ∧ F2.
`∧

Since both F1 and F2 are subformulae of F1 ∧ F2, the condition (λ1) is trivially
satisfied for the both premises, and (λ2) is satisfied by our previous choice of the
designated premise.

3) Consider the following inference figure

Ai, Ai ∨Bi,∆ ` E Bi, Ai ∨Bi,∆ ` E
Ai ∨Bi,∆ ` E.

∨`

Now, if E does not contain Ai, we choose the left premise for the designated one, and
then the condition (λ2) is obviously satisfied. The condition (λ2) holds because if
E = Bj for some j ∈ {1, . . . , n}, then E 6= Ai, by the initial assumptions on Ai’s, Bi’s
and Ci’s. If E contains Ai, we choose the right premise to be the designated and again
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we see that the condition (λ1) is apparently satisfied. Let’s prove that the condition
(λ2) is satisfied, too. Suppose that E = Bj for some j ∈ {1. . . . , n}. It follows that
Ai is the subformula of Bj , and since Ai and Bj are atomic formulae, by (S2), we
conclude that Ai = Bj , which is the contradiction to the starting hypotheses. Thus,
E 6= Bj for all j ∈ {1, . . . , n}, which means that the condition (λ2) is immediately
satisfied.

4) Let the inference figure be

∆ ` Ai

∆ ` Ai ∨ Ci
`∨ or

∆ ` Ci

∆ ` Ai ∨ Ci.
`∨

We see that in both cases the condition (λ1) obviously holds, and (λ2) is satisfied
because Ai 6= Bj 6= Ck for all i, j, k ∈ {1, . . . , n}. Therefore, the property λ is
preserved.

5) If the inference figure is

F (t),∀xF (x),∆ ` E
∀xF (x),∆ ` E,

∀`

we see, from the condition (S3), that the property λ is preserved.

6) Suppose that we have the following inference figure

∆ ` F (a)

∆ ` ∀xF (x).
`∀

By the restriction on variables for the ` ∀, the variable a of the side formula F (a) must
be a variable not occuring in the antecedent, which assures that the condition (λ2)
holds, and the property λ is preserved.

7) If the inference figure is

F (a),∃xF (x),∆ ` E
∃xF (x),∆ ` E,

∃`

property λ is again preserved, which follows in a similar way like in previous case,
because of the restriction on variables.

8) Finally, consider the following inference figure

∆ ` F (t)

∆ ` ∃xF (x).
`∃

Because of (S4), we see that the condition (λ2) is satisfied, and consequently, prop-
erty λ is again preserved.

Remark 3.10. It is easy to check that the sequent ∀x(A∨B(x)) ` A∨∀xB(x) satisfies
the conditions of Theorem 3.9, which instantly means that the formula (2) is unprov-
able intuitionisticaly. Similarly, using Theorem 3.9, we can show that many other
formulae, which are provable classically, are unprovable in intuitionistic logic, e.g.

∃x∀y((A ∨B(x, y)) ∧ (C ∨D(x, y)))→ ((A ∨ ∃x∀yB(x, y)) ∧ (C ∨ ∃x∀yD(x, y))),

where A,B(x, y), C and D(x, y) are atomic formulae.
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