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Abstract. Topology is a strong root for constructs that can be helpful to enrich the
original model of approximation spaces. This paper introduces closure spaces on rough sets
via a proximity relation on approximation spaces. We have used rough proximity to define
the nearness between rough sets. Some results have been proved in this advanced nearness
structure named Čech rough proximity. Examples are given to illustrate the proposed ap-
proach. Finally, an application of the theory is presented to demonstrate the fruitfulness of
this new structure.

1. Introduction

The theory of rough sets is motivated by practical needs in classification, concept for-
mation, and data analysis with insufficient and incomplete information. Pawlak [12]
introduced rough set theory in 1982. The idea of the theory turned out to be ex-
tremely useful in practice and an excellent tool to handle the granularity of data.
Many real-life applications of this concept have been implemented in various fields
such as civil engineering [2], pharmacology [7], medical data analysis [13], image pro-
cessing [24], and many more. In recent years, there has been a fast growing interest
in this emerging theory.

There is a close homogeneity between rough set theory and general topology.
Topology is a rich source for constructs that can be helpful to enrich the original
model of approximation spaces. So the combined study of rough set theory and
topology becomes essential (see [20, 23]). The central idea of the rough set theory is
given by two forms of approximation, namely lower and upper approximation, which
correspond to the interior and closure operators, respectively.

Topological spaces are axiomatized using the concept “a point is near to a set”.
Proximity structures [10] are finer than topology and are based on the concept “one
set is near to another set”. Every proximity induces a unique topology. Proximity
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structures and rough sets together have many applications in the field of image anal-
ysis [18]. Peters et al. [14] studied the nearness structures and their properties in
the context of rough set theory and used these structures to recognize similar objects
based on the detection of patterns in pairs of images. The authors established an
extension of approximation spaces introduced by Pawlak as well as generalized ap-
proximation spaces based on the introduction of a nearness relation. In [5], Henry
and Peters introduced a new form of a classifier based on approximation spaces in
the context of near sets for use in pattern recognition. In [16], Peters used proximity
structures in forgery detection and the study of microfossils, while in [17] he utilizes
the feature values of objects to define the nearness of objects and, consequently, clas-
sify the universal set with respect to the available information of the objects. The
author studied the generalized approximation spaces based on such nearness rela-
tions, which provides the possibility of measuring our knowledge about objects based
on the perception of the nearness of objects classified using attributes or features. In
another article [15], Peters et al. discussed that two sets might also be treated as near
to each other if their upper approximations intersect. That is, the nearness of two sets
may depend on the nearness relation between their respective upper approximations.
This motivates us to redefine proximity between two sets using the concept of rough
distance between their respective upper approximations in an approximation space.
Biswas [3] gave the idea of rough distance.

Proximity spaces [6, 10] and Čech closure spaces [4] are closely related and to-
gether form the field of interest of many researchers. Both of them are extensions of
topological spaces. Every basic proximity structure induces a Čech closure operator
(see also [8, 10]). In [21], Thron used the theory of convergence of grills to discuss
the compactness of closure spaces. In this article, we axiomatize the rough proximity
relation on approximation spaces and call them Čech rough proximity spaces. The
co-relation between Čech rough proximity spaces and Čech rough closure spaces is
studied. These structures are very helpful in describing and comparing visual objects
such as paintings or digital images. An example in support of this approach is also
discussed in this paper. We show that the category of Čech rough proximity spaces
and rough proximal maps is a super category of the category of pseudo metric spaces
and nonexpansive maps and the category of rough pseudo metric spaces and rough
nonexpansive maps.

This paper is organized as follows. In Section 2, there are some basic definitions
and results on proximity spaces, closure spaces and rough set theory, necessary for
the development of further sections of the paper. In Section 3, we define the Čech
rough proximity relation on an approximation space. Some properties of Čech rough
proximity spaces and their relation with Čech rough closure spaces are studied. Ex-
amples are given to support the theory. In the last section, we discuss an application
of the theory developed in this paper.
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2. Preliminary and basic results

When a set of attributes portrays objects of a universe, one may characterize the
indiscernibility of objects dependent on their attribute values. If the same values
characterize two objects on specific attributes, they are said to be indistinguishable
or equivalent. Set of all objects with the same description form an equivalence class.
Concerning equivalence classes, a subset of the universe may be approximated by
two subsets: Upper and lower approximations of the subset. They can be formally
described by a pair of unary set-theoretic operators [12]. The classical rough set
theory is based on equivalence relations.

It is quite interesting to comprehend these concepts to the case of more general
relations because sometimes it is difficult to use Pawlak’s rough set theory due to
limitations of equivalence relations in generating a granule base (neighborhood base).
Various generalized rough set models have been established, and their properties or
structures have been investigated intensively. So by applying the basic approach in
a more extensive setting, one may sum up the idea of approximation operators by
utilizing binary relations, or more simply non-equivalence relations [25]. It is very
pertinent to consider a similarity or tolerance relation, instead of an equivalence
relation for approximation space [9, 11]. In this article, our focus is towards the
study of topological aspects of approximation spaces using tolerance (reflexive and
symmetric) relations.

Throughout this paper, U denotes a non-empty set called the universe, and P(U)
denotes the power set of U . If R denotes an arbitrary relation on U then the pair
(U,R) will be called an approximation space. We will consider rough sets defined by
Yao [25]. In this section, we collect some basic definitions and results on rough sets,
Čech and Kuratowski closure operators and proximity spaces.

2.1 Rough set theory

Define a mapping R : P(U) → P(U) as R(x) = {y : xRy}; i.e., R(x) consist of all
elements of U which are related to the elements ‘x’. We may define two unary set
theoretic operators R (upper approximation) and R (lower approximation) as follows:

R(A) = {x : R(x) ∩A 6= ∅}; R(A) = {x : R(x) ⊆ A}.
A set A ⊆ U is said to be crisp if R(A) = R(A), otherwise A is rough. The table on
the next page displays the properties of lower and upper approximation operators.

If we choose R to be a reflexive relation, then R(X) ⊆ X ⊆ R(X). If R is a
symmetric relation, then X ⊆ R(R(X)); R(R(X)) ⊆ X. If R is a transitive relation,
then R(X) ⊆ R(R(X)); R(R(X)) ⊆ R(X).

Remark 2.1. Relation between R(x) and R({x}): R(x) = {y : xRy}, R({x}) =
{y : R(y)∩{x} 6= ∅}. If R is reflexive then A ⊆ R(A). So we have {x} ⊆ R({x}). Now
let z ∈ R({x}). Then R(z) ∩ {x} 6= ∅ which yields that zRx. If R is also symmetric,
then xRz means R({x}) ⊆ R(x). Thus we have R(x) = R({x}), if R is symmetric
and reflexive.
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lower approximation upper approximation

R(X) = (R(Xc))c. R(X) = (R(Xc))c.
R(U) = U . R(∅) = ∅.

R(X ∪ Y ) ⊇ R(X) ∪R(Y ). R(X ∪ Y ) = R(X) ∪R(Y ).
R(X ∩ Y ) = R(X) ∩R(Y ). R(X ∩ Y ) ⊆ R(X) ∩R(Y ).
X ⊆ Y ⇒ R(X) ⊆ R(Y ). X ⊆ Y ⇒ R(X) ⊆ R(Y ).
R(X) =

⋂
x/∈X R({x}c). R(X) =

⋃
x∈X R({x}).

Table 1: Properties of upper and lower approximation operators

Throughout this paper, we will assume R to be a tolerance relation (reflexive and
symmetric) on U . And for convenience, we will use R(x) in place of R({x}).

2.2 Proximity space

Let X be a non-empty set; a binary relation δ on P(X) is called a basic proximity if
the following axioms are satisfied, for A,B ⊂ U :
(i) AδB ⇒ BδA; (ii) (A ∪B)δC ⇔ AδC or BδC;

(iii) AδB ⇒ A 6= ∅ and B 6= ∅; (iv) A ∩B 6= ∅ ⇒ AδB.

A binary relation δ is called EF-proximity, if it is a basic proximity and additionally
satisfies the following axiom:

(v) Aδ̄B ⇒ ∃ E ⊂ X such that Aδ̄E and Bδ̄Ec.

Further, δ is called separated if the following axiom holds in addition:

(vi) {x}δ{y} ⇒ x = y.
The pair (X, δ) is called a basic (EF, separated) proximity space. Sometimes the

axiom (v) is referred as “strong axiom”. In this study, we will not consider the strong
axiom.

2.3 Closure space

A function Cl : P(U)→ P(U) is said to be Čech closure operator on U if it satisfies
the following axioms, for A,B ⊂ U :
(i) Cl(∅) = ∅; (ii) A ⊆ Cl(A); (iii) Cl(A ∪B) = Cl(A) ∪ Cl(B).

The pair (U,Cl) is said to be Čech closure space. Further, Cl is a Kuratowaski closure
operator or topological closure operator on U if it satisfies following, in addition,

(iv) Cl(Cl(A)) = Cl(A).

3. Čech rough proximity spaces

In this section, we define a rough proximity space. Some results on rough proximity
spaces are proved. Examples are constructed to support the theory of rough proximity
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spaces. Let (U,R) be a Yao’s approximation space and R be a tolerance relation on U .
For category theory, we refer to [1].

Definition 3.1 ( [22]). Let us consider an approximation space (U,R), where U is a
non-empty universe of discourse and R is an arbitrary tolerance relation. Let δR be
a relation on P(U) satisfying the following axioms, for A,B ⊂ U :
(P.1) R(A)δRR(B)⇔ R(B)δRR(A);

(P.2) (R(A) ∪R(B))δRR(C)⇔ R(A)δRR(C) or R(B)δRR(C);

(P.3) R(A)δRR(B)⇒ A 6= ∅ and B 6= ∅;
(P.4) R(A) ∩R(B) 6= ∅ ⇒ AδRB.

Then δR is called the Čech rough proximity on U and the pair (U, δR) is known
as Čech rough proximity space.

If δR satisfies the property
(P.5) If R(A)δRR(x) and R(x)δRR(B), then R(A)δRR(B),
then we will call this proximity δ1-type rough proximity on U .

And if δR satisfies property
(P.6) If R(x)δRR(y), then R(x) = R(y),
then we will call this proximity R0-type rough proximity on U .

We will use δ̄R to represent the relation “not near”, i.e., Aδ̄RB means A is not
near B or A is far from B.

Definition 3.2. Let (U,R) be an approximation space. A function ClR : P(U) →
P(U) is said to be Čech rough closure operator on U if it satisfies the following axioms,
for A,B ⊆ U :
(i) ClR(∅) = ∅; (ii) ClR(A) ⊇ R(A); (iii) ClR((A) ∪ (B)) = ClR(A) ∪ ClR(B).
The pair (U,ClR) is said to be Čech rough closure space.

Remark 3.3. Let (U,ClR) be a Čech rough closure space and let A ⊆ U . The
function ClR|A : P(A) → P(A), defined as ClR|A(B) = R(A) ∩ ClR(B), is rough
closure operators on A. The operator ClR|A is called relative Čech rough closure
operator on A induced by ClR. The pair (A,ClR|A) is said to be Čech rough closure
subspace of (U,ClR). Further, (A,ClR|A) is a closed subspace of (U,ClR) on U , if
ClR(A) = A.

Let us establish the relation between the Čech proximity relation and Čech closure
operator.

Theorem 3.4. Define the operator ClδR : P(U) → P(U) by: ClδR(A) := {x ∈ U :
R(x)δRR(A)}. Then operator ClδR is a Čech rough closure operator on U .

Proof. Let (U, δR) be a Čech rough proximity space, and let A,B ⊆ U . Then
ClδR(∅) = ∅ clearly. To prove R(A) ⊆ ClδR(A), let x ∈ R(A). Then R(R(x)) ∩
R(R(A)) 6= ∅. By (P.4), x ∈ ClδR(A). Next, x ∈ ClδR(A ∪ B) iff R(x)δRR(A ∪ B)
iff R(x)δR(R(A) ∪R(B)) iff R(x)δRR(A) or R(x)δRR(B) iff x ∈ ClδR(A) ∪ClδR(B).
Hence ClδR is a Čech rough closure operator. �
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Remark 3.5. (i) A Čech rough closure space is also a Čech closure space.

(ii) If δR also satisfies: R(ClδR(A)) δR R(ClδR(B)) ⇒ R(A)δRR(B), then ClδR (de-
fined in the above theorem) becomes a Kuratowaski closure (or a topological closure)
operator on U .

Example 3.6. Let (U,ClR) be a Čech rough closure space. Define a relation δR
on P(U) such that AδRB iff ClR(A) ∩ ClR(B) 6= ∅. Then (U, δR) is a Čech rough
proximity space.

Example 3.7. Let U = {a1, a2, . . . , a21}. Define a relation R on U such that every
element has neighborhood as shown in the following table.

x (element) R(x) (neighborhood)

a1 {a1, a2, a3, a6, a12, a18, a19}
a2 {a1, a2, a3, a6, a7, a8, a18, a19, a21}
a3 {a1, a2, a3, a8, a9, a15, a19, a20}
a4 {a4, a5, a6, a10}
a5 {a4, a5}
a6 {a1, a2, a4, a6, a7, a8, a12, a18, a20}
a7 {a2, a6, a7, a18, a21}
a8 {a2, a3, a6, a8, a9, a10, a15, a19}
a9 {a3, a8, a9, a11}
a10 {a4, a8, a10, a12, a13, a14}
a11 {a9, a11, a19, a20}
a12 {a1, a6, a10, a12, a13, a14, a19}
a13 {a10, a12, a13, a14, a20}
a14 {a10, a12, a13, a14, a20}
a15 {a3, a8, a15, a16, a19}
a16 {a15, a16, a19, a20}
a17 {a17, a18, a19, a21}
a18 {a1, a2, a6, a7, a17, a18, a19, a21}
a19 {a1, a2, a3, a8, a11, a12, a15, a16, a17, a18, a19}
a20 {a3, a6, a11, a13, a14, a16, a20, a21}
a21 {a2, a7, a17, a18, a20, a21}

Table 2: Neighborhoods of elements

Now define δR on P(U) as follows: AδRB iff R(A) ∩R(B) 6= ∅, A,B ⊆ U .
We can easily show that δR is a Čech rough proximity on U . Further if A =

{a5, a9}, then by definition, R(A) = {a3, a4, a5, a8, a9, a11} and ClδR(A) = {a1, a2, a3,
a4, a5, a6, a8, a9, a10, a11, a15, a19, a20}.

Then we have R(ClδR(A)) = U and R(ClδR(A)) = {a3, a4, a5, a8, a9, a11, a15}.
Thus R(ClδR(A)) 6= R(ClδR(A)) and closure of an arbitrary set need not to be crisp,
in general. Thus, the rough closure space on U consists of rough sets.
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Example 3.8. Let (U,R) be an approximation space and ClR be a Čech rough closure
operator on U and µ∗ be an outer measure [19] on U . For A,B ⊂ U , define AδRB
iff ClR(A) ∩ClR(B) 6= ∅ or µ∗(ClR(A)) ∧ µ∗(ClR(B)) > 0. Then δR is a Čech rough
proximity on U .

Biswas [3] defined rough metric on Pawlak’s approximation spaces [12] and dis-
cussed the properties of rough metric spaces. Equivalently, a rough pseudo metric on
a Yao’s approximation space can be defined as follows:

Definition 3.9 ( [3]). Let U be a non-empty set and R be a tolerance relation defined
on U . Then the function dR : U ×U → R is called a rough pseudo metric on U if the
following are true, for all x, y, z ∈ U :
(i) dR(x, y) ≥ 0; (ii) dR(x, y) = 0 if R(x) = R(y);

(iii) dR(x, y) = dR(y, x); (iv) dR(x, y) + dR(y, z) ≥ dR(x, z).
The pair (U, dR) is called a rough pseudo metric space.

Definition 3.10. Let (U, dR1
) and (V, dR2

) be two pseudo rough metric spaces. A
function f : U → V is said to be a rough nonexpansive continuous mapping if
dR2

(f(x), f(y)) ≤ dR1
(x, y), for all x, y ∈ U .

Definition 3.11. Let (U, δR1
) and (V, δR2

) be two rough proximity spaces. A func-
tion f : U → V is said to be a rough proximal mapping if R1(x)δR1

R1(y) ⇒
R2({f(x)})δR2

R2({f(y)}), x, y ∈ U .

Proposition 3.12. Let (U,R) be an approximation space, where R is a tolerance
relation and let ‘d’ be a rough pseudo metric on U . Define δR as follows:
(i) AδRB iff inf{d(a, b) : a ∈ R(A) and b ∈ R(B)} = 0, A,B ⊂ U .

(ii) AδRB iff inf{d(a, b) : a ∈ A and b ∈ B} = 0, A,B ⊂ U .
Then δR is a Čech rough proximity on U .

Remark 3.13. (1) The category of rough pseudo metric spaces and rough nonexpan-
sive maps is embedded into the category of Čech rough proximity spaces and rough
proximal maps.

(2) The category of pseudo metric spaces and nonexapnsive maps is embedded into
the category of rough pseudo metric spaces and rough nonexpansive maps (when R is
an equality relation on U , classical case). Thus, the category of Čech rough proximity
spaces and rough proximal maps is a super category of pseudo metric spaces and
nonexpansive maps.

Example 3.14. Let R be a set of all real numbers and ε > 0 be a given fixed number.
Define a binary relation R on R such that xRy iff |x−y| < ε. Clearly R is a tolerance
relation. Define δR on R as: AδRB iff inf{|x − y| : x ∈ A, y ∈ B} ≤ ε. Then the
pair (R, δR) is a Čech rough proximity space. The closure ClδR induced by this Čech
rough proximity space is a Čech rough closure operator and ClδR does not satisfies
Kuratowski closure axiom. For example, let A = (0, 1). Then ClδR(A) = (−3ε, 1+3ε)
and ClδRClδR(A) = (−6ε, 1 + 6ε). Thus ClδR(A) 6= ClδRClδR(A), in general.
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Example 3.15. Let (U,ClR1
) and (V,ClR2

) be Čech rough closure spaces. Consider
a continuous and closed function f : U → V such that y ∈ ClR2

(f(x)) ⇒ f(x) ∈
ClR2({y}), for all y ∈ V and x ∈ U . Define AδRB iff ClR2(f(A)) ∩ ClR2(f(B)) 6=
∅, A,B ⊂ U . Then δR is a Čech rough proximity on U .

Example 3.16. Let (U,R) be an approximation space and (U,ClR) be a Čech rough
closure space. Define AδRB iff R(A) ∩ ClR(B) 6= ∅ or ClR(A) ∩ R(B) 6= ∅, A,B ⊂
U . Then (U, δR) is a Čech rough proximity space. If ClR(A) = ClR(R(A)), then
ClR(A) ⊂ ClδR(A), for all A ⊆ U .

Lemma 3.17. Let (U, δR) be a Čech rough proximity space. If R(A)δRR(B) and
R(B) ⊆ R(C), then R(A)δRR(C).

Proof. Given that R(A)δRR(B) and R(B) ⊆ R(C). We may write R(C) = R(B) ∪
(R(C)−R(B)). Suppose, if possible, R(A)δ̄RR(C) that is, R(A)δ̄R(R(B) ∪ (R(C)−
R(B))) which implies R(A)δ̄RR(B) and R(A)δ̄R(R(C)−R(B)) by (P.2), which con-
tradicts the fact that R(A)δRR(B). Thus R(A)δRR(C). �

By using the above lemma, we can prove the following result, which resembles the
linearity property of Čech closure operator on the set U .

Theorem 3.18. If δR is Čech rough proximity and R(A) ⊆ R(B), then ClδR(A) ⊆
ClδR(B).

Proof. Let y ∈ ClδR(A). Then R(y)δRR(A). Suppose y /∈ A. Therefore, R(y)δRR(B),
that is, y ∈ ClδR(B). Hence ClδR(A) ⊆ ClδR(B). �

The following result finds the condition under which a Čech rough proximity space
will induce a topological space, i.e., Čech closure operator induced by a Čech rough
proximity becomes a Kuratowski (topological) closure operator.

Theorem 3.19. Let (U, δR) is an approximation space and for all A,B,C ⊆ U ,
R(A)δRR(B) and R(C)δRR({x}) for all x ∈ B ⇒ R(C)δRR(A). Then δR satisfies
the following property: R(ClδR(A))δRR(ClδR(B)) ⇒ R(A)δRR(B). Thus ClδR is a
Kuratowski closure operator on U .

Proof. Note that for A,B,C ⊆ U , R(ClδR(A))δRR(ClδR(B)) iff R((ClδR(A)−R(A))∪
R(A))δRR((ClδR(B)−R(B))∪R(B)) iff (R(ClδR(A)−R(A))∪RR(A))δR(R(ClδR(B)−
R(B)) ∪RR(B)).

Let A∼ = ClδR(A) − R(A) and B∼ = ClδR(B) − R(B) for convenience. So,
(R(A∼)∪RR(A))δR(R(B∼)∪RR(B)) implies (R(A∼)δRR(B∼) or R(A∼)δRRR(B))
or (RR(A)δRR(B∼) or RR(A)δRRR(B)). Suppose that R(A∼)δRR(B∼). Since
R(A)δRR(x) for all x ∈ A∼, therefore R(A)δRR(B∼). Similarly, R(B)δRR(y) for
all y ∈ B∼. Thus R(A)δRR(B). Further, if R(A∼)δRRR(B), then R(A)δRRR(B). If
y ∈ RR(B), then R({y})δRR(B). Hence R(A)δRR(B). Similarly, RR(A)δRR(B∼)
and RR(A)δRRR(B) also yield to R(A)δRR(B). As a consequence, we have
R(ClδR(A))δRR(ClδR(B)) ⇒ R(A)δRR(B).

Further, we will only prove that ClδRClδR(A) = ClδR(A). Let x ∈ ClδR(ClδR(A)).
Then R(x)δRR(ClδR(A)). Also for all y ∈ ClδR(A), R(y)δRR(A). So, R(x)δRR(A)
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and hence x ∈ ClδR(A). That is ClδRClδR(A) ⊆ ClδR(A). Thus ClδR is a Kuratowski
(topological) closure operator on U . �

4. Application of Čech rough proximity in comparing digital images

Here, we will discuss a visual application of of the Čech rough proximity structures.
Consider the image of a butterfly in Figure 1b. An extracted part of the using is
shown in Figure 1a, which we will consider as the universe U . Define a Čech rough
proximity on U as follows:

Example 4.1. Let U be the set of pixels in Figure 1a. Colour strength of each pixel p
can be represented by the triplet p := (pr, pg, pb), where pr, pg, pb represents the red,
green and blue intensity values of the pixel p, respectively. Each intensity value is on
a scale of 0 to 255. We have coordinates of each pixel according to its RGB value.

(a) Set of Pixels. (b) Original Picture

Figure 1: Digital Image of a Butterfly

Define a map d : U × U → R as: d(p, q) = max {|pr − qr|, |pg − qg|, |pb − qb|}.
Define a relation R on U as: p1Rp2 iff d(p1, p2) ≤ 5. Thus the neighborhood R(p)
of a pixel p is the set of all pixels which have visual distance d less than or equal to
value 5. Define AδRB iff inf{d(p, q) : p ∈ A, q ∈ B ≤ 10}. Then δR is a Čech rough
proximity on U .

Let A and B denote two sets of pixels as shown in Figure 1a. So the colour strength
of each pixel, say p, can be represented by the tuple value (pr, pg, pb), where pr, pg, pb ∈
{0, 1, 2, 3, . . . , 255}. As we choose RGB values as a feature value of elements (pixels),
so neighborhood of a given element (pixel) ‘p’ is R(p) = {x ∈ U : d(p, x) ≤ 5}.
The pixel p is very similar to each element in R(p), because the difference between
corresponding RGB values of p and any element in R(p) is less than 5. In Figure 1a,
we may see the set A and B are near as there are some elements (pixel) which look
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like same, i.e., their RGB values are very close or within the difference of 10. Also,
the sets B and C are far from each other as RGB values of every element in C have
difference more than 10 from RGB values of each element of B. So, by using this kind
of structure (or similar to this) in a given picture, we may re-design the picture on
lower resolution visual output devices. And also by using far (not near) relation δ̄R,
we may also distinguish different kind of objects in the picture on a digital platform.

4.1 Concluding remarks

The emergence of topology in the rough set theory is very helpful to get substantial
results which yield hidden relations between data. Here, we have given a brief account
of Čech closure spaces and Čech proximity spaces in the rough set theory. Čech
closure spaces are the extension of topological spaces. Čech rough proximity spaces
are the extension of rough pseudo metric spaces and pseudo metric spaces. Since
this approach to the Čech rough proximity discerns the nearness between sets in an
approximation space, therefore it may be considered as a contrivance for such studies
in the fields of information science, artificial intelligence, computer science, pattern
recognition, image processing, etc. One of the applications of the theory is also in the
syllabus of this paper. Our approach connects rough sets, closure spaces, proximity
spaces and topological spaces. There are still a number of fields which can be explored
using Čech rough proximity spaces, like, uniform spaces, merotopic spaces, etc. This
is part of our future research.
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[1] J. Adámek, H. Herrlich, Abstract and Concrete Categories, Wiley Interscience Publ., New
York, 1990.

[2] T. Arciszewski, W.P. Ziarko, Adaptive Expert System for Preliminary Design Wind Brac-
ings in Steel Skeleton Structure, Second Century of the Skyscraper, Van Nostrand Reinhold
Company, Springer, Boston, MA, 1988, 847–855.

[3] R. Biswas, Rough metric spaces, Bull. Pour. Flous. Appl., 68 (1996), 21–32.
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