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Abstract. A vague graph is a generalized structure of a fuzzy graph which gives more
precision, flexibility, and compatibility to a system when it is compared with the systems
which are designed by using fuzzy graphs. The present study aims to introduce the notion
of lexicographic min-product and max-product of two vague graphs. Then, the degree of a
vertex in the lexicographic products of two vague graphs is obtained. Finally, a relationship
is obtained between the lexicographic min-product and lexicographic max-product.

1. Preliminaries

In this section, we introduce some preliminary notions and definitions which are used
in this paper.

Let G∗ = (V,E) be a simple graph and suppose that σ and µ are two fuzzy
sets on V and E, respectively. Then G = (σ, µ) is called a fuzzy graph on G∗ if
µ(uv) 6 σ(u) ∧ σ(v), for every uv ∈ E. The degree of a vertex u of fuzzy graph
G = (σ, µ) is denoted by dG(u) and defined as dG(u) =

∑
u6=v,uv∈E µ(uv). Note that,

if the degree of a vertex of fuzzy graph G is zero, then the degree of the edge that is
connected to this vertex should be zero. Let G=(σ, µ) be a fuzzy graph on G∗. Then
G′=(σ′, µ′) is called a spanning fuzzy subgraph of G if σ=σ′ and µ′ ⊆ µ (see [10]).

A vague set A on a non-empty set X is a pair (tA, fA), where tA : X → [0, 1]
and fA : X → [0, 1] are true and false membership functions, respectively such that
0 ≤ tA(x) + fA(x) ≤ 1 for all x ∈ X. Let G∗ = (V,E) be a simple graph. Then a
vague graph on G∗ is a pair G = (A,B), where A = (tA, fA) is a vague set on V and
B = (tB , fB) is a vague set on E such that for each u, v ∈ V , tB(uv) ≤ tA(u)∧ tA(v),
fB(uv) ≥ fA(u) ∨ fA(v). The vague graph G = (A,B) on G∗ is called strong, if
for every edge uv ∈ E, tB(uv) = tA(u) ∧ tA(v) and fB(uv) = fA(u) ∨ fA(v); it is
called complete, if G∗ is complete and for every uv ∈ E, tB(uv) = tA(u) ∧ tA(v) and
fB(uv) = fA(u) ∨ fA(v). A complete vague graph with n nodes is denoted by Kn.
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44 Lexicographic product of vague graphs

Let G = (V,E) be a vague graph on G∗. If each vertex in G has the same degree
(l1, l2), then G is said to be a regular vague graph. Moreover, if each vertex in G
has the same total degree (t1, t2), then G is said to be a totally regular vague graph
(see [3, 7]).

2. Lexicographic product of vague graphs

In this section we introduce the concept of lexicographic (min)max-product of two
vague graphs. Then we get some results on connected, strong and complete lexico-
graphic (min)max-product of two vague graphs. Also degree of vertexes and edges are
studied and concept of regularity is obtained. Then we prove a relationship between
the lexicographic min-product and lexicographic max-product.

2.1 Lexicographic min-product

In this subsection, we define the notion of lexicographic min-product of two vague
graphs and provide the main results such as strongness, connectedness and regularity
on it.

Definition 2.1. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs on G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Let V = V1 × V2, E = {((u1, v1)(u2, v2)) |
(u1u2 ∈ E1, v1v2 ∈ E2) or (u1 = u2 ∈ V1, v1v2 ∈ E2) or (v1 = v2 ∈ V2, u1u2 ∈ E1)}
and G∗ = (V,E). Now we define vague sets A = (tA, fA) on V and B = (tB , fB) on
E by tA(u, v) = tA1

(u) ∧ tA2
(v), fA(u, v) = fA1

(u) ∨ fA2
(v) for all (u, v) ∈ V and

tB((u1, v1)(u2, v2)) =


tB1

(u1u2) ∧ tB2
(v1v2), if u1u2 ∈ E1, v1v2 ∈ E2

tA1(u1) ∧ tB2(v1v2), if u1 = u2 ∈ V1, v1v2 ∈ E2

tA2(v1) ∧ tB1(u1u2), if v1 = v2 ∈ V2, u1u2 ∈ E1

and fB((u1, v1)(u2, v2)) =


fB1

(u1u2) ∨ fB2
(v1v2), if u1u2 ∈ E1, v1, v2 ∈ E2

fA1
(u1) ∨ fB2

(v1v2), if u1 = u2 ∈ V1, v1v2 ∈ E2

fA2
(v1) ∨ fB1

(u1u2), if v1 = v2 ∈ V2, u1u2 ∈ E1

for any (u1, v1), (u2, v2) ∈ V . Then G = (A,B) is called the lexicographic min-product
of G1 and G2 and denoted by G = G1[G2]Lmin.

Figure 1: Vague graphs G1 and G2
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Example 2.2. Consider the vague graphs G1 and G2 in Figure 1. Then we can
see that the lexicographic min-product of two vague graphs G1 and G2 in Figure 2,
where the values of vertices and edges of the vague graph G1[G2]Lmin and G2[G1]Lmin

are given by Tables 1 and 2.

Figure 2: Vague graphs G1[G2]Lmin and G2[G1]Lmin

Vertices of G1[G2]Lmin (tA, fA) Vertices of G2[G1]Lmin (tA, fA)
(u1, v2) (0.2, 0.6) (v2, u1) (0.2, 0.6)
(u1, v1) (0.2, 0.5) (v1, u1) (0.2, 0.5)
(u1, v3) (0.2, 0.5) (v3, u1) (0.2, 0.5)
(u2, v2) (0.1, 0.6) (v2, u2) (0.1, 0.6)
(u2, v1) (0.1, 0.4) (v1, u2) (0.1, 0.4)
(u2, v3) (0.1, 0.4) (v3, u2) (0.1, 0.4)

Table 1: Value of vertices of vague graph G1[G2]Lmin and G2[G1]Lmin

Edges of G1[G2]Lmin (tB , fB) Edges of G2[G1]Lmin (tB , fB)
(u1, v1)(u1, v2) (0.2, 0.6) (v1, u1)(v2, u1) (0.2, 0.6)
(u1, v1)(u2, v2) (0.1, 0.6) (v1, u1)(v2, u2) (0.1, 0.6)
(u1, v1)(u2, v1) (0.1, 0.5) (v1, u1)(v1, u2) (0.1, 0.5)
(u1, v1)(u2, v3) (0.1, 0.5) (v1, u1)(v3, u2) (0.1, 0.5)
(u1, v1)(u1, v3) (0.2, 0.5) (v1, u1)(v3, u1) (0.2, 0.5)
(u1, v2)(u2, v2) (0.1, 0.6) (v2, u1)(v2, u2) (0.1, 0.6)
(u1, v2)(u2, v1) (0.1, 0.6) (v2, u1)(v1, u2) (0.1, 0.6)
(u1, v3)(u2, v1) (0.1, 0.5) (v3, u1)(v1, u2) (0.1, 0.5)
(u1, v3)(u2, v3) (0.1, 0.5) (v3, u1)(v3, u2) (0.1, 0.5)
(u2, v1)(u2, v2) (0.1, 0.6) (v1, u2)(v2, u2) (0.1, 0.6)
(u2, v1)(u2, v3) (0.1, 0.4) (v1, u2)(v3, u2) (0.1, 0.4)

Table 2: Value of edges of vague graphs G1[G2]Lmin and G2[G1]Lmin
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Remark 2.3. The lexicographic min-product of two vague graphs is not commutative,
in general. That is G1[G2]Lmin is different from G2[G1]Lmin (see Figure 2).

Proposition 2.4. Lexicographic min-product of two vague graphs is a vague graph.

Proof. Assume that G1 = (A1, B1) and G2 = (A2, B2) are two vague graphs on
G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively and G∗ = (V,E) is as in Definition 2.1.
Then for any u1u2 ∈ E1 and v1v2 ∈ E2, we have;

tB((u1, v1)(u2, v2)) = tB1
(u1u2) ∧ tB2

(v1v2)

≤ (tA1
(u1) ∧ tA1

(u2)) ∧ (tA2
(v1) ∧ tA2

(v2))

= (tA1
(u1) ∧ tA2

(v1)) ∧ (tA1
(u2) ∧ tA2

(v2))

= tA(u1, v1) ∧ tA(u2, v2)

and fB((u1, v1)(u2, v2)) = fB1
(u1u2) ∨ fB2

(v1v2)

≥ (fA1
(u1) ∨ fA1

(u2)) ∨ (fA2
(v1) ∨ fA2

(v2))

= (fA1
(u1) ∨ fA2

(v1)) ∨ (fA1
(u2) ∨ fA2

(v2))

= fA(u1, v1) ∨ fA(u2, v2)

In a similar way, for any u1 = u2 ∈ V1 and v1v2 ∈ E2 or v1 = v2 and u1u2 ∈ E1, we
have:

tB((u1, v1)(u2, v2)) ≤ tA(u1, v1) ∧ tA(u2, v2)

fB((u1, v1)(u2, v2)) ≥ fA(u1, v1) ∨ fA(u2, v2).

Therefore, lexicographic min-product G1[G2]Lmin is a vague graph on G∗. In a similar
way G2[G1]Lmin is a vague graph on G∗, too. �

Theorem 2.5. The lexicographic min-product of two strong vague graphs is a strong
vague graph,too.

Proof. Let G = G1[G2]Lmin be a lexicographic min-product of two strong vague graphs
G1 = (A1, B1) and G2 = (A2, B2) . Then by Proposition 2.4, G1[G2]Lmin is a vague
graph on G∗. Now for any, u1u2 ∈ E1 and v1v2 ∈ E2, we have

tB((u1, v1)(u2, v2)) = tB1(u1u2) ∧ tB2(v1v2)

= (tA1(u1) ∧ tA1(u2)) ∧ (tA2(v1) ∧ tA2(v2))

= (tA1(u1) ∧ tA2(v1)) ∧ (tA1(u2) ∧ tA2(v2))

= tA(u1, v1) ∧ tA(u2, v2)

In a similar way fB((u1, v1)(u2, v2)) = fA(u1, v1) ∨ fA(u2, v2). Moreover, for any
u1 = u2 ∈ V1 and v1v2 ∈ E2 or v1 = v2 and u1u2 ∈ E1, the proof is similar to the
proof of last case.

Hence for all edges in the lexicographic min-product G1[G2]Lmin, we have

tB((u1, v1)(u2, v2)) = tA(u1, v1) ∧ tA(u2, v2)

fB((u1, v1)(u2, v2)) = fA(u1, v1) ∨ fA(u2, v2)

Therefore, G1[G2]Lmin is a strong vague graph on G∗. In a similar way G2[G1]Lmin is
a strong vague graph on G∗, too. �
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It is easy to see that the lexicographic min-product of two complete vague graphs
is a complete vague graph.

Remark 2.6. If the lexicographic min-product G = G1[G2]Lmin is strong, then G1 or
G2 need not be strong vague graphs, in general.

Example 2.7. Consider the vague graphs G1, G2 and G1[G2]Lmin as in Figure 3.

Figure 3: Vague graph G1, G2 and G1[G2]Lmin

Then G1 and G1[G2]Lmin are strong vague graphs, but G2 is not a strong vague
graph. Since tB2

(v1, v2) = 0.3, but tA2
(v1) ∧ tA2

(v2) = 0.4 ∧ 0.5 = 0.4. Hence
tB2

(v1, v2) 6= tA2
(v1) ∧ tA2

(v2).

Theorem 2.8. The lexicographic min-product G1[G2]Lmin of two vague graphs G1 and
G2 is a connected vague graph if and only if G1 is connected.

Proof. Let G = G1[G2]Lmin be lexicographic min-product of two vague graphs G1 and
G2. We know that G1[G2]Lmin has |V2| copies of G1, that is for each vertex in G2 there
is a copy of G1 in G1[G2]Lmin. Now if G1 is connected, then G1[G2]Lmin is connected,
too.

Conversely, assume that G1 and G2 be two vague graphs such that G1[G2]Lmin is
connected. Now suppose that G1 is not connected, by contrary. Then there exist at
least two different vertices u1, u2 ∈ V1 such that there is no path between them. But
since G1[G2]Lmin is connected, for any two vertices of the form (u1, vi) and (u2, vj) ∈
V1 × V2 there is at least one path between them. This implies that there must be
at least one path between the vertices u1, u2, which is impossible. Hence G1 is
connected. �

Remark 2.9. Let G1 and G2 be two vague graphs. If G1 is not connected and G2 is
connected, then G1[G2]Lmin is not connected, in general.

Theorem 2.10. Let G1 and G2 be two strong vague graphs. Then the number of
connected components in G1[G2]Lmin is equal to the number of connected components
in G1.
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Proof. Let G = G1[G2]Lmin be the lexicographic min-product of two strong vague
graphs G1 and G2 and G∗ = (V,E) be as in Definition 2.1. We consider two cases:

Case 1. Let G1 be connected. Then by Theorem 2.8, the lexicographic min-product
G1[G2]Lmin is connected. This implies that the number of connect component of both
G1 and G1[G2]Lmin are equal.

Case 2. Suppose that G1 is not connected. Then it has ’m’ disjoint connected com-
ponents. Then we can rename the vertices of G1 in such a way that {u1, u2, . . . , uk1},
{uk1+1, uk1+2, . . . , uk2}, . . ., {ukm+1, ukm+2, . . . , ukm+n} are the vertex sets of the
’m’ disjoint connected components of G1. If {v1, v2, . . . , vn} is the vertex set of G2,
then for each vertex vi in G2, there is a copy of each connected component of G1 in
G1[G2]Lmin. Hence there are no edges between these components. Because, if there is
an edge between u1vi, uk1+1vi, then there must be an edge between u1, uk1+1 in G1,
which is a contradiction.

Thus, each connected component in G1[G2]Lmin is disjoint with every other component
and hence the theorem holds. �

Definition 2.11. Let G = G1[G2]Lmin be the lexicographic min-product of two vague
graphs G1 and G2 and G∗ = (V,E) be as in Definition 2.1. Then the degree of any
vertex (u, v) ∈ V = V1 × V2 in G1[G2]Lmin is defined by dG1[G2]Lmin

(u, v) = (s1, s2),
where

s1 =
∑

uuk∈E1,
vvl∈E2

tB1
(uuk) ∧ tB2

(vvl) +
∑

u=uk∈V1,
vvl∈E2

tA1
(u) ∧ tB2

(vvl) +
∑

v=vl∈V2,
uuk∈E1

tA2
(v) ∧ tB1

(uuk),

s2 =
∑

uuk∈E1,
vvl∈E2

fB1
(uuk) ∨ fB2

(vvl) +
∑

u=uk∈V1,
vvl∈E2

fA1
(u) ∨ fB2

(vvl) +
∑

v=vl∈V2,
uuk∈E1

fA2
(v) ∨ fB1

(uuk).

Example 2.12. In Example 2.2, for G1[G2]Lmin we have

dG1[G2]vmin
(u1, v1) = (0.2 + 0.1 + 0.1 + 0.1 + 0.2, 0.6 + 0.6 + 0.5 + 0.5 + 0.5) = (0.7, 2.7)

dG1[G2]vmin
(u1, v2) = (0.2 + 0.1 + 0.1, 0.6 + 0.6 + 0.6) = (0.4, 1.8)

dG1[G2]vmin
(u2, v1) = (0.1 + 0.1 + 0.1 + 0.1 + 0.1, 0.5 + 0.6 + 0.5 + 0.6 + 0.4) = (0.5, 2.5)

dG1[G2]vmin
(u2, v2) = (0.1 + 0.1 + 0.1, 0.6 + 0.6 + 0.6) = (0.3, 1.8)

dG1[G2]vmin
(u1, v3) = (0.2 + 0.1 + 0.1, 0.5 + 0.5 + 0.5) = (0.4, 1.5)

dG1[G2]vmin
(u2, v3) = (0.1 + 0.1 + 0.1, 0.5 + 0.5 + 0.4) = (0.3, 1.4)

Definition 2.13. The lexicographic min-productG = G1[G2]Lmin of two vague graphs
G1 and G2, is called (k1, k2)-regular if dG1[G2]Lmin

(u, v) = (k1, k2), for all (u, v) ∈
V1 × V2. Moreover, G1[G2]Lmin is called regular vague graph of degree (k1, k2).

Example 2.14. Consider two vague graphs G1 and G2 and lexicographic product
vague graph G1[G2]Lmin as in Figure 4.
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Figure 4: Vague graph G1, G2 and G1[G2]Lmin

Hence G1[G2]Lmin is a regular vague graph of degree (0.6, 1.5).

If G1 and G2 are two regular vague graphs, then the lexicographic min-product of
G1 and G2 is not a regular vague graph, in general.

2.2 Lexicographic max-product

In this section, we define the notion of lexicographic max-product. Even though
concepts like strongness, connectedness and regularity are similarly defined as lexico-
graphic min-product of two vague graphs, there is not any relation between lexico-
graphic min-product and lexicographic max-product, in general.

Definition 2.15. LetG1 = (A1, B1) andG2 = (A2, B2) be two vague graphs onG∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Let V = V1 × V2, E = {((u1, v1)(u2, v2)) |
(u1u2 ∈ E1, v1v2 ∈ E2) or (u1 = u2 ∈ V1, v1v2 ∈ E2) or (v1 = v2 ∈ V2, u1u2 ∈ E1)}
and G∗ = (V,E). Now we define vague sets A = (tA, fA) on V and B = (tB , fB) on
E by tA(u, v) = tA1(u) ∨ tA2(v), fA(u, v) = fA1(u) ∧ fA2(v) for all (u, v) ∈ V and

tB((u1, v1)(u2, v2)) =


tB1(u1u2) ∨ tB2(v1v2), if u1u2 ∈ E1, v1v2 ∈ E2

tA1(u1) ∨ tB2(v1v2), if u1 = u2 ∈ V1, v1v2 ∈ E2

tA2
(v1) ∨ tB1

(u1u2), if v1 = v2 ∈ V2, u1u2 ∈ E1

and fB((u1, v1)(u2, v2)) =


fB1

(u1u2) ∧ fB2
(v1v2), if u1u2 ∈ E1, v1, v2 ∈ E2

fA1
(u1) ∧ fB2

(v1v2), if u1 = u2 ∈ V1, v1v2 ∈ E2

fA2(v1) ∧ fB1(u1u2), if v1 = v2 ∈ V2, u1u2 ∈ E1

for any (u1, v1), (u2, v2) ∈ V . Then G = (A,B) is called the lexicographic max-product
of G1 and G2 and denoted by G = G1[G2]Lmax.

Example 2.16. Consider the vague graphs G1 and G2 as in Figure 1. Then the
lexicographic max-product of them, that is G1[G2]Lmax and G2[G1]Lmax are in Figure 5,
where the values of vertices and edges of the vague graph G1[G2]Lmax are given by
Tables 3 and 4.
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Figure 5: Vague graphs G1[G2]Lmax and G2[G1]Lmax

Vertices of G1[G2]Lmax (tA, fA) Vertices of G2[G1]Lmax (tA, fA)
(u1, v2) (0.2, 0.5) (v2, u1) (0.2, 0.5)
(u1, v1) (0.3, 0.4) (v1, u1) (0.3, 0.4)
(u1, v3) (0.4, 0.3) (v3, u1) (0.4, 0.3)
(u2, v2) (0.2, 0.4) (v2, u2) (0.2, 0.4)
(u2, v1) (0.3, 0.4) (v1, u2) (0.3, 0.4)
(u2, v3) (0.4, 0.3) (v3, u2) (0.4, 0.3)

Table 3: Value of vertices of vague graph G1[G2]Lmax and G2[G1]Lmax

Edges of G1[G2]Lmax (tB , fB) Edges of G2[G1]Lmax (tB , fB)
(u1, v1)(u1, v2) (0.2, 0.5) (v1, u1)(v2, u1) (0.2, 0.5)
(u1, v1)(u2, v2) (0.2, 0.5) (v1, u1)(v2, u2) (0.2, 0.5)
(u1, v1)(u2, v1) (0.3, 0.4) (v1, u1)(v1, u2) (0.3, 0.4)
(u1, v1)(u2, v3) (0.3, 0.4) (v1, u1)(v3, u2) (0.3, 0.4)
(u1, v1)(u1, v3) (0.3, 0.4) (v1, u1)(v3, u1) (0.3, 0.4)
(u1, v2)(u2, v2) (0.2, 0.5) (v2, u1)(v2, u2) (0.2, 0.5)
(u1, v2)(u2, v1) (0.2, 0.5) (v2, u1)(v1, u2) (0.2, 0.5)
(u1, v3)(u2, v1) (0.3, 0.4) (v3, u1)(v1, u2) (0.3, 0.4)
(u1, v3)(u2, v3) (0.4, 0.3) (v3, u1)(v3, u2) (0.4, 0.3)
(u2, v1)(u2, v2) (0.2, 0.4) (v1, u2)(v2, u2) (0.2, 0.4)
(u2, v1)(u2, v3) (0.3, 0.4) (v1, u2)(v3, u2) (0.3, 0.4)

Table 4: Value of edges of vague graphs G1[G2]Lmax and G2[G1]Lmax

Remark 2.17. The lexicographic max-product of two vague graphs is not commuta-
tive. That is G1[G2]Lmax is different from G2[G1]Lmax, in general (see Figure 5.)

Similar to the proof of Proposition 2.4 and Theorems 2.8, 2.10, we prove the
following theorem.

Theorem 2.18. (i) The lexicographic max-product of two vague graphs G1 and G2

is a vague graph, too.
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(ii) The lexicographic max-product G1[G2]Lmax is a connected vague graph if and only
if vague graph G1 is connected.

(iii) The number of connected components in the lexicographic max-product G1[G2]Lmax

is equal to the number of connected components in vague graph G1.

Remark 2.19. The lexicographic max-product of two strong (complete) vague graphs
need not be strong (complete) vague graph, in general.

Example 2.20. In the Example 2.16, G1 and G2 are strong (complete) vague graphs
but neither G1[G2]Lmax nor G2[G1]Lmax is a strong (complete) vague graph.

Definition 2.21. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs on
G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. Then the degree of vertex (u, v) in
G1[G2]Lmax is defined by dG1[G2]Lmax

(u, v) = (s1, s2), where

s1 =
∑

uuk∈E1,
vvl∈E2

tB1
(uuk) ∨ tB2

(vvl) +
∑

u=uk∈V1,
vvl∈E2

tA1
(u) ∨ tB2

(vvl) +
∑

v=vl∈V2,
uuk∈E1

tA2
(v) ∨ tB1

(uuk),

s2 =
∑

uuk∈E∗1 ,
vvl∈E∗2

fB1
(uuk) ∧ fB2

(vvl) +
∑

u=uk∈V ∗1 ,
vvl∈E∗2

fA1
(u) ∧ fB2

(vvl) +
∑

v=vl∈V ∗2 ,
uuk∈E∗1

fA2
(v) ∧ fB1

(uuk).

Example 2.22. In Example 2.16, for G1[G2]vmax we have

dG1[G2]vmax
(u1, v1) = (0.2 + 0.2 + 0.3 + 0.3 + 0.3, 0.5 + 0.5 + 0.4 + 0.4 + 0.4) = (1.3, 2.2)

dG1[G2]vmax
(u1, v2) = (0.2 + 0.2 + 0.2, 0.5 + 0.5 + 0.5) = (0.6, 1.5)

dG1[G2]vmax
(u2, v1) = (0.3 + 0.2 + 0.3 + 0.2 + 0.3, 0.4 + 0.5 + 0.4 + 0.4 + 0.4) = (1.3, 2.1)

dG1[G2]vmax
(u2, v2) = (0.2 + 0.2 + 0.2, 0.5 + 0.5 + 0.4) = (0.6, 1.4)

dG1[G2]vmax
(u1, v3) = (0.3 + 0.3 + 0.4, 0.4 + 0.4 + 0.3) = (1, 1.1)

dG1[G2]vmax
(u2, v3) = (0.3 + 0.4 + 0.3, 0.4 + 0.3 + 0.4) = (1, 1.1)

Definition 2.23. The lexicographic max-product of two vague graphs G1 and G2,
that is G = G1[G2]Lmax, is called (k1, k2)-regular if dG1[G2]Lmax

(u, v) = (k1, k2), for all

(u, v) ∈ V1×V2. Moreover, G1[G2]Lmax is called regular vague graph of degree (k1, k2).

If G1 and G2 are two regular vague graphs, then the lexicographic max-product
of G1 and G2 is not a regular vague graph, in general.

Now, in what follows we get the relationship between lexicographic min-products
and max-products.

Definition 2.24. If G1 = (A1, B1) and G2 = (A2, B2) are two vague graphs on
G∗1 = G∗2 = (V,E). Then we say that G1 is a spanning vague subgraph of G2 if
tA1(u) 6 tA2(u) and fA1(u) > fA2(u) for all u ∈ V and tB1(uv) 6 tB2(uv) and
fB1(uv) > fB2(uv) for all uv ∈ E.

Theorem 2.25. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs with
the same underlying crisp graphs. Then G1[G2]Lmin is a spanning vague graph of
G1[G2]Lmax.
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Proof. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs on G∗1 = G∗2 =
(V,E). Then G1[G2]Lmax = (A,B) and G1[G2]Lmin = (A′, B′) are two vague graphs
with the same underlying crisp graph G∗ = (V,E) where V = V × V and E =
{(u1, v1)(u2, v2) | (u1u2 ∈ E, v1v2 ∈ E) or (u1 = u2 ∈ V, v1v2 ∈ E) or (v1 = v2 ∈
V and u1u2 ∈ E)}. From the definition, it is clear that tA′(u1, u2) 6 tA(u1, u2) and
fA′(u1, u2) > fA(u1, u2) for all (u1, u2) ∈ V and tB′((u1u2)(v1v2)) 6 tB((u1u2)(v1v2))
and fB′((u1u2)(v1v2)) > fB((u1, v1)(u2, v2)) for all ((u1, v1)(u2, v2)) ∈ E. Hence the
lexicographic min-product vague graph is a spanning vague subgraph of the lexico-
graphic min-product vague graph. �

We have defined the concepts of lexicographic min-product and lexicographic max-
product and we will compare them in the next section.

3. Application

In this section, applications of lexicographic (min) max-product of two vague graphs
are demonstrated and accordingly these two products on vague graphs are compared in
order to optimize the project organization. The project includes a set of complex and
unique operations, which consist of logical and related activities which are executed
under the supervision of a specific management and organization in order to achieve
the specified objectives within the framework of a predetermined time schedule and
budget. The duration of a project in the public sector is often more than one year
and less than three years. However, the duration of the project in the private sector
is shorter than this. Of course, the feature of the duration of the implementation is
not accurate and commonly used to judge the appropriateness of the title or project
assignment to the set of actions and operations. An employer is a device which
executes on behalf of the executive in order to contract with the consultant and the
contractor and pursues all stages of the execution until completing the task. The
employer pledges to pay the contractor a prepayment to strengthen the contractors
financial resources. Further, the contractor assesses the status of the work performed
from the beginning of the work to the date measured according to the execution
plans and the form of the meetings at the end of each month, and calculates the
amount of the status item according to the regular price list and submits it to the
consultant. Then, the consultant will send it to the employer after the evaluation
and approval, and accordingly the employer will pay the contractor after deducting
the legal fees and the amount of previous interim payments. This payment path
remains unchanged until the end of the project. A contractor is a true or legal person
to the other party signing the contract and undertakes the implementation of the
treaty subject to the treaty documents. The contractor is one of the main pillars
for creating or implementing a project. One of the major tasks of any contractor
is the implementation of the project based on the approved timetable. In fact, the
contractor will undertake to provide a detailed program for implementing the work
according to the consultant engineer, who prepares a general plan and submits it to the
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consultant to notify the contractor after notifying and approving the employer based
on the existing plans. After communicating the timetable, the contractor undertakes
to complete the project based on the timetable and, submit a report on the progress
of the project to the consultant at the end of each month. The report should include
the amount and percentage of the performed activities, the amount of progress or
delay in relation to the detailed timetable, the problems and barriers on the way to
the execution of the project, and other relevant information. The legal personality of
the signatory is regarded as another party to the contract with the employer, whose
basic duties are as follows:
• Preliminary studies.

• Preparation of plans and executive plans.

• Tender and supervision.
Supervising the implementation of the work is considered as a key task for the

consultant. To this end, it should be done all the time by his employees who are regu-
larly visiting all of the work and monitor the compliance of the contractor’s operations
with regular specifications to the contract. In addition, they confirm that the work
has been performed according to specifications, and a request for the consideration
of the status of the contractors contract is processed and certified after evaluating
the work done and maintaining the booklet. Project management is a process which
plans and directs the project life cycle through the most convenient way, along with
the best results in achieving the objectives of the project. The project management
process consists of three planning and implementation tasks. After planning the be-
ginning and end of implementing the project, we should always evaluate and control
the performance and compare actual performances with the predicted program. In
this regard, the following factors should be taken into consideration:
• Which activities have already been done?

• How much is the physical progress?

• How much is the kernel’s backend?

• How much delay have been created in the project? How much is the deviation from
the program ?

• How much is the actual cost have been spent on the project? Does the project have
any profit?

The supervisor of a real personal workshop with expertise and experience is the
person whose con-tractor will nominate to the consultant engineer to supervise the
execution of the contract in the workshop. The head of the workshop is directly or
indirectly responsible for some tasks such as skilled manpower management, provision
of equipment for letterheads, payments, preparation of situation form, reporting work
accidents to the management, participation in meetings, and the like. However, doing
something is regarded as the most important task of the supervisor in the decision-
making workshop, when dealing with inevitable drawbacks. In order to obtain a
project, the contractor is acting in various ways, the most important of which is
participating in tenders by calling the executive agencies. After preparing the plans
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and specifications of the project, which is usually provided by the consulting engineers,
the contractors selection process is as follows:
• Duplicate bidding.

• Inviting the contractors to bid.

• Selling the offer price and guaranteeing the tender by the contractor.

• Choosing a contractor with the best bid.

• Contract with the contractor.

• Delivering goodwill to fulfill the obligations by the contractor.
After making the initial decision for implementing a project, the way the project

should be implemented with regard to the selection of the consultant should be de-
signed and evaluated. Different approaches are adopted in choosing a consultant,
depending on the type of project and the provincial or nationality. Since the advi-
sor actually acts as the employers arm in the supervisory dimension as his principal
agent, the employers have more options in selecting the consultant. Accordingly, the
following steps should be taken:
• Inquiring from the Management and Planning Organization and obtaining the
names of eligible consultants.

• Setting Tender Documents and Targeting Objectives for Negotiates and Investiga-
tors.

• Receiving offers and completed documents from applicants.

• Meeting with the committee members of the tender.

• Selecting consultant.

• Contracting.
LetG1 = (V1, E1) be Project factors, where V1 = {Employer(E),Contractor(CTT ),

Consultant(CST )} so that the Employer is responsible for the financial commitment
and support of the project, the Contractor is re-responsible for the quality and tim-
ing of the project and Consultant should monitor the project carefully as illustrated
in Figure 6. Graph G2 = (V2, E2) is the Contractor’s key operating factors, where
V2 = {Project manager(PM), Site manager(SM)} so that the Project manager is re-
sponsible for monitoring and controlling the project path and the Site manager plays
the role of moderator for the project plans and contractor (Figure 6). Further, E1

and E2 are regarded as their relations.

Figure 6: Vague graphs G1 and G2
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Name Financial commitments and support
tA1

Financial commitments and support on time
fA1

Financial commitments and irregular support

Name Quality and timing
tA1

Quality and timing appropriate
fA1

Quality and timing inappropriate

Name Careful monitoring
tA1

Regular and monthly monitoring
fA1

Irregular and unplanned monitoring

Table 5: Abbreviation of tA1 and fA1 for vertices of vague graph G1

Name Relations between them
tB1 The relations between precise and principled
fB1

Relationships between irregular and non-standardized

Table 6: Abbreviation of tB1 and fB1 for edges of vague graph G1

Name Monitoring and controlling the project path
tA2 Precise monitoring and control over project implementation
fA2

Irregular monitoring and control over project implementation

Name Moderator of project plans and contractor
tA2

Exact execution according to the plan and standards in the subject
fA2

Run irregular and out of the standard and framework

Table 7: Abbreviation of tA2 and fA2 for vertices of vague graph G2

Name Relations between them
tB2

The relations between precise and principled
fB2

Relationships between irregular and non-standardized

Table 8: Abbreviation of tB2 and fB2 for edges of vague graph G2

E CTT CST
tA1 1 0.3 0.45
fA1

0 0.52 0.49

(E,CTT) (CTT,CST) (E,CST)
tB1 0.82 0.93 0.62
fB1

0.03 0.04 0.31

PM SM
tA2

0.72 0.67
fA2

0.21 0.28

(PM,SM)
tB2

0.89
fB2

0.08

Table 9: Value of vertices and edges of vague graphs G1 and G2
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Now we consider the lexicographic (min) max-product of vague graph G1 with G2.

min (CTT,PM) (CST,PM) (E,PM) (CTT,SM) (E,SM) (CST,SM)

(tA, fA) (0.3, 0.52) (0.45, 0.49) (0.72, 0.21) (0.3, 0.52) (0.67, 0.28) (0.45, 0.49)

max (CTT,PM) (CST,PM) (E,PM) (CTT,SM) (E,SM) (CST,SM)

(tA, fA) (0.72, 0.21) (0.72, 0.21) (1, 0) (0.67, 0.28) (1, 0) (0.67, 0.28)

Table 10: Degree of all vertices in G1[G2]vmin and G1[G2]vmax

Figure 7: Vague graph G1[G2]vmin and G1[G2]vmax

Number G1[G2]vmin G1[G2]vmax

1 (tB , fB)((CTT, PM), (CTT, SM)) (0.3, 0.52) (0.89, 0.08)
2 (tB , fB)((CTT, PM), (E,SM)) (0.82, 0.08) (0.89, 0.03)
3 (tB , fB)((CTT, PM), (CTT, SM)) (0.89, 0.08) (0.93, 0.04)
4 (tB , fB)((CTT, PM), (E,PM)) (0.72, 0.21) (0.82, 0.03)
5 (tB , fB)((CTT, PM), (CST, PM)) (0.72, 0.21) (0.93, 0.04)
6 (tB , fB)((CTT, SM), (CST, PM)) (0.89, 0.08) (0.93, 0.04)
7 (tB , fB)((CTT, SM), (E,PM)) (0.82, 0.08) (0.82, 0.03)
8 (tB , fB)((CTT, SM), (CST, SM)) (0.67, 0.28) (0.93, 0.04)
9 (tB , fB)((CTT, SM), (E,SM)) (0.67, 0.28) (0.82, 0.03)
10 (tB , fB)((E,SM), (CST, SM)) (0.62, 0.31) (0.67, 0.28)
11 (tB , fB)((E,SM), (CST, PM)) (0.62, 0.31) (0.89, 0.08)
12 (tB , fB)((E,SM), (E,PM)) (0.89, 0.08) (1, 0)
13 (tB , fB)((CST, SM), (E,PM)) (0.62, 0.31) (0.89, 0.08)
14 (tB , fB)((CST, SM), (CST, PM)) (0.45, 0.49) (0.89, 0.08)
15 (tB , fB)((CST, PM), (E,PM)) (0.62, 0.31) (0.72, 0.21)

Table 11: Degree of all edges in G1[G2]vmin and G1[G2]vmax

Therefore, as shown in Table 10, the cooperation of Employer and Project manager
at lexicographic min-product is considered as the best condition. In addition, it is in
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the best condition for the lexicographic max-product. Therefore, the cooperation of
capital between Employer and Project manager is the best way for both operators.
Further, the relation between Employer and Project manager, as well as between the
Employer and Site manager is in the most ideal state of the project for lexicographic
(min) max-product of two vague graphs G1 and G2 as indicated in Table 11. Thus,
the cooperation of Employer and Project manager is regarded as the most important
part of the project and relationship between Employer and Project manager with the
Employer and Site manager is the most important link to make the project work as
much as possible.
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