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Abstract. In this paper, we introduce the notions of f -frequent hypercyclicity and F-
hypercyclicity for C-distribution semigroups in separable Fréchet spaces. We particularly an-
alyze the classes of q-frequently hypercyclic C-distribution semigroups (q ≥ 1) and frequently
hypercyclic C-distribution semigroups, providing a great number of illustrative examples.

1. Introduction and preliminaries

The notion of a frequently hypercyclic linear continuous operator on a separable
Fréchet space was introduced by F. Bayart and S. Grivaux in 2006 [2]. The general
notion of (mk)-hypercyclicity for linear continuous operators was introduced by F.
Bayart and É. Matheron [3] in 2009, while some special cases of (mk)-hypercyclicity,
like q-frequent hypercyclicity (q ∈ N), were analyzed by M. Gupta and A. Mun-
dayadan in [16]. Within the field of linear topological dynamics, the notion of F-
hypercyclicity, where F is a Furstenberg family, was introduced for the first time by
S. Shkarin in 2009 [27]; further contributions were given by A. Bonilla and K.-G.
Grosse-Erdmann [6]. The notion of F-hypercyclicity for linear not necessarily contin-
uous operators has been recently introduced by the author in [21]. For more details
on the subject, we refer the reader to [1, 4, 8, 15,25] and references cited therein.

On the other hand, the notion of a frequently hypercyclic strongly continuous
semigroup on a separable Banach space was introduced by E. M. Mangino and A.
Peris in 2011 [23]. Frequently hypercyclic translation semigroups on weighted function
spaces were further investigated by E. M. Mangino and M. Murillo-Arcila in [24].
Frequent hypercyclicity and various generalizations of this concept for single operators
and semigroups of operators are still very active field of research, full of open unsolved
problems.
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82 Frequently hypercyclic C-distribution semigroups

Hypercyclicity of C-regularized semigroups, distribution semigroups and unbound-
ed linear operators in Banach spaces was analyzed by R. deLaubenfels, H. Emami-
rad and K.-G. Grosse-Erdmann in 2003 [10]. The non-existence of an appropriate
reference which treats the frequent hypercyclicity of C-regularized semigroups and
distribution semigroups strongly influenced us to write this paper.

We work in the setting of separable infinite-dimensional Fréchet spaces, con-
sidering general classes of C-distribution semigroups and fractionally integrated C-
semigroups [18, 19]; here, we would like to point out that our results seem to be new
even for strongly continuous semigroups of operators in Fréchet spaces. In contrast
to the investigations of frequently hypercyclic strongly continuous semigroups of op-
erators that are carried out so far, the notion of Pettis integrability does not play
any significant role in our approach, which is primarly oriented for giving some new
applications in the qualitative analysis of solutions of abstract ill-posed differential
equations of first order. The notion of a q-frequently hypercyclic strongly continuous
semigroup, where q ≥ 1, has been recently introduced and systematically analyzed
in our joint paper with B. Chaouchi, S. Pilipović and D. Velinov [7]; the notion of
f -frequent hypercyclicity, introduced here for the first time as a continuous counter-
part of (mk)-hypercyclicity, seems to be not considered elsewhere even for strongly
continuous semigroups of operators in Banach spaces. Albeit we analyze the general
class of C-distribution semigroups, providing also some examples of frequently hyper-
cyclic integrated semigroups, almost all structural results of ours are stated for the
class of global C-regularized semigroups (for certain difficuties we have met in our
exploration of frequently hypercyclic fractionally integrated C-semigroups, we refer
the reader to Remark 2.6).

Without any doubt, our main theoretical result is Theorem 2.5, which can be called
f -Frequent Hypercyclicity Criterion for C-Regularized Semigroups. In Theorem 2.8,
we state Upper Frequent Hypercyclicity Criterion for C-Regularized Semigroups (this
result seems to be new even for strongly continuous semigroups in Banach spaces,
as well). From the point of view of possible applications, Theorem 2.10, in which
we reconsider the spectral criterions esatablished by S. El Mourchid [13, Theorem
2.1] and E. M. Mangino, A. Peris [23, Corollary 2.3], and Theorem 2.12, in which
we reconsider the famous Desch-Schappacher-Webb criterion for chaos of strongly
continuous semigroups [11, Theorem 3.1], are most important; both theorems are
consequences of Theorem 2.5. In Example 2.14, we revisit [18, Subsection 3.1.4]
and prove that all examined C-regularized semigroups and integrated semigroups,
including corresponding single linear operators, are frequently hypercyclic (we already
know that these semigroups and operators are topologically mixing or chaotic in a
certain sense).

We use the standard notation throughout the paper. By E we denote a separable
infinite-dimensional Fréchet space (real or complex). We assume that the topology
of E is induced by the fundamental system (pn)n∈N of increasing seminorms. If Y is
also a Fréchet space, over the same field of scalars K as E, then by L(E, Y ) we denote
the space consisting of all continuous linear mappings from E into Y. The translation
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invariant metric d : E × E → [0,∞), defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ E,

satisfies, among many other properties, the following ones: d(x+u, y+ v) ≤ d(x, y) +
d(u, v) and d(cx, cy) ≤ (|c| + 1)d(x, y), c ∈ K, x, y, u, v ∈ X. Set L(x, ε) := {y ∈
X : d(x, y) < ε} and Ln(x, ε) := {y ∈ X : pn(x − y) < ε} (n ∈ N, ε > 0, x ∈ X).
By E∗ we denote the dual space of E. For a closed linear operator T on E, we
denote by D(T ), R(T ), N(T ), ρ(T ) and σp(T ) its domain, range, kernel, resolvent

set and point spectrum, respectively. If Ẽ is a linear subspace of E, then the part
of T in Ẽ, T|Ẽ shortly, is defined through T|Ẽ := {(x, y) ∈ T : x, y ∈ Ẽ}. Set

D∞(T ) :=
⋂
k∈ND(T k). We will always assume henceforth that C ∈ L(E) and C is

injective. Put pC(x) := p(C−1x), p ∈ ~, x ∈ R(C). Then pC(·) is a seminorm on
R(C) and the calibration (pC)p∈~ induces a Fréchet topology on R(C); we denote this
space by [R(C)]~. If T k is closed for any k ∈ N, then the space C(D(T k)), equipped
with the following family of seminorms pk,n(Cx) := pn(x) + pn(Tx) + · · ·+ pn(T kx),
x ∈ D(T k), is a Fréchet one (n ∈ N). This space will be denoted by [C(D(T k))]. For
any s ∈ R, we define bsc := sup{l ∈ Z : s ≥ l} and dse := inf{l ∈ Z : s ≤ l}.

Let us recall that a series
∑∞
n=1 xn in E is called unconditionally convergent iff

for every permutation σ of N, the series
∑∞
n=1 xσ(n) is convergent; it is well known

that the absolute convergence of
∑∞
n=1 xn (i.e., the convergence of

∑∞
n=1 pl(xn) for

all l ∈ N) implies its unconditional convergence (see [5] and references cited therein
for further information on the subject).

The Schwartz space of rapidly decreasing functions S with values in the field K is
defined by the following system of seminorms pm,n(ψ) := supx∈R |xmψ(n)(x)|, ψ ∈ S,
m, n ∈ N0. Similarly, we use notation D = C∞0 (R) and E = C∞(R). If ∅ 6= Ω ⊆ R,
then the symbol DΩ denotes the subspace of D consisting of those functions ϕ ∈ D for
which supp(ϕ) ⊆ Ω; D0 ≡ D[0,∞). The spaces D′(E) := L(D, E), E ′(E) := L(E , E)
and S ′(E) := L(S, E) are topologized in the usual way; the symbols D′Ω(E), E ′Ω(E)
and S ′Ω(E) denote their subspaces containing E-valued distributions whose supports
are contained in Ω; D′0(E) ≡ D′[0,∞)(E), E ′0(E) ≡ E ′[0,∞)(E), S ′0(E) ≡ S ′[0,∞)(E)

(see [26] for more details). By δt we denote the Dirac distribution centered at point
t (t ∈ R). If ϕ, ψ : R → C are measurable functions, then we define ϕ ∗0 ψ(t) :=∫ t

0
ϕ(t−s)ψ(s) ds, t ∈ R. The convolution of vector-valued distributions will be taken

in the sense of [22, Proposition 1.1].

Let C ∈ L(E) be an injective operator, and let G ∈ D′∗0 (L(E)) satisfy CG = GC.
We refer the reader to [20] for the notion of a (dense) C-distribution semigroup G and
the closed linear operator G(T ), where T ∈ E ′0. We define the (infinitesimal) generator
of a (C-DS) G by A := G(−δ′). If S, T ∈ E ′0, ϕ ∈ D0, ψ ∈ D and x ∈ E, then we
know that the following holds:

A1. G(S)G(T ) ⊆ G(S ∗ T ) with D(G(S)G(T )) = D(G(S ∗ T )) ∩ D(G(T )), and
G(S) +G(T ) ⊆ G(S + T ).

We denote by D(G) the set consisting of those elements x ∈ E for which x ∈
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D(G(δt)), t ≥ 0 and the mapping t 7→ G(δt)x, t ≥ 0 is continuous. By A1., we have
that

D
(
G(δs)G(δt)

)
=D

(
G(δs ∗ δt)

)
∩D

(
G(δt)

)
=D

(
G(δt+s)

)
∩D

(
G(δt)

)
, t, s≥0,

which clearly implies G(δt)(D(G)) ⊆ D(G), t ≥ 0 and

G
(
δs
)
G
(
δt
)
x = G

(
δt+s

)
x, t, s ≥ 0, x ∈ D(G). (1)

The definitions of of an (exponentially equicontinuous) α-times integrated C-
semigroup (Sα(t))t≥0, its subgenerators and the integral generator are well known
(see e.g. [20] and the references cited therein). If α = 0, then (S0(t))t≥0 is also said to
be a C-regularized semigroup with subgenerator A; in this case, we have the following
simple functional equation: S0(t)S0(s) = S0(t+ s)C, t, s ≥ 0.

Let A be a closed linear operator on E. Denote by Z1(A) the space consisting of
those elements x ∈ E for which there exists a unique continuous mapping u : [0,∞)→
E satisfying

∫ t
0
u(s, x) ds ∈ D(A) and A

∫ t
0
u(s, x) ds = u(t, x) − x, t ≥ 0; cf. [18–20]

for more details on the subject.
Suppose that A is a subgenerator of an α-times integrated C-semigroup (Sα(t))t≥0.

Then A is a subgenerator of a dαe-integrated C-semigroup (Sdαe(t) ≡ (gdαe−α ∗0
Sα)(t))t≥0. Set

G(ϕ)x := (−1)dαe
∞∫

0

ϕ(dαe)(t)Sdαe(t)x dt, ϕ ∈ D, x ∈ E (2)

and G
(
δt
)
x :=

ddαe

dtdαe
C−1Sdαe(t)x, t ≥ 0, x ∈ Z1(A).

If C1 ∈ L(X) is another injective operator with C1A ⊆ AC1, γ ≥ 0 and A is a
subgenerator (the integral generator) of a global γ-times integrated C1-semigroup
(Sγ(t))t≥0, then (Sα(t))t≥0 and (Sγ(t))t≥0 share the same (subspace) f -frequently
hypercyclic properties defined below.

We refer the reader to [18–20] for further information concerning C-distribution
semigroups. The notion of exponentially equicontinuous, analytic fractionally inte-
grated C-semigroups will be taken in a broad sense of [19, Definition 2.2.1(i)], while
the notion of an entire C-regularized group will be taken in the sense of [19, Definition
2.2.9].

1.1 Lower and upper densities

First of all, we need to recall the following definitions.

Definition 1.1 ([21]). Let (Tn)n∈N be a sequence of linear operators acting between
the spaces X and Y, let T be a linear operator on X, and let x ∈ X. Suppose that
F ∈ P (P (N)) and F 6= ∅. Then we say that:
(i) x is an F-hypercyclic element of the sequence (Tn)n∈N iff x ∈

⋂
n∈ND(Tn) and for

each open non-empty subset V of Y we have that S(x, V ) :=
{
n ∈ N : Tnx ∈ V

}
∈ F ;

(Tn)n∈N is said to be F-hypercyclic iff there exists an F-hypercyclic element of
(Tn)n∈N;



M. Kostić 85

(ii) T is F-hypercyclic iff the sequence (Tn)n∈N is F-hypercyclic; x ∈ D∞(T ) is said
to be an F-hypercyclic element of T iff x is an F-hypercyclic element of the sequence
(Tn)n∈N.

Definition 1.2. Let q ∈ [1,∞), let A ⊆ N, and let (mn) be an increasing sequence
in [1,∞). Then:
(i) The lower q-density of A, denoted by dq(A), is defined through:

dq(A) := lim inf
n→∞

|A ∩ [1, nq]|
n

.

(ii) The upper q-density of A, denoted by dq(A), is defined through:

dq(A) := lim sup
n→∞

|A ∩ [1, nq]|
n

.

(iii) The lower (mn)-density of A, denoted by dmn(A), is defined through:

dmn(A) := lim inf
n→∞

|A ∩ [1,mn]|
n

.

(iv) The upper (mn)-density of A, denoted by dmn(A), is defined through:

dmn(A) := lim sup
n→∞

|A ∩ [1,mn]|
n

.

Assume that q ∈ [1,∞) and (mn) is an increasing sequence in [1,∞). Con-
sider the notion introduced in Definition 1.1 with: (i) F = {A ⊆ N : d(A) > 0},
(ii) F = {A ⊆ N : dq(A) > 0}, (iii) F = {A ⊆ N : dmn(A) > 0}; then we say
that (Tn)n∈N (T, x) is frequently hypercyclic, q-frequently hypercyclic and l-(mn)-
hypercyclic, respectively.

Denote by m(·) the Lebesgue measure on [0,∞). We would like to propose the
following definition:

Definition 1.3. Let q ∈ [1,∞), let A ⊆ [0,∞), and let f : [0,∞) → [1,∞) be an
increasing mapping. Then:
(i) The lower qc-density of A, denoted by dqc(A), is defined through:

dqc(A) := lim inf
t→∞

m(A ∩ [0, tq])

t
.

(ii) The upper qc-density of A, denoted by dqc(A), is defined through:

dqc(A) := lim sup
t→∞

m(A ∩ [0, tq])

t
.

(iii) The lower f -density of A, denoted by df (A), is defined through:

df (A) := lim inf
t→∞

m(A ∩ [0, f(t)])

t
.

(iv) The upper f -density of A, denoted by df (A), is defined through:

df (A) := lim sup
t→∞

m(A ∩ [0, f(t)])

t
.
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It is clear that Definition 1.3 provides continuous analogues of the notion intro-
duced in Definition 1.2, which have been analyzed in [21, Section 2] in more detail.
For the sake of brevity and better exposition, we will skip all related details about
possibilities to transfer the results established in [21] for continuous lower and upper
densities.

2. Generalized frequent hypercyclicity for C-distribution semigroups and
fractionally integrated C-semigroups

Let P ([0,∞)) denote the power set of [0,∞).

Definition 2.1. Let G be a C-distribution semigroup, and let x ∈ D(G). Suppose
that F ∈ P (P ([0,∞))) and F 6= ∅. Then we say that x is an F-hypercyclic element
of G iff for each open non-empty subset V of E we have S(x, V ) :=

{
t ≥ 0 : G(δt)x ∈

V
}
∈ F ; G is said to be F-hypercyclic iff there exists an F-hypercyclic element of G.

The notion introduced in the following definition is a special case of the notion
introduced above, with F being the collection of all non-empty subsets A of [0,∞)
such that the lower qc-density of A, the upper qc-density of A, the lower f -density of
A or the upper f -density of A is positive:

Definition 2.2. Let q ∈ [1,∞), and let f : [0,∞)→ [1,∞) be an increasing mapping.
Suppose that G is a C-distribution semigroup. Then we say that:
(i) G is q-frequently hypercyclic iff there exists x ∈ D(G) such that for each open
non-empty subset V of E we have dqc({t ≥ 0 : G(δt)x ∈ V

}
) > 0;

(ii) G is upper q-frequently hypercyclic iff there exists x ∈ D(G) such that for each
open non-empty subset V of E we have dqc({t ≥ 0 : G(δt)x ∈ V

}
) > 0;

(iii) G is f -frequently hypercyclic iff there exists x ∈ D(G) such that for each open
non-empty subset V of E we have df ({t ≥ 0 : G(δt)x ∈ V

}
) > 0;

(iv) G is upper f -frequently hypercyclic iff there exists x ∈ D(G) such that for each
open non-empty subset V of E we have df ({t ≥ 0 : G(δt)x ∈ V

}
) > 0.

It seems natural to reformulate the notion introduced in the previous two defini-
tions for fractionally integrated C-semigroups:

Definition 2.3. Suppose that A is a subgenerator of a global α-times integrated
C-semigroup (Sα(t))t≥0 for some α ≥ 0. Let F ∈ P (P ([0,∞))) and F 6= ∅. Then
we say that an element x ∈ Z1(A) is an F-hypercyclic element of (Sα(t))t≥0 iff x is
an F-hypercyclic element of the induced C-distribution semigroup G defined through
(2); (Sα(t))t≥0 is said to be F-hypercyclic iff G is said to be F-hypercyclic.

Definition 2.4. Suppose that A is a subgenerator of a global α-times integrated C-
semigroup (Sα(t))t≥0 for some α ≥ 0. Let q ∈ [1,∞), and let f : [0,∞)→ [1,∞) be an
increasing mapping. Then it is said that (Sα(t))t≥0 is q-frequently hypercyclic (upper
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q-frequently hypercyclic, f -frequently hypercyclic, upper f -frequently hypercyclic) iff
the induced C-distribution semigroup G, defined through (2), is such.

As mentioned in the introductory part, the following result can be viewed as f -
Frequent Hypercyclicity Criterion for C-Regularized Semigroups:

Theorem 2.5. Suppose that A is a subgenerator of a global C-regularized semigroup
(S0(t))t≥0 on E and f : [0,∞) → [1,∞) is an increasing mapping. Set T (t)x :=
C−1S0(t)x, t ≥ 0, x ∈ Z1(A) and mk := f(k), k ∈ N. Suppose that there are a
number t0 > 0, a dense subset E0 of E and mappings Sn : E0 → R(C) (n ∈ N) such
that the following conditions hold for all y ∈ E0:

(i) The series
k∑

n=1
T (t0bmkc)Sbmk−ncy converges unconditionally, uniformly in k ∈ N.

(ii) The series
∞∑
n=1

T (t0bmkc)Sbmk+ncy converges unconditionally, uniformly in k ∈ N.

(iii) The series
∞∑
n=1

Sbmncy converges unconditionally, uniformly in n ∈ N.

(iv) lim
n→∞

T (t0bmnc)Sbmncy = y.

(v) R(C) is dense in E.
Then (S0(t))t≥0 is f -frequently hypercyclic and the operator T (t0) is l-(mk)-frequently
hypercyclic.

Proof. Without loss of generality, we may assume that t0 = 1. It is clear that (mk)
is an increasing sequence in [1,∞). Define the sequence of operators (Tn)n∈N ⊆
L([R(C)], E) by Tnx := T (n)x, n ∈ N, x ∈ R(C). Due to (1), we get that Tnx =
T (1)nx for x ∈ R(C). Then the prescribed assumptions (i)-(iv) in combination with [21,
Theorem 3.1] imply that the sequence (Tn)n∈N is l-(mk)-frequently hypercyclic, which
means that there exists an element x = Cy ∈ R(C), for some y ∈ E, satisfying that
for each open non-empty subset V ′ of E there exists an increasing sequence (kn)
of positive integers such that the interval [1, f(kn)] contains at least knc elements
of set {k ∈ N : TkCy = S0(k)y ∈ V ′}. Since Tn ⊆ T (1)n, the above clearly im-
plies that the operator T (1) is l-(mk)-frequently hypercyclic with x = Cy being its
l-(mk)-frequently hypercyclic vector. We will prove that Cx = C2y is an f -frequently
hypercyclic vector for (S0(t))t≥0, i.e., that for each open non-empty subset V of E we
have df ({t ≥ 0 : T (t)Cx = S0(t)Cy ∈ V

}
) > 0; see also the proof of [23, Proposition

2.1]. Let such a set V be given. Then, due to our assumption (v), there exist an
element z ∈ E and a positive integer n ∈ N such that Ln(Cz, ε) ⊆ V. By the local
equicontinuity of (S0(t))t≥0 and the continuity of C, we get that there exist an integer
m ∈ N and a positive constant c > 1 such that pn(Cx) ≤ cpm(x), x ∈ E and

pn
(
S0(k + δ)Cy − S0(k)Cy

)
≤ pn

(
S0(k + δ)Cy − Cz

)
+ pn

(
S0(k)Cy − Cz

)
≤ pn

(
S0(δ)

[
S0(k)y − z

])
+ pn

(
S0(δ)z − Cz

)
+ pn

(
S0(k)Cy − Cz

)
≤ cpm

(
S0(k)y − z

)
+ pn

(
S0(δ)z − Cz

)
, δ ∈ [0, 1]. (3)
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Set V ′ := Lm(z, ε/3c). Then, by the foregoing, we know that there exists an increasing
sequence (kn) of positive integers such that the interval [1, f(kn)] contains at least
knc elements of set A := {k ∈ N : TkCy = S0(k)y ∈ V ′}. For any k ∈ A, we have
pm(S0(k)y − z) < ε/3c; further on, (3) yields that there exists a positive constant
δ0 > 0 such that pn(S0(k + δ)Cy − S0(k)Cy) < 2ε/3 for all δ ∈ [0, δ0]. This implies

pn
(
S0(k+δ)Cy−Cz

)
≤ pn

(
S0(k+δ)Cy−S0(k)Cy

)
+pn

(
S0(k)Cy−Cz

)
<

2ε

3
+
ε

3
= ε,

for any k ∈ A and δ ∈ [0, δ0]. By virtue of this, we conclude that S0(k+ δ)Cy ∈ V for
any k ∈ A and δ ∈ [0, δ0], finishing the proof of theorem in a routine manner. �

Plugging f(t) := tq+1, t ≥ 0 (q ≥ 1), we obtain a sufficient condition for q-frequent
hypercyclicity of (S0(t))t≥0 and T (t0).

Remark 2.6. Consider the situation of Theorem 2.5 with A being a subgenerator of
a global α-times integrated C-semigroup (Sα(t))t≥0 on X, n ≥ dαe and the Fréchet
space [C(D(An))] being separable. It is well known that C(D(An)) ⊆ Z1(A); if
x = Cy ∈ C(D(An)), then for every t ≥ 0,

G
(
δt
)
x =

dn

dtn
C−1Sn(t)x =

dn

dtn
Sn(t)y = Sn(t)Any +

n−1∑
i=0

tn−i−1

(n− i− 1)!
CAn−1−iy.

Furthermore, for every t ≥ 0, the mapping G(δt) : [C(D(An))] → X is linear and
continuous as well as the operator family (G(δt))t≥0 ⊆ L([C(D(An))], X) is strongly
continuous; see e.g. the proof of [9, Theorem 5.4]. But, it is not clear how to prove
that the l-(mk)-frequent hypercyclicity of a single operator G(δt0)|C(D(An)), for some
t0 > 0, implies the l-(mk)-frequent hypercyclicity of (Sn(t))t≥0 because an analogue
of the estimate (3) seems to be not attainable for integrated C-semigroups. The
interested reader may try to prove an analogue of [18, Theorem 3.1.32] for l-(mk)-
frequent hypercyclicity.

Suppose now that F ∈ P (P (N)) and F 6= ∅. If F satisfies the following property:
(I) A ∈ F and A ⊆ B imply B ∈ F ,
then it is said that F is a Furstenberg family; a proper Furstenberg family F is any
Furstenberg family satisfying that ∅ /∈ F . See [14] for more details.

From the proof of Theorem 2.5, we may deduce the following.

Proposition 2.7. Let F be a Furstenberg family. Suppose that A is a subgenerator
of a global C-regularized semigroup (S0(t))t≥0 on E and T (t)x := C−1S0(t)x, t ≥ 0,
x ∈ Z1(A). If R(C) is dense in E, t0 > 0 and x ∈ Z1(A) is an F-hypercyclic element
of T (t0), then x is an F ′-hypercyclic element of (S0(t))t≥0, where

F ′ =

{
B ⊆ [0,∞) : (∃A ∈ F) (∃δ0 > 0)

⋃
k∈A

[k, k + δ0] ⊆ B
}
. (4)

An upper Furstenberg family is any proper Furstenberg family F satisfying the
following two conditions:
(II) There are a set D and a countable set M such that F =

⋃
δ∈D

⋂
ν∈M Fδ,ν , where

for each δ ∈ D and ν ∈M the following holds: If A ∈ Fδ,ν , then there exists a finite
subset F ⊆ N such that the implication A ∩ F ⊆ B ⇒ B ∈ Fδ,ν holds true.



M. Kostić 89

(III) If A ∈ F , then there exists δ ∈ D such that, for every n ∈ N, we have A− n ≡
{k − n : k ∈ A, k > n} ∈ Fδ, where Fδ ≡

⋂
ν∈M Fδ,ν .

Appealing to [6, Theorem 22] in place of [21, Theorem 3.1], and repeating almost
literally the arguments given in the proof of Theorem 2.5, we may deduce the following
result.

Theorem 2.8. Suppose that F =
⋃
δ∈D

⋂
ν∈M Fδ,ν is an upper Furstenberg family

and A is a subgenerator of a global C-regularized semigroup (S0(t))t≥0 on E. Set
T (t)x := C−1S0(t)x, t ≥ 0, x ∈ Z1(A). Suppose that there are a number t0 > 0, two
dense subsets E′0 and E′′0 of E and mappings Sn : E′′0 → R(C) (n ∈ N) such that for
any y ∈ E′′0 and ε > 0 there exist A ∈ F and δ ∈ D such that:
(i) For every x ∈ E′0, there exists some B ∈ Fδ, B ⊆ A such that, for every n ∈ B,
one has S0(t0n)x ∈ L(0, ε).

(ii) The series
∑
n∈A Sny converges.

(iii) For every m ∈ A, we have T (mt0)
∑
n∈A Sny − y ∈ L(0, ε).

(iv) R(C) is dense in E.
Then the operator T (t0) is F-hypercyclic and (S0(t))t≥0 is F ′-hypercyclic, where F ′
is given by (4).

Remark 2.9. Collection of all non-empty subsets A ⊆ [0,∞) for which dqc(A) > 0
forms an upper Furstenberg family ( [6,21]), so that Theorem 2.8 with f(t) = tq + 1,
t ≥ 0 (q ≥ 1) gives a sufficient condition for the upper q-frequent hypercyclic-
ity of (S0(t))t≥0 and T (t0). It can be simply proved that the validity of condition

lim supt→∞
f(t)
t > 0 for an increasing function f : [0,∞) → [1,∞) implies that the

collection of all non-empty subsets A ⊆ [0,∞) such that df (A) > 0 forms an upper
Furstenberg family, as well.

We continue by stating two intriguing consequences of Theorem 2.5. The first one
is motivated by the well-known results of S. El Mourchid [13, Theorem 2.1] and E.
M. Mangino, A. Peris [23, Corollary 2.3]; see also [18, Theorem 3.1.40].

Theorem 2.10. Let t0 > 0, let K = C, and let A be a subgenerator of a global C-
regularized semigroup (S0(t))t≥0 on E. Suppose that R(C) is dense in E. Set T (t)x :=
C−1S0(t)x, t ≥ 0, x ∈ Z1(A).
(i) Assume that there exists a family (fj)j∈Γ of locally bounded measurable mappings
fj : Ij → E such that Ij is an interval in R, Afj(t) = itfj(t) for every t ∈ Ij , j ∈ Γ
and span{fj(t) : j ∈ Γ, t ∈ Ij} is dense in E. If fj ∈ C2(Ij : X) for every j ∈ Γ,
then (S0(t))t≥0 is frequently hypercyclic and each single operator T (t0) is frequently
hypercyclic.

(ii) Assume that there exists a family (fj)j∈Γ of twice continuously differentiable map-
pings fj : Ij → E such that Ij is an interval in R and Afj(t) = itfj(t) for every t ∈ Ij ,
j ∈ Γ. Set Ẽ := span{fj(t) : j ∈ Γ, t ∈ Ij}. Then A|Ẽ is a subgenerator of a global

C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0 on Ẽ, (S0(t)|Ẽ)t≥0 is frequently hypercyclic in

Ẽ and the operator T (t0)|Ẽ is frequently hypercyclic in Ẽ.
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Proof. Consider first the statement (i). Arguing as in the Banach space case [23,
Corollary 2.3], we get that there exists a family (gj)j∈Λ of functions gj ∈ C2(R :
E) with compact support such that Agj(t) = itgj(t) for every t ∈ R, j ∈ Λ and
span{gj(t) : j ∈ Λ, t ∈ R} is dense in E. For every λ ∈ Λ and r ∈ R, set ψr,λ :=∫∞
−∞ e−irsgλ(s) ds. Then we have

T (t)ψr,λ = ψr−t,λ, t ≥ 0, r ∈ R, λ ∈ Λ (5)

and the part (i) follows by applying Theorem 2.5 with the sequence mk := k (k ∈ N),
E0 := C(span{gj(t) : j ∈ Λ, t ∈ R}) and the operator Sn : E0 → R(C) given by
Sn(Cψr,λ) := Cψt0n+r,λ (n ∈ N, r ∈ R, λ ∈ Λ) and after that linearly extended to
E0 in the obvious way; here, it is only worth noting that the conditions (i)-(iii) follow
from (5) and the fact that the series

∑∞
n=1 ψt0n+r,λ and

∑∞
n=1 ψ−t0n+r,λ converge

absolutely (and therefore, unconditionally) since for each seminorm pl(·), where l ∈ N,
there exists a finite constant cl > 0 such that pl(ψt0n+r,λ) + pl(ψ−t0n+r,λ) ≤ cln

−2,
n ∈ N (r ∈ R, λ ∈ Λ). This can be seen by applying integration by parts twice, as in
the proof of [15, Lemma 9.23(b)].

For the proof of (ii), it is enough to observe that an elementary argumentation
shows that A|Ẽ is a subgenerator of a global C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0

on Ẽ. Then we can apply (i) to finish the proof. �

The following application of Theorem 2.10 is quite illustrative (C = I).

Example 2.11. Consider the operator A := d/dt, acting with maximal domain in
the Banach space E := BUC(R), consisting of all bounded uniformly continuous
functions. Then σp(A) = iR and Aeλ· = λeλ·, λ ∈ iR. It is well-known that the

space Ẽ := span{eλ· : λ ∈ iR} coincide with the space of all almost-periodic functions
AP (R); see [12] for more details on the subject. Due to Theorem 2.10 (ii), we have
that the translation semigroup (T (t))t≥0 is frequently hypercyclic in AP (R) and, for
every t > 0, the operator T (t) is frequently hypercyclic in AP (R); the same holds if
frequent hypercyclicity is replaced with Devaney chaoticity or topologically mixing
property [18]. We can similarly prove that the translation semigroup is frequently
hypercyclic in the Fréchet space C(R) and that, for every t > 0, the translation
operator f 7→ f(·+ t), f ∈ C(R) is frequently hypercyclic in C(R).

The subsequent version of Desch-Schappacher-Webb criterion for frequent hyper-
cyclicity can be proved similarly; it is, actually, a simple consequence of Theorem 2.10
(see also [18, Theorem 3.1.36]).

Theorem 2.12. Let t0 > 0, let K = C, and let A be a subgenerator of a global C-
regularized semigroup (S0(t))t≥0 on E. Suppose that R(C) is dense in E. Set T (t)x :=
C−1S0(t)x, t ≥ 0, x ∈ Z1(A).
(i) Assume that there exists an open connected subset Ω of C, which satisfies σp(A) ⊇
Ω and intersects the imaginary axis, and f : Ω→ E is an analytic mapping satisfying
f(λ) ∈ N(A−λ)\{0}, λ ∈ Ω. Assume, further, that (x∗ ◦f)(λ) = 0, λ ∈ Ω, for some
x∗ ∈ E∗, implies x∗ = 0. Then (S0(t))t≥0 is frequently hypercyclic and each single
operator T (t0) is frequently hypercyclic.
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(ii) Assume that there exists an open connected subset Ω of C, which satisfies σp(A) ⊇
Ω and intersects the imaginary axis, and f : Ω→ E is an analytic mapping satisfying
f(λ) ∈ N(A−λ)\{0}, λ ∈ Ω. Put E0 := span{f(λ) : λ ∈ Ω} and Ẽ := E0. Then A|Ẽ
is a subgenerator of a global C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0 on Ẽ, (S0(t)|Ẽ)t≥0

is frequently hypercyclic in Ẽ and the operator T (t0)|Ẽ is frequently hypercyclic in Ẽ.

Using Theorem 2.12 and the proof of [18, Theorem 3.1.38] (see also [19, Theorem
2.2.10]), we may deduce the following result.

Theorem 2.13. Let θ ∈ (0, π2 ), let K = C, and let −A generate an exponentially
equicontinuous, analytic strongly continuous semigroup of angle θ. Assume n ∈ N,
an > 0, an−i ∈ C, 1 ≤ i ≤ n, D(p(A)) = D(An), p(A) =

∑n
i=0 aiA

i and n(π2−θ) <
π
2 .

(i) Suppose there exists an open connected subset Ω of C, satisfying σp(−A) ⊇ Ω,
p(−Ω) ∩ iR 6= ∅, and f : Ω → E is an analytic mapping satisfying f(λ) ∈ N(−A −
λ) \ {0}, λ ∈ Ω. Let (x∗ ◦ f)(λ) = 0, λ ∈ Ω, for some x∗ ∈ E∗ imply x∗ = 0.
Then, for every α ∈ (1, π

nπ−2nθ ), there exists ω ∈ R such that p(A) generates an

entire e−(p(A)−ω)α-regularized group (S0(t))t∈C. Furthermore, (S0(t))t≥0 is frequently
hypercyclic and, for every t > 0, the operator C−1S0(t) is frequently hypercyclic.

(ii) Suppose there exists an open connected subset Ω of C, satisfying σp(−A) ⊇ Ω,
p(−Ω) ∩ iR 6= ∅, and f : Ω → E is an analytic mapping satisfying f(λ) ∈ N(−A −
λ) \ {0}, λ ∈ Ω. Let E0 and Ẽ be as in the formulation of Theorem 2.12 (ii).
Then there exists ω ∈ R such that, for every α ∈ (1, π

nπ−2nθ ), p(A) generates an

entire e−(p(A)−ω)α-regularized group (S0(t))t∈C such that (S0(t)|Ẽ)t≥0 is frequently

hypercyclic and, for every t > 0, the operator C−1S0(t)Ẽ is frequently hypercyclic.

Theorem 2.10, Theorem 2.12 and Theorem 2.13 can be applied in a great number of
concrete situations. In what follows, we will continue our analyses from [18, Example
3.1.40, Example 3.1.41, Example 3.1.44].

Example 2.14. (i) ( [11]) Consider the following convection-diffusion type equation
of the form 

ut = auxx + bux + cu := −Au,
u(0, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0.

As it is well known, the operator−A, acting with domainD(−A) = {f ∈W 2,2([0,∞)) :
f(0) = 0}, generates an analytic strongly continuous semigroup of angle π/2 in the

space E = L2([0,∞)), provided a, b, c > 0 and c < b2

2a < 1. The same conclusion holds
true if we consider the operator −A with the domain D(−A) = {f ∈ W 2,1([0,∞)) :
f(0) = 0} in E = L1([0,∞)). Set

Ω :=

{
λ ∈ C :

∣∣∣λ− (c− b2

4a

)∣∣∣ ≤ b2

4a
, =λ 6= 0 if <λ ≤ c− b2

4a

}
.

Let p(x) =
∑n
i=0 aix

i be a nonconstant polynomial such that an > 0 and p(−Ω)∩iR 6=
∅ (this condition holds provided that a0 ∈ iR). An application of Theorem 2.13 (i)
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shows that there exists an injective operator C ∈ L(E) such that p(A) generates an
entire C-regularized group (S0(t))t≥0 satisfying that (S0(t))t≥0 is frequently hyper-
cyclic and each single operator T (t0) is frequently hypercyclic (t0 > 0).

(ii) ( [17]) Let X be a symmetric space of non-compact type (of rank one) and p > 2.
Then there exists an injective operator C ∈ L(Lp\ (X)) such that for each c ∈ R
the operator ∆\

X,p − c generates an entire C-regularized group (S0(t))t≥0 in Lp\ (X).
Furthermore, owing to [17, Theorem 3.1] and Theorem 2.13 (i), there exists a number
cp > 0 such that, for every c > cp, the semigroup (S0(t))t≥0 is frequently hypercyclic
in Lp\ (X) and each single operator T (t0) is frequently hypercyclic in Lp\ (X) (t0 > 0).

(iii) ( [19]) Suppose that α > 0, τ ∈ iR \ {0} and E := BUC(R). After the usual
matrix conversion to a first order system, the equation τutt + ut = αuxx becomes

d

dt
~u(t) = P (D)~u(t), t ≥ 0, where D ≡ −i d

dx
, P (x) ≡

[
0 1

−ατ x
2 − 1

τ

]
,

and P (D) acts on E ⊕ E with its maximal distributional domain. The polynomial
matrix P (x) is not Petrovskii correct and applying [?, Theorem 14.1] we get that
there exists an injective operator C ∈ L(E ⊕ E) such that P (D) generates an entire
C-regularized group (S0(t))t≥0, with R(C) dense. Define the numbers ω1, ω2 ∈
[0,+∞] and functions ψr,j ∈ E ⊕ E (r ∈ R, j = 1, 2) as it has been done in [18,

Example 3.1.44]; Ẽ := span{ψr,j : r ∈ R, j = 1, 2}. Due to Theorem 2.10 (ii), we

have that (S0(t)|Ẽ)t≥0 is frequently hypercyclic in Ẽ and, for every t > 0, the operator

C−1S0(t)|Ẽ is frequently hypercyclic in Ẽ.

(iv) ( [10]) Denote by (WQ(t))t≥0 the e−(−B2)N -regularized semigroup generated by
the operator Q(B), whose existence has been proved in [10, Lemma 5.2]. If the
requirement stated in the formulation of [10, Theorem 5.3] holds, then (WQ(t))t≥0

and each single operator e(−B2)NWQ(t0) is frequently hypercyclic (t0 > 0); this simply
follows from an application of Theorem 2.12 (i).

(v) ( [18]) Finally, we turn our attention to integrated semigroups. Let n ∈ N, ρ(t) :=
1

t2n+1 , t ∈ R, Af := f ′, D(A) := {f ∈ C0,ρ(R) : f ′ ∈ C0,ρ(R)}, En := (C0,ρ(R))n+1,

D(An) := D(A)n+1 and An(f1, · · ·, fn+1) := (Af1 + Af2, Af2 + Af3, · · ·, Afn +
Afn+1, Afn+1), (f1, · · ·, fn+1) ∈ D(An). Then ±An generate global polynomially
bounded n-times integrated semigroups (Sn,±(t))t≥0 and neither An nor −An gener-
ates a local (n− 1)-times integrated semigroup. If we denote by G±,n the associated
distribution semigroups generated by ±An, then for every ϕ1, · · ·, ϕn+1 ∈ D, we have:

G±,n(δt)
(
ϕ1, · · ·, ϕn+1

)T
=
(
ψ1, · · ·, ψn+1

)T
,

where ψi(·) =

n+1−i∑
j=0

(±t)j

j!
ϕ

(j)
i+j(· ± t), 1 ≤ i ≤ n+ 1.
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Set E0 := Dn+1 and Sk(ϕ1, · · ·, ϕn+1)T := (φ1, · · ·, φn+1)T , where

φi(·) =

n+1−i∑
j=0

(∓kt0)j

j!
ϕ

(j)
i+j(· ∓ kt0), 1 ≤ i ≤ n+ 1,

for any k ∈ N, t0 > 0 and ϕ1, · · ·, ϕn+1 ∈ D. Then we can simply verify (see also [18,
Example 3.2.39]) that the conditions of Theorem 2.5 hold with C = (λ∓An)−n, where
ρ(±An) 3 λ > 0 is sufficiently large, since the series in (i)-(iii) from the formulation
of this theorem converge absolutely. Hence, the integrated semigroups (Sn,±(t))t≥0

are frequently hypercyclic in En and for each each number t0 > 0 the single operators
G±,n(δt0) are frequently hypercyclic in En.

It is worth noting that, for any C-regularized semigroup or integrated semigroup
considered above, say (S(t))t≥0, any finite direct sum (S(t) ⊕ S(t) ⊕ · · · ⊕ S(t))t≥0

is again frequently hypercyclic or subspace frequently hypercyclic, with the meaning
clear. The same holds for finite direct sums of considered single operators (cf. [7] for
more details about this topic).
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