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Abstract. In this paper we introduce and consider the hyperbolic sets for the flows on
pseudo-Riemannian manifolds. If Λ is a hyperbolic set for a flow Φ, then we show that at
each point of Λ we have a unique decomposition for its tangent space up to a distribution
on the ambient pseudo-Riemannian manifold. We prove that we have such decomposition
for many points arbitrarily close to a given member of Λ.

1. Introduction

Hyperbolic sets for vector fields and discrete dynamical systems on Riemannian man-
ifolds have been considered deeply by many mathematicians and physicists [1, 3,5–8,
11–13], and nowadays it is one of the main tools for considering qualitative behavior
of dynamical systems [3, 6]. We have extended this notion for discrete dynamical
systems created by a diffeomorphism from a finite dimensional pseudo-Riemannian
manifold to itself in [10], and here we present an extension of this notion for the flows
on finite dimensional pseudo-Riemannian manifolds. We prove that the hyperbolic
behavior creates a unique decomposition for the tangent space at each point of a
hyperbolic set (see Theorem 2.2) with the exponential behavior on two components
of this decomposition. By using a connection which preserves the pseudo-metric on
parallel transition we find a kind of convergence of suitable bases of the decomposition
of a sequence of points to suitable bases of their limit point (see Theorem 3.1).

2. Hyperbolic behavior on a set

We assume that M is a finite dimensional smooth manifold with a smooth pseudo-Rie-
mannian metric g. If p ∈ M , then the vectors in the tangent space TpM are divided
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118 Hyperbolic sets for the flows

into three classes named timelike, spacelike, and null classes. A vector v ∈ TpM
belongs to timelike class, spacelike class or null class if gp(v, v) < 0, gp(v, v) > 0, or
gp(v, v) = 0 respectively. The nondegeneracy of g implies that its matrix in a local
coordinate has no zero eigenvalues. The number of positive eigenvalues minus the
number of negative eigenvalues of the matrix g at p ∈ M is called the signature of
g at p. Since g is continuous on M then its eigenvalues vary continuously, so the
nondegeneracy of g implies that they are nonzero continuous functions on M . Hence
if M is a connected manifold then the signature of g is constant at each point of M .

We assume that Φ = {φt : t ∈ R} is a C1-flow on M , i.e., the map (t, p) 7→ φt(p)
is a C1-map, φ0 is the identity map, and φt ◦ φs = φt+s for all t, s ∈ R. A subset Λ
of M is called an invariant set for Φ if φt(Λ) = Λ for all t ∈ R.

Definition 2.1. An invariant set Λ for Φ is called a hyperbolic set for Φ up to a
distribution p 7→ En(p), if there exist positive constants a and b with b < 1 and a
decomposition TpM = E0(p)⊕ Es(p)⊕ Eu(p)⊕ En(p) for each p ∈ C such that:
(i) Each non-zero vector in the subspace Es(p) or the subspace Eu(p) is timelike or
spacelike, each vector of En(p) is a null vector, and E0(p) is the subspace generated
by the vector X(p) = d

dtφ
t(p)|t=0;

(ii) Dφt(p)Es(p) = Es(φt(p)) and Dφt(p)Eu(p) = Eu(φt(p)) for all t ∈ R;

(iii) if v ∈ Es(p) and t > 0 then |gφt(p)(Dφ
t(p)(v), Dφt(p)(v))| ≤ abt|gp(v, v)| and

limt→∞ gφt(p)(Dφ
t(p)(v), Dφt(p)(w)) = 0 for each non-null vector w ∈ TpM with the

following property: |gφt(p)(Dφ
t(p)(w), Dφt(p)(w))| ≤ abt|gp(w,w) for all t > 0;

(iv) if v ∈ Eu(p) and t > 0 then |gφt(p)(Dφ
t(p)(v), Dφt(p)(v))| ≥ a−1b−t|gp(v, v)|.

In the case of Riemannian manifolds we put the compactness condition in the
definition of a hyperbolic set, but here we remove this condition. Since the spheres
in pseudo-Riemannian manifolds may not be compact, we cannot use this tool here.

Theorem 2.2. If Λ is a hyperbolic set for Φ up to a distribution p 7→ En(p), then
for each p ∈ Λ, the tangent space of M at p has a unique decomposition with the
properties described in Definition 2.1.

Proof. Suppose that for a given p ∈ Λ we have

TpM = E0(p)⊕ Es1(p)⊕ Eu1 (p)⊕ En(p) = E0(p)⊕ Es2(p)⊕ Eu2 (p)⊕ En(p),

where Esi (·), and Eui (·) satisfy the axioms of Definition 2.1. Then Es1(p) ⊕ Eu1 (p) =
Es2(p)⊕Eu2 (p). Hence a given u ∈ Es1(p) can be written as u = v+w, where v ∈ Es2(p)
and w ∈ Eu2 (p). Since w ∈ Eu2 (p) then for each t > 0 we have

a−1b−t|gp(w,w)| ≤ |gφt(p)(Dφ
t(p)(w), Dφt(p)(w))|

= |gφt(p)(Dφ
t(p)(u− v), Dφt(p)(u− v))|

= |gφt(p)(Dφ
t(p)(u), Dφt(p)(u)) + gφt(p)(Dφ

t(p)(v), Dφt(p)(v))

− 2gφt(p)(Dφ
t(p)(u), Dφt(p)(v))|

≤ |gφt(p)(Dφ
t(p)(u), Dφt(p)(u))|+ |gφt(p)(Dφ

t(p)(v), Dφt(p)(v))|



M.R. Molaei 119

+ 2|gφt(p)(Dφ
t(p)(u), Dφt(p)(v))|

≤ abt|gp(u, u)|+ abt|gp(v, v)|+ 2|gφt(p)(Dφ
t(p)(u), Dφt(p)(v))|.

Axiom (iii) of Definition 2.1 implies that the right-hand side of the former inequality
tends to zero when t tends to infinity. Thus |gp(w,w)| = 0. Hence w ∈ En(p) ∩
Eu2 (p) = {0}. Therefore Es1(p) ⊆ Es2(p). By replacing Es1(p) with Es2(p) we have
Es2(p) ⊆ Es1(p). Thus Es2(p) = Es1(p), and this implies Eu2 (p) = Eu1 (p). Hence we
have a unique decomposition for TpM . �

We now give an example of a hyperbolic set up to a pseudo-Riemannian metric
on R2 which is not a hyperbolic set with any Riemannian metric on R2.

Example 2.3. R2 with the metric g((a, b), (c, d)) = ac− bd is a Lorentzian manifold.
Let Φ be the flow of the smooth vector field X(a, b) = (−ab + b2,−ab + a2). The
set Λ = {(x, x) : x > 0} is a hyperbolic set for Φ up to the distribution En(·) =
{(a, a) : a ∈ R}. Since X(x, x) = {(0, 0)}, then E0(x, x) = {(0, 0)}. For x > 0 we
have Eu(x, x) = {(0, 0)}, Es(x, x) = {(−x, x) : x ∈ R} and T(x,x)R2 = E0(x, x) ⊕
Es(x, x)⊕ Eu(x, x)⊕ En(x, x) (see Figure 1).

Figure 1: Λ = {(x, x) : x > 0} is a hyperbolic set for the flow of X(a, b) = (−ab+b2,−ab+a2).

3. Hyperbolic decomposition

Now we assume that ∇ is a Levi-Civita connection on a pseudo-Riemannian manifold
M , i.e., it is a torsion free pseudo-Riemannian connection on M compatible with the
metric g. This means that in a local coordinate of p ∈ M we have ∇∂i∂j = Γkij∂k,

where {∂i : i = 1, . . . ,m} is a basis for TpM , and the Christoffel symbols Γkij are

determined by the following equations [9]: 1
2 (∂jgli + ∂iglj − ∂lgij) = glkΓkij , where

gij = g(∂i, ∂j).
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The reader has to pay attention at this point that we use Einstein’s summation
convention.

If γ : (−ε, ε) → M is a smooth curve passing through p, then a smooth map
X : (−ε, ε)→ TM is called a smooth vector field along γ if X(t) ∈ Tγ(t)M . A vector

field Y along γ is called a parallel vector field if DY
dt = 0, where DY

dt is the covariant
derivative of Y which is defined in a local chart by

DY

dt
(t) =

dY j

dt
(t)∂j + Y j(t)∇∂jγ̇(t) =

dY j

dt
(t)∂j + Y k(t)γ̇i(t)Γjik(γ(t))∂j , (1)

where Y = Y k∂k. If we take v ∈ TpM then the existence and uniqueness theorem
for ordinary differential equations implies that equation (1) with the initial condition
Y (0) = v has a unique solution Y (t). We denote the parallel vector field Y (t) deduced
from the initial condition Y (0) = v by Pt(v) or v(t). As in [10], if v ∈ Tγ(t)M and
E is a subspace of Tγ(s)M with the basis BE , where t, s ∈ (−ε, ε), then d(v,BE)
is defined by d(v,BE) = inf{|gγ(s)(v(s − t) − w, v(s − t) − w)| : w ∈ BE}. For
s, t ∈ (−ε, ε), if E and F are two subspaces of Tγ(s)M and Tγ(t)M with the basis BE
and BF , respectively, then d(BE , BF ) is defined by d(BE , BF ) = max{a, b}, where
a = max{d(v,BF ) : v ∈ BE}, and b = max{d(u,BE) : u ∈ BF }. We now assume that
Λ is a hyperbolic set for the flow Φ up to an r-dimensional distribution q 7→ En(q), and
γ : (−ε, ε) → M is a smooth curve passing through p ∈ Λ. With these assumptions
we have the next theorem.

Theorem 3.1. Suppose {tn} is a sequence with γ(tn) ∈ Λ and tn → 0. If Pt(E
0(p)) =

E0(γ(t)), then for a subsequence {sn} of {tn}, there exist bases BEs(γ(sn)) and BEu(γ(sn))

for Es(γ(sn)) and Eu(γ(sn)), and bases BEs(p) and BEu(p) for Es(p) and Eu(p) so
that d(BEs(α(sn)), BEs(p))→ 0, and d(BEu(α(sn)), BEu(p))→ 0.

Proof. Since 0 ≤ dim(Es(γ(tn))) ≤ m = dimM for all n ∈ N , then there exist
a subsequence {sn ∈ [− ε

2 ,
ε
2 ] : n ∈ N} of {tn} and a constant k ∈ N such that

dim(Es(γ(sn)) = k for all n ∈ N . We take a pseudo-orthonormal basis BEs(γ(s1)) =
{v11, v12, . . . , v1k} for Es(γ(s1)). The pseudo-orthonormal basis is a basis with
|gγ(s1)(v1i, v1j)| = δij . ClearlyBEs(γ(sn)) = {vn1 = v11(sn−s1), vn2 = v12(sn−s1), . . . ,
vnk = v1k(sn−s1)} is a pseudo-orthonormal basis for Es(γ(sn)). If we fix i, then the
sequence {vni} is a convergence sequence in TM , and its limit is vi = limn→∞ v1i(sn−
s1) = v1i(−s1). Since g is a smooth tensor, then its continuity implies that vi /∈ En(p).
Moreover, the condition Pt(E

0(p)) = E0(γ(t)) implies vi /∈ E0(p), so vi ∈ Es(p) ⊕
Eu(p). Hence vi = u+ w with u ∈ Es(p) and w ∈ Eu(p). If t > 0, then

a−1b−t|gp(w,w)| ≤ |gφt(p)(Dφ
t(p)(w), Dφt(p)(w))|

= |gφt(p)(Dφ
t(p)(vi − u), Dφt(p)(vi − u))|

≤ |gφt(p)(Dφ
t(p)(vi), Dφ

t(p)(vi))|+ |gφt(p)(Dφ
t(p)(u), Dφt(p)(u))|

+ 2|gφt(p)(Dφ
t(p)(vi), Dφ

t(p)(u))|
= lim
n→∞

|gφt(γ(sn))(Dφ
t(γ(sn))(vni), Dφ

t(γ(sn))(vni))|

+ |gφt(p)(Dφ
t(p)(u), Dφt(p)(u))|
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+ 2 lim
n→∞

|gφt(γ(sn))(Dφ
t(γ(sn))(vni), Dφ

t(γ(sn))(u(sn)))|

≤ ( lim
n→∞

abtgφt(γ(sn))(vni, vni)) + abtgp(u, u)

+ 2 lim
n→∞

|gφt(γ(sn))(Dφ
t(γ(sn))(vni), Dφ

t(γ(sn))(u(sn))|

= abtgp(vi, vi) + abtgp(u, u)

+ 2 lim
n→∞

|gφt(γ(sn))(Dφ
t(γ(sn))(vni), Dφ

t(γ(sn))(u(sn))|.

We have limn→∞ |gφt(γ(sn))(Dφ
t(γ(sn))(vni), Dφ

t(γ(sn))(u(sn))| = 0. Hence the
above inequality is valid if |gp(w,w)| = 0, and this implies that w = 0, and vi ∈
Es(p). Therefore {v1, v2, . . . , vk} is a pseudo-orthonormal subset of Es(p). Hence
dim(Es(p)) ≥ k. The similar calculations imply that dim(Eu(p)) ≥ m−r−k. There-
fore dim(Es(p)) = k and dim(Eu(p)) = m−r−k. As a result BEs(p) = {v1, v2, . . . , vk}
is a basis for Es(p), and we have d(BEs(γ(sn)), BEs(p))→ 0, when n→∞. The similar
calculations imply that d(BEu(α(sn)), BEu(p))→ 0. �

Figure 2: Λ = {(0, a) : a > 0} is a partial hyperbolic set for the flow of X(a, b) = (−ab
3

, a2

2
)

on the Lorentzian manifold R2.

4. Conclusion

We see that if we separate the null vectors via a null distribution then we can detect the
hyperbolic dynamics on pseudo-Riemannian manifolds. In Example 2.3 we see that
a set of stationary points of a vector field is a hyperbolic set by the given Lorentzian
metric. This set is not a hyperbolic set in the case of Riemannian metrics.

The notion of partial hyperbolic set as another main object in smooth dynamical
systems on Riemannian manifolds [2,4] can be extended for a C1 flow Φ = {φt : t ∈ R}
on a pseudo-Riemannian manifolds via the results of this paper. In fact we say that
an invariant set Λ is a partial hyperbolic set for Φ if for each p ∈ Λ there exist
a splitting TpM = Ep ⊕ Fp ⊕ Gp, and positive real numbers a, b < 1, c with the
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following properties:
(i) Dφt(p)Ep = Eφt(p), Dφ

t(p)Fp = Fφt(p), and Dφt(p)Gp = Gφt(p) for all p ∈ Λ;

(ii) Ep 6= {0}, Fp 6= {0} and there is no any non-zero null vector in Ep ∪ Fp;

(iii) if v ∈ Ep and t > 0 then |gφt(p)(Dφ
t(p)(v), Dφt(p)(v))| ≤ abt|gp(v, v)| and

limt→∞ gφt(p)(Dφ
t(p)(v), Dφt(p)(w)) = 0 for each non-null vector w ∈ TpM with

the following property |gφt(p)(Dφ
t(p)(w), Dφt(p)(w))| ≤ abt|gp(w,w)| for all t > 0;

(iv) if 0 6= v ∈ Ep, 0 6= w ∈ Fp and t > 0 then

|gφt(p)(Dφ
t(p)(v), Dφt(p)(v))||gφ−t(p)(Dφ

−t(p)(w), Dφ−t(p)(w))|
≤ cbt|gp(v, v)||gp(w,w)|;

(v) each vector of Gp is a null vector.
We see that any hyperbolic set is a partially hyperbolic set (in this case c = a2),
but the converse is not true. For example with the space of Example 2.3 the set
Λ = {(0, a) : a ∈ R and a > 0} is a partially hyperbolic set for the flow of the

vector field X(a, b) = (−ab3 , a
2

2 ) on R2, but it is not a hyperbolic set up to any null
distribution on R2 (see Figure 2).

The consideration of partially hyperbolic sets in pseudo-Riemannian manifolds
can be a topic for further research.

We conclude this paper by posing a problem on hyperbolic sets: Suppose Λ is a
hyperbolic set for a flow Φ on M with the metric g. Is there any other metric g̃ on M
such that Λ is also a hyperbolic set with the metric g̃ and in Definition 2.1, a takes
the value one?
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