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Abstract. Let R be a commutative Noetherian ring and let I be a semidualizing ideal
of R. In this paper, it is shown that the GI -projective, GI -injective, and GI -flat dimensions
agree with Gpd R./I(−), Gid R./I(−), and Gfd R./I(−), respectively. Also, it is proved that
for a non-negative integer n if sup{GPI−pdR(M) |M ∈M(R)} ≤ n (or sup{GII−idR(M) |
M ∈M(R)} ≤ n), then for every projective (R ./ I)-module P we have idR./I(P ) ≤ n, and
for every injective (R ./ I)-module E we have pdR./I(E) ≤ n.

1. Introduction

Throughout this paper R is a commutative Noetherian ring and all modules are
unital. Recall that for an R-module M the idealization R nM (also called trivial
extension) introduced by Nagata in 1956 [13, Page 2], is a new ring where the module
M can be viewed as an ideal such that its square is 0. In [4], D’Anna and Fontana
considered a different type of construction obtained involving a ring R and an ideal
I ⊂ R that is denoted by R ./ I, called amalgamated duplication, and it is defined
R ./ I = {(r, r + i) | r ∈ R, i ∈ I}, as a subring of R ×R. The properties of the ring
R ./ I were studied extensively in [1,3–5,14,17]. Also, in [15], the authors focused on
the properties of R ./ I, when I is a semidualizing ideal of R, i.e., I is an ideal of R
and I is a semidualizing R-module. The notion of a “semidualizing module” was first
introduced by Foxby [8], and then Vasconcelos [18] and Golod [9] rediscovered these
modules using different terminology for different purposes.

In [11], the authors showed that how a semidualizing module C gives rise to three
new relative homological dimensions which are called GC-projective, GC-injective,
and GC-flat dimension. Also, they investigated the properties of these dimensions
and they suggested the view point that one should change ring from R to RnC and
they showed that the GC-projective, GC-injective, and GC-flat dimensions always
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agree with the ring changed Gorenstein dimensions Gpd RnC(−), Gid RnC(−), and
Gfd RnC(−), respectively.

This paper builds on work of Holm and Jörgensen [11] for the ring R ./ I, where
I is a semidualizing ideal, instead of idealization. In particular, it is shown that for
a semidualizing ideal I the GI -projective, GI -injective, and GI -flat dimensions agree
with Gpd R./I(−), Gid R./I(−), and Gfd R./I(−), respectively. Also, we give some
homological properties of (R ./ I)-modules, where I is a semidualizing ideal of the ring
R. In particular, it is proved that for a non-negative integer n if sup{GPI−pdR(M) |
M ∈M(R)} ≤ n (or sup{GII−idR(M) |M ∈M(R)} ≤ n), then for every projective
(R ./ I)-module P we have idR./I(P ) ≤ n, and for every injective (R ./ I)-module E
we have pdR./I(E) ≤ n.

2. Background material

Throughout this paper M(R) denotes the category of R-modules. We use the term
“subcategory” to mean a “full, additive subcategory X ⊆ M(R) such that, for all
R-modules M and N , if M ∼= N and M ∈ X , then N ∈ X”. Write P(R), F(R) and
I(R) for the subcategories of projective, flat and injective R-modules, respectively.

Definition 2.1. An R-complex is a sequence Y = · · ·
∂Y
n+1−→ Yn

∂Y
n−→ Yn−1

∂Y
n−1−→ · · · of

R-modules and R-homomorphisms such that ∂Yn−1∂
Y
n = 0 for each integer n. Let X

be a subcategory of M(R). The R-complex Y is HomR(X ,−)-exact if for each X in
X , the complex HomR(X,Y ) is exact, and similarly for HomR(−,X )-exact.

The notion of semidualizing modules, defined next, goes back at least to Foxby [8],
but was rediscovered by others.

Definition 2.2. A finitely generated R-module C is called semidualizing if the
natural homothety homomorphism χRC : R → HomR(C,C) is an isomorphism and

Ext≥1R (C,C) = 0.

Definition 2.3. Let C be a semidualizing R-module. An R-module is C-projective
(resp. C-flat or C-injective) if it is isomorphic to a module of the form P⊗RC for some
projective R-module P (resp. F ⊗R C for some flat R-module F or HomR(C, I) for
some injective R-module I). We let PC(R), FC(R) and IC(R) denote the categories
of C-projective, C-flat and C-injective R-modules, respectively.

The next two classes were also introduced by Foxby [8].

Definition 2.4. Let C be a semidualizing R-module. The Auslander class with
respect to C is the class AC(R) of R-modules M such that:
(i) TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for all i ≥ 1, and

(ii) the natural map γMC : M → HomR(C,C)⊗RM is an isomorphism.
The Bass class with respect to C is the class BC(R) of R-modules M such that:
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(i) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i ≥ 1, and

(ii) the natural evaluation map ξCM : C ⊗R HomR(C,M) −→M is an isomorphism.

The notion of precovers and preenvelopes, defined next, are from [6].

Definition 2.5. Let X be a subcategory of M(R). An X -precover of an R-module

M is an R-module homomorphism X
ϕ−→ M , where X ∈ X , and such that the map

HomR(X ′, ϕ) is surjective for every X ′ ∈ X . If every R-module admits X -precover,
then the class X is precovering. The notions of X -preenvelope and preenveloping are
defined dually.

Definition 2.6. Let C be a semidualizing R-module. In [12], it is shown that the
class PC(R) is precovering. So, one can iteratively take precovers to construct an
augmented proper PC-projective resolution for any R-module M , that is, a complex
X+ = · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ M −→ 0 which is HomR(PC(R),−)-
exact. The truncated complex X = · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ 0 is a proper
PC-projective resolution of M .

Dually, in [12] it is proved that the class IC(R) is enveloping. So, for an R-
module N one can construct an augmented proper IC-injective resolution, that is,
a complex Y + = 0 −→ N −→ HomR(C, I0) −→ HomR(C, I1) −→ · · · which is
HomR(−, IC(R))-exact. Also, in [12] it is shown that the class FC(R) is covering.
Similarly for an R-module M one can construct an augmented proper FC-flat resolu-
tion.

Fact 2.7. Note that X+ and Y + need not be exact. In [16, Corollary 2.4], it is proved
that if M is in BC(R) (resp. AC(R)), then every augmented proper PC-projective
resolution (resp. IC-injective resolution) of M is exact.

Definition 2.8. Let C be a semidualizing R-module and let M be an R-module. The
PC-projective dimension of M is PC−pdR(M) = inf{sup{n | Xn 6= 0} | X is a proper
PC-projective resolution of M}. The FC-projective dimension, denoted FC −pdR(−)
is defined similarly and the IC-injective dimension, denoted IC − idR(−) is defined
dually.

Fact 2.9 ([16, Theorem 2.11]). Let C be a semidualizing R-module. Then for every
R-module M , we have the following statements.
(i) pdR(M) = PC- pdR(C ⊗RM) and PC- pdR(M) = pdR(HomR(C,M)).

(ii) IC- idR(M) = idR(C ⊗RM) and idR(M) = IC- idR(HomR(C,M)).

Definition 2.10 ( [11]). Let C be a semidualizing R-module. A complete ICI-
resolution is a complex Y of R-modules satisfying the following:
(i) Y is exact and HomR(I, Y ) is exact for each I ∈ IC(R), and

(ii) Yi ∈ IC(R) for all i ≥ 0 and Yi is injective for all i < 0.
An R-module M is GC-injective if there exists a complete ICI-resolution Y such

that M ∼= Coker(∂Y1 ); in this case Y is a complete ICI-resolution of M . The class
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of all GC-injective R-modules is denoted by GIC(R). In the case C = R, we use the
more common terminology “complete injective resolution” and “Gorenstein injective
module” and the notation GI(R).

A complete PPC-resolution is a complex X of R-modules such that:

(i) X is exact and HomR(X,P ) is exact for each P ∈ PC(R), and

(ii) Xi is projective for all i ≥ 0 and Xi ∈ PC(R) for all i < 0.

An R-module M is GC-projective if there exists a complete PPC-resolution X
such that M ∼= Coker(∂X1 ); in this case X is a complete PPC-resolution of M . The
class of all GC-projective R-modules is denoted by GPC(R). In the case C = R, we
use the more common terminology “complete projective resolution” and “Gorenstein
projective module” and the notation GP(R).

A complete FFC-resolution is a complex Z of R-modules such that:

(i) Z is exact and Z ⊗R I is exact for each I ∈ IC(R), and

(ii) Zi is flat for all i ≥ 0 and Zi ∈ FC(R) for all i < 0.

An R-module M is GC-flat if there exists a complete FFC-resolution Z such that
M ∼= Coker(∂Z1 ); in this case Z is a complete FFC-resolution of M . The class of
all GC-flat R-modules is denoted by GFC(R). In the case C = R, we use the more
common terminology “complete flat resolution” and “Gorenstein flat module” and
the notation GF(R).

Fact 2.11 ([11]). Let C be a semidualizing module of the ring R. Then the following
statements hold:

(i) P(R) ⊆ GPC(R) and PC(R) ⊆ GPC(R).

(ii) I(R) ⊆ GIC(R) and IC(R) ⊆ GIC(R).

(iii) F(R) ⊆ GFC(R) and FC(R) ⊆ GFC(R).

Definition 2.12. Let C be a semidualizing module of the ring R and let M be an
R-module. A GPC-resolution of M is a complex of R-modules in GPC(R) of the form

X = · · · ∂
X
2−→ X1

∂X
1−→ X0 −→ 0 such that H0(X) ∼= M and Hn(X) = 0 for n ≥ 1. The

GPC-projective dimension of M is the quantity GPC − pdR(M) = inf{sup{n | Xn 6=
0} | X is an GPC-resolution of M}.

In particular, GPC − pdR(0) = −∞. The modules of GPC-projective dimension
zero are the non-zero modules in GPC(R). The GFC-resolution and GFC-projective
dimension are defined similarly.

Dually, an GIC-coresolution of M is a complex of R-modules in GIC(R) of the

form X = 0 −→ X0
∂X
0−→ X−1

∂X
−1−→ · · · such that H0(X) ∼= M and Hn(X) = 0

for n ≤ −1. The GIC-injective dimension of M is the quantity GIC − idR(M) =
inf{sup{n | Xn 6= 0} | X is an GIC-coresolution of M}.

In particular, GIC − idR(0) = −∞. The modules of GIC-injective dimension zero
are the non-zero modules in GIC(R).
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3. Amalgamation along a semidualizing ideal and relative Gorenstein
homological dimensions

The first aim of this section is to show that for a semidualizing ideal I of the ringR, i.e.,
I is an ideal of R and I is a semidualizing R-module, the GI -projective, GI -injective,
and GI -flat dimensions agree with Gpd R./I(−), Gid R./I(−), and Gfd R./I(−), re-
spectively.

First, we deal with some applications of a general construction, introduced in [4],
called amalgamated duplication of a ring along an ideal.

Let R be a commutative ring with unit element 1 and let I be an ideal of R. Set
R ./ I = {(r, s) | r, s ∈ R, s− r ∈ I}. It is easy to check that R ./ I is a subring, with
unit element (1, 1), of R × R (with the usual componentwise operations) and that
R ./ I = {(r, r + i) | r ∈ R, i ∈ I}. In the following, we recall some main properties
of the ring R ./ I from [3] which will be important later on.

Proposition 3.1. Let R be a ring and let I be an ideal of R. Then the following
statements hold.
(i) By introducing a multiplicative structure in the R-module direct sum R ⊕ I by
setting (r, i)(s, j) = (rs, rj+si+ ij), the map f : R⊕I → R ./ I defined by f((r, i)) =
(r, r + i) is a ring isomorphism and R-isomorphism too. Moreover, there is an exact

sequence of R-modules 0 −→ R
ϕ−→ R ./ I

ψ−→ I −→ 0 where ϕ(r) = (r, r) for all r ∈
R, and ψ((r, s)) = s− r, for all (r, s) ∈ R ./ I. Notice that this sequence splits; hence

we also have the short exact sequence of R-modules 0 −→ I
ψ′−→ R ./ I

ϕ′−→ R −→ 0,
where ψ′(i) = (0, i) and ϕ′((r, s)) = r, for every i ∈ I and (r, s) ∈ R ./ I.

(ii) R and R ./ I have the same Krull dimension. Also, if R is a Noetherian ring,
then R ./ I is a finitely generated R-module.

In [1, 3–5, 14, 17], the properties of the ring R ./ I were studied extensively. In
addition, in [15], the authors focused on the properties of R ./ I, where I is a semi-
dualizing ideal. Some of these results are collected in the following proposition.

Proposition 3.2 ([15, Lemmas 3.7 and 3.1(v)]). Let I be an ideal of the ring R.
Then the following statements hold.
(i) If E is a (faithfully) injective R-module, then HomR(R ./ I,E) is a (faithfully)
injective (R ./ I)-module.

(ii) Every injective (R ./ I)-module is a direct summand of the R-module HomR(R ./
I,E), where E is a injective R-module.

(iii) If I is a semidualizing ideal of the ring R, then for every injective R-module E we
have the following equivalence of (R ./ I)-module HomR./I(HomR(R ./ I,E),−) ∼=
HomR(HomR(I, E),−).

Using the same method of the proof of Proposition 3.2, we obtain the following
dual.
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Proposition 3.3. Let I be an ideal of the ring R. Then the following statements
hold.
(i) If P is a projective R-module, then (R ./ I)⊗R P is a projective (R ./ I)-module.

(ii) Every projective (R ./ I)-module is a direct summand of the R-module (R ./
I)⊗R P , where P is a projective R-module.

(iii) If I is a semidualizing ideal of the ring R, then for every projective R-module Q
we have the following equivalence of (R ./ I)-module HomR./I(−, (R ./ I) ⊗R Q) ∼=
HomR(−, I ⊗R Q).

Corollary 3.4. Let I be a semidualizing ideal of the ring R and let M be an R-
module. Then the following statements hold for any integer n.
(i) ExtnR(HomR(I, J),M) = 0 for any injective R-module J if and only if for any
injective (R ./ I)-module U we have ExtnR./I(U,M) = 0.

(ii) ExtnR(M, I ⊗R P ) = 0 for any projective R-module P if and only if for any
projective (R ./ I)-module S we have ExtnR./I(M,S) = 0.

Proof. The item (i) follows from Proposition 3.2 while the item (ii) is a consequence
of Proposition 3.3. �

Proposition 3.5. Let I be an ideal of the ring R and let M be an R-module. If E
is a faithfully injective R-module, then Gid R./I(HomR(M,E)) = Gfd R./I(M).

Proof. By Proposition 3.2 (i), L = HomR(R ./ I,E) is a faithfully injective (R ./ I)-
module. Therefore, [2, Theorem 6.4.2] implies that Gid R./I(HomR./I(M,L)) =
Gfd R./I(M). In the following sequence, the first isomorphism follows from adjoint-
ness and the second one follows from tensor cancellation.

HomR./I(M,L) = HomR./I(M,HomR(R ./ I,E))
∼= HomR((R ./ I)⊗R./I M,E) ∼= HomR(M,E).

Proposition 3.6 ([7, Proposition 2.2]). Let I be a semidualizing ideal of the ring R
and let M be an R-module which is Gorenstein injective over R ./ I. Then there exists
a short exact sequence of R-modules 0→M ′ →HomR(I, E)→M →0, where E is an
injective R-module and M ′ is Gorensrein injective (R ./ I)-module, which stays exact
under applying the functor HomR(HomR(I, J),−), for any injective R-module J .

The dual proof of Proposition 3.6 (this time using Proposition 3.3), is as follows.

Proposition 3.7. Let I be a semidualizing ideal of the ring R and let M be an R-
module which is Gorenstein projective as (R ./ I)-module. Then there exists a short
exact sequence of R-modules 0→M → I ⊗R P →M ′ → 0, where P is a projective
R-module and M ′ is Gorenstein projective as (R ./ I)-module. Furthermore, the
sequence stays exact applying the functor HomR(−, I ⊗R Q) for any projective R-
module Q.

Lemma 3.8. Let I be a semidualizing ideal of the ring R and let M be a GI-injective
R-module. Then there exists the short exact sequence of (R ./ I)-modules 0 →



M. Salek, E. Tavasoli, A. Tehranian, M. Salimi 107

M ′ → U → M → 0, where idR./I(U) = 0 and GII − idR(M ′) = 0. Furthermore,
the sequence stays exact over applying the functor HomR./I(V,−) for any injective
(R ./ I)-module V .

Proof. By definition there exists a short exact sequence of R-modules 0 → N →
HomR(I, E)→M→0, where E is injective and N is GI -injective, and stays exact by
applying the functor HomR(HomR(I, J),−) for every injective R-module J . By Pro-
position 3.1 (i), we have the following short exact sequence of R-modules (∗) : 0→I→
R ./ I→R→0. By applying the functor HomR(−, E) to the sequence (∗), we get the
exact sequence of (R ./ I)-modules (∗∗) : 0→E→HomR(R ./ I,E)→HomR(I, E)→0.
Now we have the following commutative diagram of (R ./ I)-modules with exact rows:

0 // M ′ //

��

HomR(R ./ I,E) //

����

M // 0

0 // N // HomR(I, E) // M // 0

By Proposition 3.2 (i), HomR(R ./ I,E) is an injective (R ./ I)-module. Also using
Snake lemma on the diagram embeds the vertical arrows into exact sequences, which
implies the short exact sequence of R-modules 0→ E →M ′ → N → 0. Therefore
M ′ ∼= E ⊕ N as R-modules. But N is GI -injective and E is by Fact 2.11 (ii). So
M ′ is also GI -injective. Furthermore the lower row in the diagram stays exact under
HomR(HomR(I, J),−) for every injective R-module J . Also, the sequence (∗∗) splits
as R-modules, so the surjection HomR(R ./ I,E)→HomR(I, E) splits, which implies
that the upper row in the diagram also stays exact under HomR(HomR(I, J),−). Now
using Proposition 3.2 (iii) we see that the upper row in the diagram stays exact under
HomR./I(HomR(R ./ I, J),−) for every injective R-module J . This proves that the
sequence stays exact under HomR./I(V,−), for every injective (R ./ I)-module V . �

By a similar argument, the following result obtained.

Lemma 3.9. Let I be a semidualizing ideal of the ring R and let M be a GI-projective
R-module. Then there exists the short exact sequence of (R ./ I)-modules 0 →
M → P →M ′ → 0, where pdR./I(P ) = 0 and GPI − pdR(M ′) = 0. Furthermore,
the sequence stays exact over applying the functor HomR./I(−, S) for any projective
(R ./ I)-module S.

In [11], Holm and Jörgensen investigated the properties of relative Gorenstein
homological dimensions, GC-projective, GC-injective, and GC-flat dimensions, where
C is a semidualizing R-module and they showed that the GC-projective, GC-injective,
and GC-flat dimensions always agree with the ring changed Gorenstein dimensions
Gpd RnC(−), Gid RnC(−), and Gfd RnC(−), respectively. In the following, we study
these result for amalgamation instead of idealization.

Proposition 3.10. Let I be a semidualizing ideal of the ring R. Then for every
R-module M the following statements holds.
(i) M is a GI-injective R-module if and only if M is a Gorenstein injective (R ./ I)-
module.
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(ii) M is a GI-projective R-module if and only if M is a Gorenstein projective
(R ./ I)-module.

(iii) M is a GI-flat R-module if and only if M is a Gorenstein flat (R ./ I)-module.

Proof. (i) Assume that M is GI -injective R-module. Then Lemma 3.8 implies that M
is Gorenstein injective as (R ./ I)-module. Conversely, if M is Gorenstein injective
over R ./ I, then Proposition 3.6 and Corollary 3.4 (i) gives the existence of a complete
ICI-resolution.

(ii) Similar, with using Proposition 3.7 and Lemma 3.9 and Corollary 3.4 (ii).
(iii) By item (i) and Propositions 3.5, we only need to show that for every faithfully

injective R-module E we have M is GI -flat if and only if HomR(M,E) is GI -injective,
which is proved in the proof of [11, Proposition 2.15]. �

Theorem 3.11. Let I be a semidualizing R-module of the ring R and let M be an
R-module. Then the following equalities hold.
(i) GII − idR(M) = Gid R./I(M),

(ii) GPI − pdR(M) = Gpd R./I(M),

(iii) GPI − fdR(M) = Gfd R./I(M).

Proof. We only prove the first equality. The proofs of other items are similar. By
Proposition 3.10 (i) we have GII − idR(M) ≥ Gid R./I(M). For the opposite, assume
that Gid R./I(M) = n. Pick an injective resolution E of M as R-module, E : 0→
M → E0 → E−1 → · · · → E1−n → K−n → 0. By [15, Theorem 3.8] the modules
Ei are Gorenstein injective as (R ./ I)-module, and therefore [10, Theorem (2.22)]
implies that the R-module K−n is Gorenstein injective as (R ./ I)-module. Now
Proposition 3.10 implies that K−n is a GI -injective R-module. On the other hand,
Fact 2.11(ii) implies that the modules Ei are GI -injective R-modules, which shows
that GII − idR(M) ≤ n. �

Here, we investigate some homological properties on amalgamation along a semi-
dualizing ideal I.

Lemma 3.12. Let I be a semidualizing ideal of the ring R, P be a projective R-module,
and let E be an injective R-module. Then the following statements hold.
(i) idR./I((R ./ I)⊗R P ) ≤ idR(I ⊗R P ).

(ii) pdR./I(HomR(R ./ I,E)) ≤ pdR(HomR(I, E)).

Proof. (i) Consider the following injective resolution of the R-module I ⊗R P ,

E : 0→ I ⊗R P → E0 → E1 → · · · .
By [12, Corollary 6.1], I ⊗R P ∈ BI(R). Therefore, using Proposition 3.1 (i), we have

Exti≥1R (R ./ I, I ⊗R P ) ∼= Exti≥1R (R⊕ I, I ⊗R P ) = 0. So, the sequence E stays exact
by applying the functor HomR(R ./ I,−). On the other hand, Proposition 3.2 (i)
implies that HomR(R ./ I,Ei) is an injective (R ./ I)-module for every i ≥ 0,
which shows that HomR(R ./ I,E) is an injective resolution of the (R ./ I)-module
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HomR(R ./ I, I ⊗R P ). But, HomR(R ./ I, I ⊗R P ) ∼= HomR(R ./ I, I) ⊗R P ,
by [6, Theorem 3.2.14], and HomR(R ./ I, I) ⊗R P ∼= (R ./ I) ⊗R P as (R ./ I)-
module by [5, Theorem 4.1].

(ii) Consider the projective resolution of the R-module HomR(I, E) as follows,
P : · · · → P1 → P0 → HomR(I, E) → 0. By [12, Corollary 6.1], HomR(I, E) ∈
AC(R). Therefore using Proposition 3.1 (i), we have TorRi≥1(R ./ I,HomR(I, E)) ∼=
TorRi≥1(R⊕ I,HomR(I, E)) = 0. So, the sequence P stays exact by applying the func-
tor (R ./ I)⊗R−. Also, Proposition 3.3 (i) implies that (R ./ I)⊗R Pi is a projective
(R ./ I)-module for every i ≥ 0, which shows that (R ./ I) ⊗R P is a projective
resolution of the (R ./ I)-module (R ./ I) ⊗R HomR(I, E). On the other hand, we
have:

(R ./ I)⊗R HomR(I, E) ∼= HomR(HomR(R ./ I, I), E) ∼= HomR(R ./ I,E).

Note that in the above sequence the first isomorphism follows from [6, Theorem
3.2.11], since R ./ I is a finitely generated R-module by Proposition 3.1 (ii), and the
second one follows from [5, Theorem 4.1]. �

Theorem 3.13. Let I be a semidualizing ideal of the ring R. Assume that sup {GPI−
pdR(M) |M ∈M(R)} ≤ n, (or sup {GII − idR(M) |M ∈M(R)} ≤ n), where n is a
non-negative integer. Then for every projective (R ./ I)-module P and every injective
(R ./ I)-module E the following statements hold.
(i) idR./I(P ) ≤ n. (ii) pdR./I(E) ≤ n.

Proof. Let P be a projective (R ./ I)-module and let E be an injective (R ./ I)-
module. By Proposition 3.2 (ii) and Proposition 3.3 (ii), E is a direct summand of
the R-module HomR(R ./ I,E′) for some injective R-module E′ and P is a direct
summand of the R-module (R ./ I)⊗R Q for some projective R-module Q. Now we
show that idR./I((R ./ I)⊗R Q) ≤ n and pdR./I(HomR(R ./ I,E′)) ≤ n.

First assume that sup{GPI − pdR(M) |M ∈M(R)} ≤ n.
(i) Let Q be a projective R-module and let M be an R-module. Then by [19,

Proposition 2.12], Exti>nR (M, I⊗RQ) = 0, which implies that idR(I⊗RQ) ≤ n. Now,
Lemma 3.12(i) implies that idR./I((R ./ I)⊗R Q) ≤ n.

(ii) By [20, Lemma 3.4(1)], PI − pdR(E) = GPI − pdR(E) for any injective R-
module E. Therefore Fact 2.9 (i) implies that pdR(HomR(I, E)) = PI −pdR(E) ≤ n.
Now Lemma 3.12 (ii) implies that pdR./I(HomR(R ./ I,E)) ≤ n.

Now suppose that sup{GII − idR(M) |M ∈M(R)} ≤ n.
(i) By [20, Lemma 3.4(2)], II−idR(Q) = GII−idR(Q) for any projective R-module

Q. So, Fact 2.9 (ii) implies that idR(I ⊗R Q) ≤ n. Hence, idR./I((R ./ I)⊗R Q) ≤ n
by Lemma 3.12 (i).

(ii) Let M be an R-module. Then Exti>nR (HomR(I, E),M) = 0 for any injective
R-module E, by the dual of [19, Proposition 2.12]. So, pdR(HomR(I, E)) ≤ n. Now,
Lemma 3.12 (ii) implies that pdR./I(HomR(R ./ I,E)) ≤ n. �
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