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Abstract. In the present paper, we investigate geometric properties of Clairaut anti-
invariant submersions whose total spaces are nearly Kähler manifolds. We obtain a condition
for a Clairaut anti-invariant submersion to be a totally geodesic map and also study Clairaut
anti-invariant submersions with totally umbilical fibers.

1. Introduction

Riemannian submersion between two Riemannian manifolds was first introduced by
O’Neill [14] and studied by many authors [7–9]. After that, Watson [26] introduced
almost Hermitian submersions. Later, the notion of anti-invariant submersions and
Lagrangian submersion from almost Hermitian manifolds onto Riemannian manifolds
were introduced by Sahin [18], where the fibers of submersion are anti-invariant with
respect to the almost complex structure of total manifold. After that, several new
types of Riemannian submersions were defined and studied such as semi-invariant
submersion [16,19], slant submersion [20], generic submersion [5,22], hemi-slant sub-
mersion [23], semi-slant submersion [17], pointwise slant submersion [12] and con-
formal semi-slant submersion [1]. Also, these kinds of submersions were considered
in different kinds of structures such as nearly Kähler, Kähler, almost product, para-
contact, Sasakian, Kenmotsu, cosymplectic and etc. In the book [21], we find the
recent developments in this field.

In 1735, A. C. Clairaut [6] obtained a very important result in the theory of
surfaces, now called Clairaut’s theorem, stating that for any geodesic α on a surface
of revolution S, the function r sin θ is constant along α, where r is the distance from
a point on the surface to the rotation axis and θ is the angle between α and the
meridian through α. Bishop [4] introduced the idea of Riemannian submersions and
gave a necessary and sufficient conditions for a Riemannian submersion to be Clairaut.
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Allison [2] considered Clairaut semi-Riemannian submersions and showed that such
submersions have interesting applications in the static space-times.

In [24], Tastan and Gerdan gave new Clairaut conditions for anti-invariant sub-
mersions whose total manifolds are Sasakian and Kenmotsu and got many interesting
results. In [25], Tastan and Aydin studied Clairaut anti-invariant submersions whose
total manifolds are cosymplectic. Gündüzalp [11] introduced Clairaut anti-invariant
submersions from a paracosymplectic manifold and gave characterization theorems.
In [13], Lee et al. studied Clairaut anti-invariant submersions whose total manifolds
are Kähler.

A geometrically interesting class of almost Hermitian manifolds is that of nearly
Kähler manifolds, which is one of the sixteen classes of almost Hermitian manifolds
that were obtained by Gray and Hervella in their remarkable paper [10]. The geo-
metrical meaning of nearly Kähler condition is that the geodesics on the manifolds
are holomorphically planar curves. Gray [9] studied nearly Kähler manifolds broadly
and gave example of a non-Kählerian nearly Kähler manifold, which is 6-dimensional
sphere.

Motivated by this, we study Clairaut anti-invariant submersions from nearly Kähler
manifolds onto Riemannian manifolds. We also obtain conditions for a Clairaut Rie-
mannian submersion to be a totally geodesic map. We investigate conditions for the
Clairaut anti-invariant submersions to be a totally umbilical map.

2. Preliminaries

An almost complex structure on a smooth manifold M is a smooth tensor field φ
of type (1, 1) such that φ2 = −I. A smooth manifold equipped with such an almost
complex structure is called an almost complex manifold. An almost complex manifold
(M,φ) endowed with a chosen Riemannian metric g satisfying

g(φX,φY ) = g(X,Y ) (1)

for all X,Y ∈ TM , is called an almost Hermitian manifold.
An almost Hermitian manifold M is called a nearly Kähler manifold [9] if

(∇Xφ)Y + (∇Y φ)X = 0, (2)

for all X,Y ∈ TM . If (∇Xφ)Y = 0 for all X,Y ∈ TM , then M is known as Kähler
manifold. Every Kähler manifold is nearly Kähler but converse need not be true.

Definition 2.1 ([14,15]). Let (M, gm) and (N, gn) be Riemannian manifolds, where
dim(M) = m, dim(N) = n and m > n. A Riemannian submersion π : M → N is a
map of M onto N satisfying the following axioms:
(i) π has maximal rank.

(ii) The differential π∗ preserves the lengths of horizontal vectors.

For each q ∈ N , π−1(q) is an (m − n)-dimensional submanifold of M . The sub-
manifolds π−1(q), q ∈ N , are called fibers. A vector field on M is called vertical if
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it is always tangent to fibers. A vector field on M is called horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is horizontal and
π-related to a vector field X ′ on N , that is, π∗Xp = X ′

π∗(p)
for all p ∈ M. We denote

the projection morphisms on the distributions kerπ∗ and (kerπ∗)
⊥ by V and H, re-

spectively. The sections of V and H are called the vertical vector fields and horizontal

vector fields, respectively. So Vp = Tp

(
π−1(q)

)
, Hp = Tp

(
π−1(q)

)⊥
.

The second fundamental tensors of all fibers π−1(q), q ∈ N gives rise to tensor
field T and A in M defined by O’Neill [14] for arbitrary vector field E and F , which
is

TEF = H∇M
VEVF + V∇M

VEHF, AEF = H∇M
HEVF + V∇M

HEHF, (3)

where V and H are the vertical and horizontal projections.

On the other hand, from equations (3), we have

∇V W = TV W + ∇̂V W, ∇V X = H∇V X + TV X,

∇XV = AXV + V∇XV, ∇XY = H∇XY +AXY,
(4)

for all V,W ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ∗)
⊥, where V∇V W = ∇̂V W. If X is basic,

then AXV = H∇V X.

It is easily seen that for p ∈ M, U ∈ Vp and X ∈ Hp, the linear operators TU ,
AX : TpM → TpM are skew-symmetric, that is, g(AXE,F ) = −g(E,AXF ) and
g(TUE,F ) = −g(E, TUF ), for all E,F ∈ TpM. We also see that the restriction of T
to the vertical distribution T |kerπ∗×kerπ∗ is exactly the second fundamental form of
the fibres of π. Since TU is skew-symmetric, therefore π has totally geodesic fibres if
and only if T ≡ 0.

Let π : (M, gm)→(N, gn) be a smooth map between Riemannian manifolds. Then the
differential π∗ of π can be observed as a section of the bundle Hom(TM, π−1TN)→M ,
where π−1TN is the bundle which has fibres

(
π−1TN

)
x
= Tf(x)N , has a connection

∇ induced from the Riemannian connection ∇M and the pullback connection. Then
the second fundamental form of π is given by (∇π∗)(E,F ) = ∇N

E π∗F − π∗(∇M
E F ),

for all E,F ∈ Γ(TM), where ∇N is the pullback connection [3]. We also know that
π is said to be totally geodesic map [3] if (∇π∗)(E,F ) = 0, for all E,F ∈ TM .

Let π be an anti-invariant Riemannian submersion from nearly Kähler manifold
(M,φ, gm) onto Riemannian manifold (N, gn). For any arbitrary tangent vector fields
U and V on M , we set

(∇Uφ)V = PUV +QUV (5)

where PUV,QUV denote the horizontal and vertical part of (∇Uφ)V , respectively.
Clearly, if M is a Kähler manifold then P = Q = 0.

If M is a nearly Kähler manifold then P and Q satisfy PUV = −PV U , QUV =
−QV U . Consider (kerπ∗)

⊥
= φ kerπ∗⊕µ, where µ is the complementary distribution

to φ kerπ∗ in (kerπ∗)
⊥ and φµ ⊂ µ.

For X ∈ Γ(kerπ∗)
⊥, we have φX = αX + βX, where αX ∈ Γ(kerπ∗) and βX ∈

Γ(µ). If µ = 0, then an anti-invariant submersion is known as Lagrangian submersion.
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Definition 2.2 ( [18]). Let (M,φ, g) be an almost Hermitian manifold and N be
a Riemannian manifold with Riemannian metric gn. Suppose that there exists a
Riemannian submersion π : M → N , such that the vertical distribution kerπ∗ is
anti-invariant with respect to φ, i.e., φ kerπ∗ ⊆ kerπ⊥

∗ . Then, the Riemannian
submersion π is called an anti-invariant Riemannian submersion. We will briefly call
such submersions as anti-invariant submersions.

Let S be a revolution surface in R3 with rotation axis L. For any p ∈ S, we
denote by r(p) the distance from p to L. Given a geodesic α : J ⊂ R → S on S,
let θ(t) be the angle between α(t) and the meridian curve through α(t), t ∈ I. A
well-known Clairaut’s theorem says that for any geodesic on S, the product r sin θ is
constant along α, i.e., it is independent of t. In the theory of Riemannian submersions,
Bishop [4] introduced the notion of Clairaut submersion in the following way.

Definition 2.3 ([4]). A Riemannian submersion π : (M, g) → (N, gn) is called a
Clairaut submersion if there exists a positive function r on M , which is known as the
girth of the submersion, such that, for any geodesic α on M , the function (r ◦α) sin θ
is constant, where θ(t) is the angle between α̇(t) and the horizontal space at α(t), for
any t.

He also gave the following necessary and sufficient condition for a Riemannian
submersion to be a Clairaut submersion:

Theorem 2.4 ( [4]). Let π : (M, g) → (N, gn) be a Riemannian submersion with
connected fibers. Then, π is a Clairaut submersion with r = ef if and only if each
fiber is totally umbilical and has the mean curvature vector field H = −grad f , where
grad f is the gradient of the function f with respect to g.

3. Anti-invariant Clairaut submersions from nearly Kähler manifolds

In this section, we give new Clairaut conditions for anti-invariant submersions from
nearly Kähler manifolds after giving some auxiliary results.

Theorem 3.1. Let π be an anti-invariant submersion from a nearly Kähler manifold
(M,φ, g) onto a Riemannian manifold (N, gn). If h : J ⊂ R → M is a regular curve
and U(s) and X(s) are the vertical and horizontal parts of the tangent vector field
ḣ(s) = W of h(s), respectively, then h is a geodesic if and only if along h

AXφU +AXβX + TUβX + V∇XαX + TUφU + ∇̂UαX = 0, (6)

H
(
∇ḣφU +∇ḣβX

)
+AXαX + TUαX = 0. (7)

Proof. Since φ2ḣ = −ḣ, taking the covariant derivative of this and using (2), we have(
∇ḣφ

)
φḣ+ φ

(
∇ḣφḣ

)
= −∇ḣḣ. (8)
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Since U(s) and X(s) are the vertical and horizontal parts of the tangent vector field
ḣ(s) = W of h(s), that is, ḣ = U +X. So (8) becomes

−∇ḣḣ =φ (∇U+Xφ(U+X))+Pḣφḣ+Qḣφḣ

=φ (∇UφU+∇XφU+∇UφX+∇XφX)+Pḣφḣ+Qḣφḣ

=φ (∇UφU+∇XφU+∇U (αX+βX)+∇X (αX+βX))+Pḣφḣ+Qḣφḣ. (9)

Using (4) in (9), we get

−∇ḣḣ =φ
(
H

(
∇ḣφU +∇ḣβX

)
+AXαX +AXβX +AXφU

+TUβX + TUαX + V∇XαX + TUφU + ∇̂UαX
)
+ Pḣφḣ+Qḣφḣ. (10)

Let Y, Z ∈ TM . Since φ2Z = −Z, on differentiation, we have

φ (∇Y φZ) + (∇Y φ)φZ = −∇Y Z, φ2 (∇Y Z) + φ (∇Y φ)Z + (∇Y φ)φZ = −∇Y Z,

using (5) in above, we obtain φ (PY Z +QY Z) = −PY φZ − QY φZ. From here, it

follows φ
(
Pḣφḣ+Qḣφḣ

)
= Pḣḣ+Qḣḣ, since P and Q are antisymmetric, so

φ
(
Pḣφḣ+Qḣφḣ

)
= 0. (11)

Using (11) and equating the vertical and horizontal part of (10), we obtain

Vφ∇ḣḣ =AXφU +AXβX + TUβX + V∇XαX + TUφU + ∇̂UαX,

Hφ∇ḣḣ =H
(
∇ḣφU +∇ḣβX

)
+AXαX + TUαX.

By using the above equations, we can say that h is geodesic if and only if (6) and (7)
hold. □

Theorem 3.2. Let π be an anti-invariant submersion from a nearly Kähler manifold
(M,φ, g) onto a Riemannian manifold (N, gn). Also, let h : J ⊂ R → M be a regular
curve and U(s) and X(s) be the vertical and horizontal parts of the tangent vector
field ḣ(s) = W of h(s). Then π is a Clairaut submersion with r = ef if and only if
along h: g(grad f,X)g(U,U) = g(H∇ḣβX +AXαX + TUαX + Pḣ(s)U,φU).

Proof. Let h : J ⊂ R → M be a geodesic on M and ℓ = ∥ḣ(s)∥2. Let θ(s) be the
angle between ḣ(s) and the horizontal space at h(s). Then

g(X(s), X(s)) =ℓ cos2 θ(s), g(U(s), U(s)) = ℓ sin2 θ(s). (12)

Differentiating the second term in (12), we get

2g(∇ḣ(s)U(s), U(s)) = 2ℓ sin θ(s) cos θ(s)
dθ(s)

ds
. (13)

Using (1) in (13), we have

g(H∇ḣ(s)φU(s), φU(s))− g((∇ḣ(s)φ)U(s), φU(s)) = ℓ sin θ(s) cos θ(s)
dθ(s)

ds
.

Now, by use of (5), we have

g(H∇ḣ(s)φU(s), φU(s))− g(Pḣ(s)U +Qḣ(s)U,φU(s)) = ℓ sin θ(s) cos θ(s)
dθ(s)

ds
.
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Along the curve h, using Theorem 3.1, we obtain

−g(H∇ḣβX +AXαX + TUαX + Pḣ(s)U,φU(s)) = ℓ sin θ(s) cos θ(s)
dθ(s)

ds
.

Now, π is a Clairaut submersion with r = ef if and only if d
ds

(
ef sin θ

)
= 0. Therefore

ef
(
df

ds
sin θ + cos θ

dθ

ds

)
= 0, ef

(
df

ds
ℓ sin2 θ + ℓ sin θ cos θ

dθ

ds

)
= 0.

So, we obtain

df

ds
(h(s))g(U(s), U(s)) = g(H∇ḣβX +AXαX + TUαX + Pḣ(s)U,φU(s)). (14)

Since df
ds (h(s)) = g(grad f, ḣ(s)) = g(grad f,X). Therefore by using (14), we get the

result. □

Theorem 3.3. Let π be a Clairaut anti-invariant submersion from a nearly Kähler
manifold (M,φ, g) onto a Riemannian manifold (N, gn) with r = ef . Then AφWφX+

QWφX = X(f)W for X ∈ (kerπ∗)
⊥
, W ∈ kerπ∗ and φW is basic.

Proof. We know that any fiber of Riemannian submersion π is totally umbilical if and
only if

TV W = g(V,W )H, (15)

for all V,W ∈ Γ(kerπ∗), where H denotes the mean curvature vector field of any fiber
in M . By using Theorem 2.4 and (15), we have

TV W = −g(V,W )grad f. (16)

Let X ∈ µ and V,W ∈ Γ(kerπ∗), then by using (1) and (2), we have

g(∇V φW,φX) = g(φ∇V W + (∇V φ)W,φX) = g(∇V W,X) + g(PV W +QV W,φX).
(17)

By using (1), we have g(φY,Z) = −g(Y, φZ), where Y,Z ∈ TM , taking covariant
derivative of above equation, we get g((∇Xφ)Y,Z) = −g(Y, (∇Xφ)Z), using (5), we
get

g(PXY +QXY, Z) = −g(Y, PXZ +QXZ) = g(Y, PZX +QZX). (18)

Using (18), we have

g(PWφX +QWφX, V ) = g(φX,PV W +QV W ). (19)

Using (4), (16), (19) in (17), we have g(∇V φW,φX) = −g(V,W )g (grad f,X) +
g(V,QWφX). Since φW is basic, so H∇V φW = AφWV , therefore we have

g(AφWV, φX) = −g(V,W )g (grad f,X) + g(V,QWφX),

g(V,AφWφX) + g(V,QWφX) = g(V,W )g (grad f,X) (20)

because A is anti-symmetric. The result follows from (20). □

Theorem 3.4. Let π be a Clairaut anti-invariant submersion from a nearly Kähler
manifold (M,φ, g) onto a Riemannian manifold (N, gn) with r = ef and grad f ∈
φ kerπ∗. Then either f is constant on φ kerπ∗ or the fibres of π are 1-dimensional.
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Proof. Using (4) and (16), we have g(∇V W,φU) = −g(V,W )g(grad f, φU), where
U, V,W ∈ Γ(kerπ∗). Since g(W,φU) = 0. Therefore we have

g(W,∇V φU) = g(V,W )g(grad f, φU). (21)

By use of (1) and (5) in (21), we get g(W,QV U)−g(φW,∇V U) = g(V,W )g(grad f, φU).
By using (4), we obtain g(W,QV U) − g(φW,TV U) = g(V,W )g(grad f, φU). Now,
from (16), we get

g(W,QV U) + g(V,U)g(grad f, φW ) = g(V,W )g(grad f, φU). (22)

Taking V = U in (22), we have

g(V, V )g(grad f, φW ) = g(V,W )g(grad f, φV ). (23)

Interchanging V and W in (23), we obtain

g(W,W )g(grad f, φV ) = g(V,W )g(grad f, φW ). (24)

By (23) and (24), we have g2(V,W )g(grad f, φV ) = g(V, V )g(W,W )g(grad f, φV ).
Therefore either f is constant on φ kerπ∗ or V = aW , where a is constant (by using
Schwarz’s Inequality for equality case). □

Corollary 3.5. Let π be a Clairaut anti-invariant submersion from a nearly Kähler
manifold (M,φ, g) onto a Riemannian manifold (N, gn) with r = ef and grad f ∈
φ kerπ∗. If dim(kerπ∗) > 1, then the fibres of π are totally geodesic if and only if
AφWφX +QWφX = 0 for W ∈ kerπ∗ such that φW is basic and X ∈ µ.

Proof. By Theorem 3.3 and Theorem 3.4, we get the result. □

Corollary 3.6. Let π be a Clairaut Lagrangian submersion from a nearly Kähler
manifold (M,φ, g) onto a Riemannian manifold (N, gn) with r = ef . Then either the
fibres of π are 1-dimensional or they are totally geodesic.

Proof. In this case µ = {0}, so AφWφX +QWφX = 0 holds. □
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