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Abstract. In this paper, we study contact pseudo-Riemannian manifold M admitting
generalized V -Ric vector field. Firstly, for pseudo-Riemannian manifold, it is proved that
V is an infinitesimal harmonic transformation if M admits V -Ric vector field. Secondly, we
prove that an η-Einstein K-contact pseudo-Riemannian manifold admitting a generalized V -
Ric vector field is either Einstein or has scalar curvature r = 2nε(2n−1)

4n−1
. Finally, we consider

a contact pseudo-Riemannian (κ, µ)-manifold with a generalized V -Ric vector field.

1. Introduction

A vector field V on a pseudo-Riemannian manifold (M, g) is said to be concircular [5]
if it satisfies

∇XV = νX, (1)

where ν denotes a smooth function on M . If ν in (1) is non-constant, then we say V
is non-trivial concircular. A concircular vector field V is called a concurrent vector
field [13] if the function ν in (1) is equal to one.

A vector field V on a pseudo-Riemannian manifold (M, g) is said to be conformal
if £V g = 2νg, where £ denotes a Lie derivative. Particularly, we call V homothetic
and Killing if ν is constant and zero, respectively. The authors in [14,15] studied the
geometry of conformal and Killing vector fields on contact Riemannian manifolds.

A generalized V -Ric vector field was introduced by Hinterleitner and Kiosak [9]
and it is defined by

∇XV = νQX, for any X on M, (2)

where Q is the Ricci operator. Einstein manifolds are characterized by the proportion-
ality of Ricci tensor Ric to the metric tensor. So, for Einstein manifold, the condition
of vector field V being concircular could equally be defined by (2). We say that V is
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V -Ric vector field when ν in (2) is constant. If ν is non-constant, then we say that
the vector field V is proper generalized V -Ric vector field. Moreover, when ν = 0,
the vector field V is covariantly constant (also Killing). If we take V = 0, then (2) is
meaningless and hence, we always assume that that generalized Ricci vector filed V is
non-zero. In [10], it is shown that V -Ric vector fields are closely related to the Ricci
flow introduced by Hamilton [8]. Vashpanov et al. [17] studied geodesic mapping of
spaces with V -Ric vector fields and obtained a solution for integrability conditions of
these equations. Recently, Wang and Wu [19] studied generalized V -Ric vector fields
on K-contact Riemannian manifolds.

An almost contact pseudo-Riemannian manifolds are a natural generalization of al-
most contact Riemannian manifolds (also called almost contact metric structure). The
study of contact structure endowed with pseudo-Riemannian metric were first con-
sidered by Takahashi [16], who focused on Sasakian case. Calvaruso and Perrone [2]
undertook a systematic study of contact structures with pseudo-Riemannian asso-
ciated metrics. Such manifolds have been enormously studied under various points
of view (see [2, 11, 12, 18] and references cited therein). In this paper, we study the
generalized V -Ric vector fields within the framework of contact pseudo-Riemannian
manifolds.

2. Preliminaries

A (2n+1)-dimensional differentiable manifold M endowed with a (1, 1)-tensor field φ,
a vector field ξ (called Reeb vector field) and a 1-form η, is called an almost contact
manifold if these tensors satisfy the following relations

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (3)

It follows from (3) that the rank of φ is 2n. We refer to [1] for more information.

If an almost contact manifold is equipped with a pseudo-Riemannian metric g
such that

g(φX,φY ) = g(X,Y )− εη(X)η(Y ), (4)

where ε = ±1, and therefore g(ξ, ξ) = ε (the Reeb vector field cannot be light-like),
then (M,φ, η, ξ, g) is called almost contact pseudo-Riemannian manifold or almost
contact pseudo-metric manifold. The signature of associated metric g is either (2m+
1, 2n − m) or (2m, 2n − 2m − 1), according to whether the Reeb vector field ξ is
space-like or time-like. From the relation (4), it can be seen that η(X) = εg(ξ,X),
g(φX, Y ) = −g(X,φY ). An almost contact pseudo-Riemannian manifold is called
a contact pseudo-Riemannian manifold if dη = Φ, where Φ(X,Y ) = g(X,φY ) is a
fundamental 2-form.

We define a self-adjoint (1, 1)-tensor field h and ℓ by

hX =
1

2
(£ξφ)X, and ℓX = R(X, ξ)ξ, (5)

where R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] is the curvature tensor. The sign convention
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of R is opposite to the one used in [3, 11]. The operators in (5) satisfy the following
equalities

hξ = 0 = ℓξ, hφ = −φh, tr(h) = tr(φh) = 0. (6)

We now accumulate some formulas which are valid for a contact pseudo-Riemannian
manifold [2, 12];

∇Xξ = −εφX − φhX, (7)

(∇ξh)X = φX − h2φX + φR(ξ,X)ξ, (8)

tr (∇φ) = 2nξ, div ξ = div η = 0,

where tr is the trace operator and div is the divergence operator.
If Reeb vector field ξ of contact pseudo-Riemannian manifold M is Killing (equiv-

alently h = 0), then M is called K-contact pseudo-Riemannian manifold. A Sasakian
pseudo-Riemannian manifold is a contact pseudo-Riemannian manifold whose almost
contact structure (φ, ξ, η) is normal, i.e., the almost complex structure J on M × R
defined by J

(
X, f d

dt

)
=

(
φX − fξ, η(X) d

dt

)
, is integrable, where f is a real-valued

function and t is the coordinate on R. Moreover, a contact pseudo-Riemannian man-
ifold M is Sasakian if and only if (∇Xφ)Y = g(X,Y )ξ − εη(Y )X. Any Sasakian
pseudo-Riemannian manifold is always K-contact and the converse also holds when
n = 1, i.e., for 3-dimensional spaces. It is worthwhile to mention that, on a Sasakian
pseudo-Riemannian manifold we obtain

R(X,Y )ξ = η(X)Y − η(Y )X. (9)

In contact Riemannian case, the above equation shows that the manifold is Sasakian,
but this is not valid in the case of contact pseudo-Riemannian [11]. However, the
following lemma holds.

Lemma 2.1 ([11]). A K-contact pseudo-Riemannian manifold M is Sasakian if and
only if the curvature tensor R satisfies (9).

3. Generalized V -Ric vector field on contact pseudo-Riemannian
manifolds

In this section we study generalized V -Ric vector field on contact pseudo-Riemannian
manifolds. First, we prove the following result.

Theorem 3.1. Let M be a pseudo-Riemannian manifold. If M admits a V -Ric vector
field, then V is an infinitesimal harmonic transformation.

Proof. To prove this result, we follow the technique of Ghosh [7]. From (2), it can be
easily obtained that

(£V g)(X,Y ) = g(∇XV, Y ) + g(X,∇Y V ) = 2νRic (X,Y ). (10)

Differentiating the above equation covariantly along Z and using (7), we get

(∇Z£V g)(X,Y ) = 2ν(∇ZRic )(X,Y ). (11)
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According to Yano’s book [20], the following commutation formula holds

(£V ∇Zg −∇Z£V g −∇[V,Z]g)(X,Y ) = −g((£V ∇)(Z,X), Y )− g((£V ∇)(Z, Y ), X).

The parallelism of the pseudo-Riemannian metric transforms the above equation to
(∇Z£V g)(X,Y ) = g((£V ∇)(Z,X), Y ) + g((£V ∇)(Z, Y ), X). By virtue of (11), it
follows from aforesaid equation that

g((£V ∇)(Z,X), Y ) + g((£V ∇)(Z, Y ), X) = 2ν(∇ZRic )(X,Y ). (12)

Cyclic rotation of X,Y and Z in (12) and simple calculation yield

g((£V ∇)(X,Y ), Z) = ν{(∇XRic )(Y,Z) + (∇Y Ric )(Z,X)− (∇ZRic )(X,Y )}.
Setting X = Y = Ei (where {Ei}ni=1 is a local pseudo-orthonormal basis) in the last
equation and summing over i, we find

n∑
i=1

εi(£V ∇)(Ei, Ei) = 0, (13)

where εi = g(Ei, Ei) and we have employed divQ = 1
2Dr. According to Duggal and

Sharma [4], (£V ∇)(X,Y ) = ∇X∇Y V − ∇∇XY V + R(V,X)Y . From the previous
equation, it follows that

n∑
i=1

εi(£V ∇)(Ei, Ei) =

n∑
i=1

εi(∇Ei
∇Ei

V −∇∇Ei
Ei
V ) +

n∑
i=1

εiR(V,Ei)Ei. (14)

From the equations (13) and (14), we easily obtain 0 = QV − ∆̃V , where ∆̃V =∑
i εi(∇∇Ei

Ei
V −∇Ei

∇Ei
V ) is the so-called rough Laplacian of V . In this seting, it

is rightful to reveal that a vector field V is an infinitesimal harmonic transformation
if and only if QV = ∆̃V (see [3]). □

A pseudo-Riemannian manifold (M, g) is said to admit a Yamabe soliton if there
exist a vector field V and a constant λ such that

(£V g)(X,Y ) = 2(r − λ)g(X,Y ). (15)

The Yamabe soliton was introduced in [8] as the selfsimilar solution of the Yamabe
flow. A Yamabe soliton is said to be shrinking, steady or expanding according to
λ < 0, λ = 0 or λ > 0, respectively.

Theorem 3.2. If a contact pseudo-Riemannian manifold M admits a Yamabe soliton
with soliton vector field V being V -Ric vector field, then it is Einstein.

Proof. Assume that the soliton vector field V is V -Ric vector field, i.e., ∇XV = νQX.
Therefore, it can be easily obtained from (10) and (15) that Ric = r−λ

ν g. □

In what follows we consider some special contact pseudo-Riemannian manifolds
admitting generalized V -Ric vector field.

Lemma 3.3. If a K-contact pseudo-Riemannian manifold M admits a generalized
V -Ric vector field, then the following relation holds

V − 2nDν = 0. (16)
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Proof. It was obtained in [11, Theorem 3.1] that in a K-contact pseudo-Riemannian
manifold, the Reeb vector field ξ is an eigenvector of the Ricci operator, i.e., Qξ =
2nεξ. Take covariant derivative of this equation along X and make use of (7) to get

(∇XQ)ξ = εQφX − 2nφX (17)

We know that ξ is Killing on K-contact pseudo-Riemannian manifold, so £ξRic = 0.
It follows that 0 = (£ξQ)X = £ξ(QX)−Q(£ξX) = (∇ξQ)X−∇QXξ+Q(∇Xξ). By
virtue of (7), we obtain from the previous equation that (∇ξQ)X = ε(QφX −φQX).

We have assumed that V is a generalized V -Ric vector field. Covariant derivative
of (2) implies that ∇Y ∇XV = Y (ν)QX + ν(∇Y Q)X. It directly follows that

R(X,Y )V = X(ν)QY − Y (ν)QX + ν{(∇XQ)Y − (∇Y Q)X}. (18)

Since ξ Killing vector field, then by (7) we have

R(X, ξ)Y = ε∇XφY − εφ∇XY = ε(∇Xφ)Y. (19)

Replacing Y in (18) by ξ and utilizating (17) and (19), we obtain

−εg((∇Xφ)Y, V )

= 2nX(ν)η(Y )− ξ(ν)Ric (X,Y ) + ν{εg(φQX,Y )− 2ng(φX, Y )}, (20)

where we have employed Qξ = 2nεξ. Replacing X by φX and Y by φY in (20),
adding the resulting equation with (20) and then call up the well-known formula
(see [2, Lemma 4.3]) (∇Xφ)Y + (∇φXφ)φY = 2g(X,Y )ξ − η(Y ){εX + εη(X)ξ}, we
obtain

−ε{2g(X,Y )g(ξ, V )− η(Y )(εg(X,V ) + εη(X)g(ξ, V ))}
= 2nX(ν)η(Y )− ξ(ν)Ric (X,Y )− ξ(ν)Ric (φX,φY )

+ ν{εg(φQX +QφX,Y ) + 4ng(X,φY )}.
Anti-symmetrizing the preceding equation, we achieve

η(Y ){g(X,V ) + εη(V )η(X)} − η(X){g(Y, V ) + εη(V )η(Y )}
= 2n{X(ν)η(Y )− Y (ν)η(X)}+ ν{2εg(φQX +QφX,Y )− 8ng(φX, Y )} (21)

Now, replacing Y in (21) by ξ and using (4) provides

V − η(V )ξ − 2n(Dν − εξ(ν)ξ) = 0. (22)

Taking the derivative of (22) along X and utilizating (2), h = 0, (7), we obtain

νQX + g(V, φX)ξ − 2nεη(X)ξ + εη(V )φX − 2n(∇XDν − εX(ξ(ν))ξ + ξ(ν)φX) = 0,

where we have used Qξ = 2nεξ. Applying the Poincare lemma (i.e., d2 = 0), remem-
bering that g(∇XDν, Y ) is symmetric, we get

0 = εg(V, φX)η(Y )− εg(V, φY )η(X) + 2εη(V )g(φX, Y )

+ 2n(X(ξ(ν))η(Y )− Y (ξ(ν))η(X) + 2ξ(ν)g(X,φY )).

Replacing X by φX and Y by φY in the aforesaid equation, we see that (2nξ(ν) −
εη(V ))dη(X,Y ) = 0. Since dη is non-vanishing everywhere on M , the last equation
shows that η(V ) = 2nεξ(ν), which, when inserted in (22), implies (16). □

Theorem 3.4. If an η-Einstein K-contact pseudo-Riemannian manifold M of di-
mension > 3 admits a generalized V -Ric vector field, then either M is Einstein and
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V is concircular (also conformal), or the scalar curvature is r = 2nε(2n−1)
4n−1 .

Proof. On η-Einstein K-contact pseudo-Riemannian manifold M of dimension > 3,
we have the expression of Ricci operator as

QX =
( r

2n
− ε

)
X + ε

(
2n+ 1− rε

2n

)
η(X)ξ, (23)

where r is the constant scalar curvature (see [12]). In view of constancy of r, con-
tracting X in (18) and using the formula divQ = 1

2Dr we obtain QV = QDν − rDν.
As a result of (23), it follows that( r

2n
− ε

)
V + ε

(
2n+ 1− rε

2n

)
η(V )ξ =

( r

2n
− ε− r

)
Dν +

(
2n+ 1− rε

2n

)
ξ(ν)ξ.

In view of (16), the afore mentioned equation reduces to(
r(4n− 1)

2n
− (2n− 1)ε

)
Dν = (2n− 1)

(
2n+ 1− rε

2n

)
ξ(ν)ξ. (24)

Differentiating (24) covariantly along X, making use of (7) provides(
r(4n− 1)

2n
− (2n− 1)ε

)
∇XDν = (2n− 1)

(
2n+ 1− rε

2n

)
(X(ξ(ν))ξ − ξ(ν)εφX).

Since g(∇XDν, Y ) = g(∇Y Dν,X), it follows from above equation that(
2n+ 1− rε

2n

)
ε{X(ξ(ν))η(Y )− Y (ξ(ν))η(X)− 2ξ(ν)g(φX, Y )} = 0. (25)

In view of (25), we have either r = 2nε(2n+1) or r ̸= 2nε(2n+1). First, we consider
r = 2nε(2n + 1) and in this case the manifold is Einstein, i.e., QX = 2nεX. This,
inserted in (2), shows that V is concircular (also conformal). In the later case, we
have from (25) that X(ξ(ν))η(Y )−Y (ξ(ν))η(X)−2ξ(ν)g(φX, Y ) = 0. Taking X and
Y orthogonal to ξ in the foregoing equation yields ξ(ν) = 0, as dη ̸= 0 on M . This

together with (24) entails that either r = 2nε(2n−1)
4n−1 or ν is constant. If we assume

that ν is constant, then from the relation (16) we get a contradiction as V is zero. So

that the only choice is r = 2nε(2n−1)
4n−1 . □

4. Generalized V -Ric vector field on (κ, µ)-contact pseudo-Riemannian
manifolds

In [6], Ghaffarzadeh and Faghfouri introduced the notion of contact pseudo-Riemannian
(κ, µ)-manifold. According to them a contact pseudo-Riemannian (κ, µ)-manifold is
a contact pseudo-Riemannian manifold whose curvature tensor R satisfies

R(X,Y )ξ = εκ{η(Y )X − η(X)Y }+ εµ{η(Y )hX − η(X)hY }, (26)

for some real numbers κ, µ. For contact pseudo-Riemannian (κ, µ)-manifold we have
the following relations (see [6]):

h2 = (εκ− 1)φ2, (27)

Qξ = 2nκξ. (28)
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Lemma 4.1. [6] In any contact pseudo-Riemannian (κ, µ)-manifold M of dimension
2n+ 1, the Ricci operator Q of M can be expressed as

QX = ε(2(n− 1)− nµ)X + (2(n− 1) + µ)hX

+(2(1− n)ε+ 2nκ+ nµε)η(X)ξ, (29)

where εκ < 1. Further, the scalar curvature of M is 2n(2(n− 1)ε− nµε+ κ).

We are now prepared for the following outcome.

Theorem 4.2. If contact pseudo-Riemannian (κ, µ)-manifold M with εκ < 1 admits
a generalized V -Ric vector field, then one of the following cases holds.
(i) V is a parallel vector field.

(ii) The curvature tensor satisfies R(X,Y )ξ = 0.

(iii) A smooth function ν satisfies ν = ε
2nκ

(
1− r

2nκ

)
ξ(ξ(ν)).

Proof. Differentiation of (28) along X and utilization of (7) yields

(∇XQ)ξ = Q(εφ+ φh)X − 2nκ(εφ+ φh)X. (30)

Taking the scalar product of (18) with ξ and employing (28), (30) provides

g(R(X,Y )V, ξ) = 2nεκ{X(ν)η(Y )− Y (ν)η(X)}+ ν{g(Q(εφ+ φh)X,Y )

− g(Q(εφ+ φh)Y,X)− 4nεκg(φX, Y )}. (31)

Replacing Y in (31) by ξ and utilizating (3), (26) and (28) implies

εκ(η(V )ξ − V )− εµhV = 2nκ(εDν − ξ(ν)ξ). (32)

In view of constancy of r, contracting X in (18) and calling up the formula divQ =
1
2Dr gives that QV = QDν − rDν. This together with (29) shows that

ε(2(n− 1)− nµ)V + (2(n− 1) + µ)hV + (2(1− n)ε+ 2nκ+ nµε)η(V )ξ

=(ε(2(n− 1)− nµ)− r)Dν + (2(n− 1) + µ)hDν + ε(2(1− n)ε+ 2nκ+ nµε)ξ(ν)ξ.

Taking the scalar product of the aforementioned equation with ξ and taking the first
term of (6) gives

η(V ) = ε
(
1− r

2nκ

)
ξ(ν). (33)

Inserting (33) in (32), it follows that(
(2n+ 1)κ− r

2n

)
ξ(ν)ξ − εκV − εµhV − 2nεκDν = 0. (34)

ReplacingX by φX and Y by φY in the foregoing equation and usingR(φX,φY )ξ = 0
(follows from (26)) and (3), we obtain ν{ε(Qφ+φQ)X−φQhX−hQφX−4nεφX} =
0. By virtue of (27) and (29), it can be obtained from the above equation that
ν{εκ(µ− 2)− µ(n+ 1)} = 0. Thus, from the above relation, we have that either ν = 0
or εκ(µ− 2)− µ(n+ 1) = 0. If we consider ν = 0, then from (2) we conclude that V
parallel vector field. Next, we consider

εκ(µ− 2)− µ(n+ 1) = 0. (35)

Differentiating (34) along X and taking (2), (7) provides

ε
(
(2n+ 1)κ− r

2n

)
{X(ξ(ν))η(Y )− ξ(ν)(εg(φX, Y ) + g(φhX, Y ))}
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− εκνg(QX,Y )− εµg((∇Xh)Y, V )− εµg(hQX, Y )− 2nεκg(∇XDν, Y ) = 0.

Putting X = Y = ξ in the foregoing equation and utilizating (6), (8), (28) implies

κ
(
ε
(
1− r

2nκ

)
ξ(ξ(ν))− 2nκν

)
= 0. (36)

If we suppose that κ = 0, it follows from (35) that µ = 0. Hence R(X,Y )ξ = 0 for any
vector X, Y on M . Suppose κ ̸= 0; then from (36) one can conclude that a smooth
function ν satisfy ν = ε

2nκ

(
1− r

2nκ

)
ξ(ξ(ν)). □

In the Riemannian setting, if a contact manifold M satisfies R(X,Y )ξ = 0 then
it is locally flat in dimension 3 and in higher dimensions it is locally isometric to the
trivial bundle En+1 × Sn(4) (see [1]). Thus, we have the following corollary.

Corollary 4.3. If a contact Riemannian (κ, µ)-manifold M with κ < 1 admits a
generalized V -Ric vector field, then one of the following cases holds.
(i) V is a Killing vector field.

(ii) M is locally flat in dimension 3 and in higher dimensions it is locally isometric
to the trivial bundle En+1 × Sn(4).

(iii) A smooth function ν satisfies ν = 1
2nκ

(
1− r

2nκ

)
ξ(ξ(ν)).
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