
MATEMATIČKI VESNIK

MATEMATIQKI VESNIK

75, 3 (2023), 216–224

September 2023

research paper

originalni nauqni rad

DOI: 10.57016/MV-rx451is8
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Abstract. A nonlinear phenomenon in nature is often modeled by a system of differ-
ential equations with parameters. The bifurcation occurs when a parameter varies in such
systems, causing a qualitative change in its solution. In this paper, we study one of the most
exciting bifurcations, which is Hopf bifurcation. We use tools from algebraic topology to
analyze and reveal supercritical and subcritical Hopf bifurcations.

1. Introduction

Dynamical systems describe many phenomena in different sciences, like engineering
and biology. Studying a bifurcation in the dynamical system helps us to understand
the phenomenon. One of the most common bifurcations is the Hopf bifurcation,
which happens when an equilibrium point changes its stability, and a periodic orbit is
generated to produce a local birth or death of the periodic solution. It only appears
in systems of two or more dimensions. In this paper, we study the Hopf bifurcation
in the planar system as the following

ẋ = fµ(x, y),

ẏ = gµ(x, y),
(1)

where µ is a parameter. There are two basic kinds of the Hopf bifurcations.

� Supercritical Hopf bifurcation, where an unstable equilibrium point creates a
stable limit cycle around it as the parameter µ passes through the bifurcation
value µ0, see picture (a) in Figure 1.

� Subcritical Hopf bifurcation, where a stable equilibrium point creates an un-
stable limit cycle around it as the parameter µ passes through the bifurcation
value µ0, see picture (b) in Figure 1.
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Figure 1: (a) Supercritical Hopf bifurcation and (b) subcritical Hopf bifurcation.

The Hopf bifurcation is sometimes named as a Poincaré–Andronov–Hopf bifur-
cation, it is prevalent in many mathematical models, such as the Lotka–Volterra
model [11], the Hodgkin–Huxley model [19], the Selkov model of glycolysis [3], the
Lorenz model [17], the Brusselator system [7], and the Van der Pol oscillators [21].
Recently, many approaches have been developed to study the Hopf bifurcations. In
[20], numerical analysis and normal form theory have been applied to study the nor-
mal form of degenerate Hopf bifurcation. Berg et al [1] have considered the rigorous
verification of Hopf bifurcations for the class of polynomial vector fields, and a blowup
technique has been used to transform the Hopf bifurcation problem into a regular con-
tinuous problem. In [15], Rionero has found the conditions for the occurrence of the
Hopf bifurcation in autonomous ODE systems containing n equations when n = 2, 3, 4.
Hu has improved a general Hopf bifurcation theory for differential equations with a
state-dependent delay managed by an algebraic equation, see [9]. In the homological
approach, Hopf bifurcations have been detected in dynamical systems using ZigZag
persistent homology called BuZZ, see [18]. In this paper, a topological method is
adopted, which depends on homological Conley index theorems, Morse sets, and ex-
act sequences. This method analyzes and evaluates the homological Conley index of
both supercritical and subcritical Hopf bifurcations.

This paper is organized as follows. In the next section, we present the preliminaries
of the Conley index that are necessary in this research. In Section 3, a topological
investigations of both supercritical and subcritical Hopf bifurcation are explained
and evaluated in the mode of homological Conley index. In Section 4, the results are
summarized and some future works are suggested.

2. Preliminaries

Let Γ be a Hausdorff topological space. A dynamical system is a flow ϕ : Γ×R → Γ,
which is a function characterized by the properties: ϕ(x, 0) = x and ϕ(ϕ(x, t), s) =
ϕ(x, t+ s) for every point x ∈ Γ and all times t, s ∈ R. The flow is usually obtained
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from a system of differential equations dx
dt = f(x) by integration. Fixed points of a

flow are points x0 such that φ(x0, t) = x0 for all t, it can be obtained by solving the
equation f(x0) = 0.

Theorems for classifying isolated fixed points of a flow are based on the eigenvalues
of the linearization of the dynamical system at the fixed point, but eigenvalues do
not classify all isolated fixed points. The concept of an isolated invariant set is a
generalization of the concept of an isolated fixed point of a flow.

For N ⊂ Γ, the maximal invariant subset of N with respect to the flow ϕ is
denoted by Inv(N ) = {x ∈ N : ϕ(x,R) ⊆ N}. The following definitions of the index
pair and Conley index are given in [2, 4–6,8, 10,12–14,16].

Definition 2.1. A locally compact subset X ⊂ Γ is said to be a local flow if for
every x ∈ X there exists a neighborhood U of x in Γ and an ε > 0 such that
φ(X ∩ U, [0, ε)) ⊂ X.

Definition 2.2. Let X ⊂ Γ be a local flow. Then a compact subset N ⊂ X is
an isolating neighborhood in X if Inv(N ) ⊂ intX(N ), where intX(N ) represents the
interior of N in the relative topology of X.

Definition 2.3. Let X ⊂ Γ be a local flow. Then the subset S ⊂ X is an isolated
invariant set if there exists an isolating neighborhood N in X such that Inv(N ) = S.

The Conley index of an isolated invariant set S uses homology groups to define a
generalization of the classification of an isolated fixed point. A pair of compact sets
(N,L), where L ⊂ N ⊂ X is called an index pair of S in X ⊂ Γ if (N,L) satisfies the
following conditions:
(i) S = Inv(N \ L), and N \ L is an isolating neighborhood of S in X.

(ii) L is positively invariant in N , that is, given x ∈ L and ϕ(x, [0, t]) ⊂ N , then
ϕ(x, [0, t]) ⊂ L.

(iii) L is an exit set for N , that is, given x ∈ N and t1 > 0 such that ϕ(x, t1) ̸∈ N ,
then there exists t0 ∈ [0, t1] such that ϕ(x, [0, t0]) ⊂ N and ϕ(x, t0) ∈ L.

The homological Conley index of S, denoted by CHq(S), is the relative homology
of an index pair of S, and it is taken with Z2 coefficients.

Usually Γ is a metric space, and very often Γ = Rn. We consider a Hausdorff
space Γ with a flow to introduce basic concepts of Conley index of isolated invariant
sets and attractor-repeller pairs. We say X ⊂ Γ is a metric local flow if it is a local
flow and a metric subspace of the Hausdorff space Γ.

Definition 2.4. Let X ⊂ Γ be a metric local flow and let S be an isolated invariant
set in X. Then the homotopy type h(S) = [N/L] of the pointed space N/L, (N,L)
being an index pair for S in X, is said to be the homotopy Conley index of S in X.

Definition 2.5. Let S be an isolated invariant set and (N,L) be an index pair of S
in X. Then the homology Conley index of S is given by the homology of N relative
to L: CHq(S) = CHq(S, φ) := Hq(N,L).
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The ω-limit set of a subset Y ⊂ Γ is given by

ω(Y ) := Inv
(
ϕ(Y, [0,∞))

)
=

⋂
t>0

ϕ(Y, [t,∞)),

and the α-limit set (ω∗-limit set) of a subset Y ⊂ Γ is given by

α(Y ) := Inv
(
ϕ(Y, (−∞, 0])

)
=

⋂
t<0

ϕ(Y, (−∞, t]).

If S1 and S2 are isolated invariant sets in a compact invariant set S, then we
define the set of connecting orbits from S2 to S1 as C(S2, S1) := {x ∈ S | ω(x) ⊂
S1 and α(x) ⊂ S2}, where ω(x) and α(x) denote the omega and alpha limit sets of x,
respectively.

A partial order on a set P is a relation < on P that satisfies:
(i) π < π never holds for π ∈ P; (ii) if π < π′ and π′ < π′′ then π < π′′.
A subset I ⊂ P is called an interval if π < π′′ < π′ with π, π′ ∈ I implies π′′ ∈ I.
The set of intervals in < is denoted I(<).

An interval I ∈ I(<) is called an attracting interval if π ∈ I and π′ < π imply
π′ ∈ I. The set of attracting intervals in < is denoted by A(<). Points π, π′ ∈ P are
called adjacent if {π, π′} ∈ I(<).

Definition 2.6. Let S be a compact invariant subset in Γ. Then a compact invariant
subset A ⊂ S is said to be an attractor in S if there exists a neighborhood U of A in
S such that A = ω(U).

If A is an attractor in S, the dual (complementary) repeller of A in S is defined
by A∗ := {x ∈ S | ω(x) ∩A = ∅}.
Definition 2.7. Let S ⊂ Γ be a compact invariant set and let A be an attractor in
S. Then (A,A∗) is called an attractor-repeller pair in S.

Definition 2.8. Let S be a compact invariant set (not necessarily isolated). A (<-
ordered)Morse decomposition of S is a collectionM(S) = {M(p) | p ∈ P} of mutually
disjoint compact invariant subsets of S such that if x ∈ S \

⋃
p∈P

M(p), then there exist

q < p (p, q ∈ P) with ω(x) ⊂ M(q) and α(x) ⊂ M(p), i.e., x ∈ C
(
M(p),M(q)

)
.

In general, any ordering on P satisfying the above property is called admissible
(for the flow). The invariant sets, M(p), are called Morse sets. Moreover, if S is
isolated, then each M(p) is also isolated.

For each I ∈ I(<), let M(I) =
(⋃

π∈I M(π)
)
∪
(⋃

π,π′∈I C
(
M(π′),M(π)

))
. We

call M(I) a Morse set of the admissible ordering < of M . The collection {M(I) | I ∈
I(<)} of Morse sets of the admissible ordering < is denoted by MS(<). If I ∈ A(<),
then M(I) is an attractor in S, and M(P \ I) is its dual repeller. Since M(I) is
isolated invariant set, h

(
M(I)

)
is defined. Let CHq(I) = CHq

(
h
(
M(I)

)
;Z2

)
be the

singular homology of the pointed space h
(
M(I)

)
.

If (A,A∗) is an attractor-repeller pair in S, then S decomposes into the union,
S = A ∪ A∗ ∪ C(A∗, A;S). The following theorem generalizes the idea of an index
pair for S to that of an index triple for (A,A∗).
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Theorem 2.9. Assume N0 ⊂ N1 ⊂ N2. If (N1, N0) is an index pair for A, and
(N2, N0) is an index pair for S, then (N2, N1) is an index pair for A∗.

We call such a triple (N2, N1, N0) an index triple for the attractor-repeller pair

(A,A∗) in S; it defines a sequence of maps on quotient spaces N1/N0
i−→ N2/N0

p−→
N2/N1, where i and p are the obvious inclusion and projection maps, respectively.
Passing to homology, there is the following long exact homology sequence.

· · · → Hq(N1, N0)
i−→ Hq(N2, N0)

p−→ Hq(N2, N1)
∂−→ Hq−1(N1, N0) → · · ·

This sequence is independent of the choice of index triple for (A, A*) in S and therefore
defines a sequence, called the homology index sequence for (A,A∗) in S,

· · · → CHq(A)
i(A,S)−−−−→ CHq(S)

p(S,A∗)−−−−−→ CHq(A
∗)

∂(A∗,A)−−−−−→ CHq−1(A) → · · · (2)

The connecting homomorphism ∂(A∗, A) in (2) provides information about the set of
orbits connecting A∗ and A in S.

Theorem 2.10. If ∂(A∗, A) ̸= 0, then C(A∗, A) ̸= ∅.

For example, if CH∗(S) = 0 and CH∗(A) ̸= 0, by exactness ∂(A∗, A) ̸= 0, so
C(A∗, A) ̸= ∅.

Theorem 2.11. If (A,A∗) is an attractor-repeller pair in S and C(A∗, A) = ∅, then
(A∗, A) is also an attractor-repeller pair in S. Consequently, there is the homology
index sequence of the attractor-repeller pair (A∗, A)

· · · → CHq(A
∗)

i(A∗,S)−−−−−→ CHq(S)
p(S,A)−−−−→ CHq(A)

∂(A,A∗)−−−−−→ CHq−1(A
∗) → · · ·

and p(S,A)i(A,S) = id|H(A).

3. Analysing Hopf bifurcation via topological method

Consider the planar system (1) which is illustrated in Section 1 where the local birth
or death of a periodic solution appear from an equilibrium point as the parameter
crosses a critical value (Hopf bifurcation) ẋ = fµ(x, y), ẏ = gµ(x, y).

The flow of the vector field of the Hopf bifurcation makes a limit cycle and the
trajectories approach the limit cycle from inside and outside in case supercritical, or
move away from the limit cycle in subcritical case. In this section, we divide the
region of the Hopf bifurcation into neighbourhoods of the compact invariant sets:
S which is a compact invariant set of the flow, an attractor part A in S, and the
repeller part A∗ in S. Also, we determine the graded Morse sets in the system, then
we evaluate all components of the supercritical and the subcritical Hopf bifurcation
using homological Conley index and exact sequences.

3.1 Supercritical Hopf bifurcation (Stable Limit Cycle)

In this subsection, we give a description of all parts of the supercritical Hopf bifurca-
tion in terms of homological Conley index in the following theorem
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Theorem 3.1. Let S be a supercritical Hopf bifurcation with the repeller A∗, and the
attractor A. Then

CHq(S) ∼=

{
Z2, if q = 0,

0, otherwise,
CHq(A) ∼=

{
Z2, if q = 0, 1,

0, otherwise,

and CHq(A
∗) ∼=

{
Z2, if q = 2,

0, otherwise.

Proof. Consider the supercritical Hopf bifurcation as in the Figure 2, we notice that
the collection M(S) = {M(p) | p ∈ P0 = {1, 2}} where M(1) is the attractor (stable
limit cycle) and M(2) is the repeller (source) with flow ordering M(1) < M(2) is a
Morse decomposition of S.

Figure 2: Supercritical Hopf bifurcation

It is clear from Figure 3 that N0 ⊂ N1 ⊂ N2.

Figure 3: Neighborhoods of S, A and A∗ in supercritical Hopf bifurcation

We can find the homological Conley index for each of S,A, and A∗ as follows

CHq(S) = Hq(N2, N0) = Hq(N2, ∅) = Hq(Attractor disk) =

{
Z2, if q = 0,

0, otherwise,
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CHq(A) = Hq(N1, N0) = Hq(N1, ∅) = Hq(annulus) =

{
Z2, if q = 0, 1,

0, otherwise,

and CHq(A
∗) = Hq(N2, N1) = Hq(D

2, ∂D2) =

{
Z2, if q = 2,

0, otherwise.

We can illustrate these computations in the following exact sequence:

CH2(A)
i(A,S)−−−−→ CH2(S)

p(S,A∗)−−−−−→ CH2(A
∗)

∂(A∗,A)−−−−−→ CH1(A)
i(A,S)−−−−→ CH1(S)

p(S,A∗)−−−−−→ CH1(A
∗)

∂(A∗,A)−−−−−→ CH0(A)
i(A,S)−−−−→ CH0(S)

p(S,A∗)−−−−−→ CH0(A
∗)

which leads to the exact sequence 0 → 0 → Z2
≈−→ Z2 → 0 → 0 → Z2

≈−→ Z2 → 0. □

3.2 Subcritical Hopf bifurcation (Unstable Limit Cycle)

In this subsection, all components of the subcritical Hopf bifurcation are computed
by the homological Conley index in the following theorem

Theorem 3.2. Let S be a subcritical Hopf bifurcation with the repeller A∗, and the
attractor A. Then

CHq(S) ∼=

{
Z2, if q = 2,

0, otherwise,
CHq(A) ∼=

{
Z2, if q = 0,

0, otherwise,

and CHq(A
∗) ∼=

{
Z2, if q = 1, 2,

0, otherwise.

Proof. Consider the subcritical Hopf bifurcation as in the Figure 4, we see that the
(<-ordered) Morse decomposition of S is a collection M(S) = {M(p) | p ∈ P0 =
{1, 2}} such that M(1) is an attractor (sink) and M(2) is a repeller (unstable limit
cycle) with flow ordering M(1) < M(2). The neighborhoods N0, N1 and N2 satisfy
N0 ⊂ N1 ⊂ N2, see Figure 5. We can find the homological Conley index for each of
S,A, and A∗ in the subcritical case.

Figure 4: Subcritical Hopf bifurcation
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Figure 5: Neighborhoods of S, A and A∗ in subcritical Hopf bifurcation

CHq(S) = Hq(N2, N0) = Hq(D
2, ∂D2) = Hq(Repeller disk) =

{
Z2, if q = 2,

0, otherwise,

CHq(A) = Hq(N1, N0) = Hq(N1/N0, N0/N0)

= Hq(D
2 ∪ point,point) = Hq(D

2) =

{
Z2, if q = 0,

0, otherwise,

and CHq(A
∗) = Hq(N2, N1) = Hq

(
(N2 −N1), ∂(N2 −N1)

)
=

{
Z2, if q = 1, 2,

0, otherwise.

These results are illustrated in the following exact sequence

CH2(A)
i(A,S)−−−−→ CH2(S)

p(S,A∗)−−−−−→ CH2(A
∗)

∂(A∗,A)−−−−−→ CH1(A)
i(A,S)−−−−→ CH1(S)

p(S,A∗)−−−−−→ CH1(A
∗)

∂(A∗,A)−−−−−→ CH0(A)
i(A,S)−−−−→ CH0(S)

p(S,A∗)−−−−−→ CH0(A
∗),

which is equivalent to the exact sequence 0→Z2
≈−→Z2→0→0→Z2

≈−→Z2→0→0. □

4. Conclusion

In this paper, we have shown an investigation and evaluation of both supercritical
and subcritical Hopf bifurcation through topological method that depends on the
homological Conley index and the exact sequences of index triple for the attractor-
repeller pair (A,A∗) in S. For future work, we suggest analyzing and evaluating the
Hopf bifurcation in higher dimensions.
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