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Abstract. Let M be a semimodule over a commutative semiring R and K be a sub-
tractive subsemimodule of M with K∗ = K \ {0}. The subtractive subsemimodule-based
graph of M is defined as the simple undirected graph Ω = ΓK∗(M) with vertex set V (Ω) =
{v ∈ M \ K : v + v′ ∈ K∗ for some v ̸= v′ ∈ M \ K}, and two distinct vertices m and
n are adjacent if and only if m + n ∈ K∗. In this paper, we study the interplay between
semimodule properties and the properties of the graph. Among other results, we compute
the diameter and the girth of ΓK∗(M).

1. Introduction

Let M be a semimodule over a commutative semiring R and K a subtractive sub-
semimodule of M with K∗ = K \ {0}. The subtractive subsemimodular graph of M
is defined as the simple undirected graph Ω = ΓK∗(M) with vertex set V (Ω) = {v ∈
M \K : v + v′ ∈ K∗ for some v ̸= v′ ∈ M \K}, and two distinct vertices m and n
are adjacent if and only if m+n ∈ K∗. In this paper, we study the interplay between
semimodule properties and graph properties. Among other results, we compute the
diameter and the girth of ΓK∗(M).

2. Preliminaries

First we recall some notions and algebraic notations related to graphs and the theory
of semimodules. The vertex set of a simple graph Ω is denoted by V (Ω). A graph
is connected if any two distinct vertices are connected by a path. The shortest path
from m to n, denoted by d(m,n), is called the distance between m and n, if there is no
such path, then d(m,n) = ∞. The diameter of a graph Ω is diam(Ω) = sup{d(m,n) :
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m,n ∈ V (Ω)}. A complete graph is a simple undirected graph in which each pair of
distinct vertices is connected by exactly one edge. We define the girth of Ω, denoted
by gr(Ω), as the length of a shortest cycle in Ω, provided Ω contains a cycle; otherwise;
gr(Ω) = ∞, in which case Ω is called an acyclic graph. Two (induced) subgraphs Ω1

and Ω2 of Ω are disjoint if they have no edges and no vertices in common. We denote
the complete bipartite graph with m and n vertices by Km,n. We say that u is a
universal vertex of Ω if u is adjacent to all other vertices of Ω. A vertex v in an
undirected connected graph G is a cut-point (cut vertex) of G if removing it (and the
edges passing through it) disconnects the graph.

We recall here some basic notions from the theory of semimodules. For definitions
of semirings, semimodules, and subsemimodules, we refer to [4–6, 11]. A subtractive
subsemimodule (= k-subsemimodule) K is such a subsemimodule of M that if m,m+
n ∈ K, then n ∈ K (so {0M} is a subtractive subsemimodule of M). An element m
of M is called a zero-sum in M if m+n = 0 for every n ∈ M . We use S(M) to denote
the set of all zero-sum elements of M . If L is a subset of M , then S(L) = {a ∈ L :
a+ b = 0 for any b ∈ L}.

We say that a subsemimodule P of M is a partitioning subsemimodule (= QM -
subsemimodule ) if M =

⋃
{q+P : q ∈ QM} for a subset QM of M , and if q, q′ ∈ QM ,

then (q + P ) ∩ (q′ + P ) ̸= ∅ if and only if q = q′. Let P be a QM -subsemimodule of
M and let M/P = {q + P : q ∈ QM}. Then M/P forms an R-semimodule under the
operations ⊕ and ⊙ defined as follows: (q+P )⊕ (q′+P ) = q′′+P , where q′′ ∈ QM is
the only such element that q+ q′+P ⊆ q′′+P and r⊙ (q+P ) = q∗+P , where r ∈ R
and q∗ ∈ QM is the unique element such that rq + P ⊆ q∗ + P . This R-semimodule
M/P is called the quotient semimodule of M by P (see [4]). The single element
q0 ∈ QM exists such that q0 + P = P by [4, Lemma 2.3]. It is shown that every
partitioning subsemimodule is a subtractive subsemimodule by [4, Theorem 3.2]. The
subset {r ∈ R : rM ⊆ P} is denoted by (P :R M) or (P : M). It is clear that if P is
a subsemimodule of M , (P : M) is an ideal of R.

In this work, R is a commutative semiring, M is an R-semimodule, and K∗ =
K \ {0} for each subsemimodule K of M .

3. Some properties of ΓK∗(M)

This section is devoted to some properties of the ΓK∗(M)-graph. Let us start with
the following lemma, which will be used throughout this paper.

Lemma 3.1. Let K be a subtractive subsemimodule of R-semimodule M . Then:

(i) If w and u are adjacent for some w, u ∈ ΓK∗(M), then 2w + u /∈ K.

(ii) If y ∈ V (ΓK∗(M)) and y + y′ = 0 for some y′ ∈ M , then y′ /∈ K.

(iii) Let v, w ∈ V (ΓK∗(M)) with v ̸= w and NBΩ(v) ∩NBΩ(w) ̸= ∅. If w + w′ = 0
for some w′ ∈ M , then v + w′ ∈ K∗.
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(iv) Let v, w ∈ V (ΓK∗(M)) with v+v′ = 0 and w+w′ = 0 for some v′, w′ ∈ M , then
v + w ∈ K∗ if and only if v′ + w′ ∈ K∗.

Proof. (i) Let 2w+u ∈ K. Then 2w+u = w+(w+u) ∈ K. This implies that w ∈ K,
since w + u ∈ K and K is a subtractive subsemimodule of M , which contradicts our
assumption.

(ii) The result is obvious since K is a subtractive subsemimodule.
(iii) Assume that t ∈ NBΩ(v) ∩NBΩ(w). So v + t, w + t ∈ K∗. Let v + w′ = a

for some a ∈ M . This implies that v + t = v + w′ + w + t = a + w + t ∈ K∗. So
a ∈ K since K is subtractive. If v + w′ = 0, then v = v + w′ + w = w, which is a
contradiction. Hence v + w′ ∈ K∗.

(iv) It is clear that v + w = 0 if and only if v′ + w′ = 0. Now, let v + w ∈ K∗.
Then v+w = a for some 0 ̸= a ∈ K. Therefore a+v′+w′ = v+w+v′+w′ = 0 ∈ K,
thus v′ + w′ ∈ K, since K is a subtractive subsemimodule. Similarly the other side
holds. □

Remark 3.2. Let K be a subtractive subsemimodule of the R-semimodule M and
K ′ = {x ∈ M : x + z ∈ K for some z ∈ M \K where z ̸= x}. If K is a subtractive
subsemimodule of the R-semimodule M , then K ′ ⊆ M \K.

Now, we consider the conditions under which V (ΓK∗(M)) ̸= ∅.

Proposition 3.3. Let K be a subtractive subsemimodule of R-semimodule M with
|K∗| ≥ 2. If S(M) ∩K ′ ̸= ∅, then V (ΓK∗(M)) ̸= ∅.

Proof. Let k ∈ S(M)∩K ′. Then k+ l = 0 for some l ∈ M \K. If k = l+ e for every
0 ̸= e ∈ K, then k = l+ e = l+ f for some distinct nonzero elements e, f ∈ K. So we
get e = k + l + e = k + l + f = f , which is a contradiction. Thus we have k ̸= l + n
for some 0 ̸= n ∈ K. Hence k + l + n = n ∈ K∗ and so k, l + n ∈ V (ΓK∗(M)). □

The next result is used to identify the adjacency between the vertices of the
ΓK∗(M).

Theorem 3.4. Let K be a subtractive subsemimodule of R-semimodule M . If x1, x2 ∈
V (ΓK∗(M)) are distinct vertices connected by a path of length 3 and x1 + x2 ̸= 0,
then x1 and x2 are adjacent.

Proof. Let x1 −m1 −m2 − x2 be a path of length 3 between x1 and x2 for distinct
vertices x1,m1,m2, x2 ∈ V (ΓK∗(M)). So x1+m1,m1+m2,m2+x2 ∈ K∗. Therefore
we have (x1 + x2) + (2(m1 +m2)) = (x1 +m1) + (m1 +m2) + (m2 + x2) ∈ K. Then
x1 + x2 ∈ K∗ since m1 +m2 ∈ K and K is a subtractive subsemimodule. Thus x1

and x2 are adjacent. □

Now, we extend a result of Abbasi and Jahromi [1, Theorem 2.7] for generalized
graph of modules to the subtractive subsemimodule-based graph of semimodules.

Theorem 3.5. Let K be a subtractive subsemimodule of R-semimodule M . If x, y ∈
V (ΓK∗(M)) are distinct vertices connected by a path of length 4, then these vertices
are connected by a path of length 2. In particular, NBΩ(x) ∩NBΩ(y) ̸= ∅.
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Proof. Assume that x − m1 − m2 − m3 − y is a path from x to y with the distinct
vertices x,m1,m2,m3, y ∈ V (ΓK∗(M)). If either x+m3 ̸= 0 or m1+y ̸= 0, then x and
m3 or m1 and y are adjacent by Theorem 3.4. So we get x+m3 = 0 and m1 + y = 0.
If x = m1 +m2 +m3, then x+ y = m1 +m2 +m3 + y = m2 +m3 ∈ K∗. This implies
that x and y are adjacent, a contradiction. Similarly, if y = m1 + m2 + m3, then
x+ y = x+m1 +m2 +m3 = m1 +m2 ∈ K∗ which is also a contradiction. Therefore
x− (m1 +m2 +m3)− y is a path of length 2 between x and y. □

Corollary 3.6. Let K be a subtractive subsemimodule of R-semimodule M . If P is
a path of length 4 in ΓK∗(M), then ΓK∗(M) has a cycle.

Proof. Let x−m1 −m2 −m3 − y be a path of length 4 between x and y for distinct
vertices x,m1,m2,m3, y ∈ V (ΓK∗(M)). If either x + m3 ̸= 0 or m1 + y ̸= 0, then
x and m3 or m1 and y are adjacent by Theorem 3.4, as we desired. So we may
assume that x + m3 = 0 and y + m1 = 0. Then x − (m1 + m2 + m3) − y is a
path of length 2 between x and y by Theorem 3.5. If m1 + m2 + m3 = m1, then
y+m1+m2+m3 = y+m1 andm2+m3 = 0, a contradiction. Thusm1+m2+m3 ̸= m1.
Similarly, m1 +m2 +m3 ̸= m3. If m1 +m2 +m3 = m2, then x−m1 −m2 − x and
m2 − m3 − y − m2 are two cycles of length 3 in ΓK∗(M). If m1 + m2 + m3 ̸= m2,
then x−m1 −m2 −m3 − y − (m1 +m2 +m3)− x is a cycle of length 6 in ΓK∗(M),
as we desired. □

4. The maximum distance and the shortest cycle in ΓK∗(M)

In this section we compute diam(ΓK∗(M)) and gr(ΓK∗(M)), the length of the max-
imum distance and the shortest cycle in ΓK∗(M), respectively. In the next example,
we introduce an R-semimodule such that ΓK∗(M) is a disconnected graph and is a
union of two disjoint complete subgraphs.

Example 4.1. Let R = Z+ ∪ {0}. It is clear that R is an R-semimodule. As-
sume that K = 4Z+ ∪{0}, so K is a subtractive R-subsemimodule. Assume that x ∈
V (ΓK∗(M)), then x ̸= 4t and so either x = 4t+1, x = 4t+2 or 4t+3 for some nonnega-
tive integer t. Let V1 = {x ∈ V (ΓK∗(M)) : x = 4t+2 for some nonnegative integer t}
and V2 = {x ∈ V (ΓK∗(M)) : x = 4t+1 or x = 4t+3 for some nonnegative integer t}.
It is easy to see that the subgraph ΓV1

K∗(M) of ΓK∗(M) is a complete graph and the

subgraph ΓV2

K∗(M) of ΓK∗(M) is a bipartite complete graph and these two subgraphs
are disjoint. So gr(ΓK∗(M)) = 3 and diam(ΓK∗(M)) = ∞.

Theorem 4.2. Let K be a subtractive subsemimodule of R-semimodule M . Then
diam(ΓK∗(M)) ∈ {1, 2, 3,∞}.

Proof. Applying Theorem 3.5, every path of length greater 3 can reduce to a path of
length at most 3. □

The subtractive condition of subsemimodule K in Theorem 4.2 is necessary. To
see this, consider the following example.



F. Esmaeili Khalil Saraei, S. Raminfar 269

Example 4.3. Consider the idempotent semiring R = {0, 1, c} in which 1 + c =
c + 1 = c. Then the subsemimodule N = {0, c} of R-semimodule R is not subtrac-
tive [11, Example 6.39]. It is clear that V (ΓN∗(M)) = {1} and ΓN∗(M) = K1. So
diam(ΓN∗(M)) = 0.

Theorem 4.4. Let K be a subtractive subsemimodule of R-semimodule M and ΓK∗(M)
be a connected graph. If 2t = 0 for every t ∈ V (ΓK∗(M)), then ΓK∗(M) is a complete
graph.

Proof. By Theorem 4.2, we have diam(ΓK∗(M)) ≤ 3. First suppose that z, w ∈
V (ΓK∗(M)) with z ̸= w and d(z, w) = 2, so there exists a path z− t−w in ΓK∗(M).
Hence z + w = z + w + 2t = (z + t) + (w + t) ∈ K. If z + w = 0, it follows that
w = 2z + w = z, a contradiction. So z + w ̸= 0 and z and w are adjacent. If
d(z, w) = 3, then z and w are adjacent by Theorem 3.4. □

In the following example we introduce an R-semimodule M such that ΓK∗(M) is
a complete graph but 2t ̸= 0 for every t ∈ V (ΓK∗(M)) showing that the converse
of [1, Theorem 2.11] can fail for semimodules.

Example 4.5. Let R = {[0, a],+, .} where a ∈ Z+ ∪ {0} be an interval semiring and
M = R. Then subsemimodule K = {[0, a] : a ∈ 2Z+ ∪ {0}} is subtractive. Assume
that x ∈ V (ΓK∗(M)), so x ̸= [0, 2k] and x = [0, 2k+1] for some nonnegative integer k.
Let x, y ∈ V (ΓK∗(M)). Then x = [0, 2a+1] and y = [0, 2a′+1] for some nonnegative
integers a and a′. So x+ y = [0, 2a+ 1] + [0, 2a′ + 1] = [0, 2(a+ a′ + 1)] ∈ K∗, thus
ΓK∗(M) is a complete graph with diam(ΓK∗(M)) = 1 and gr(ΓK∗(M)) = 3.

Our next goal is to determine an upper bound for the girth of ΓK∗(M).

Theorem 4.6. Let K be a subtractive subsemimodule of R-semimodule M and ΓK∗(M)
has a cycle. Then gr(ΓK∗(M)) ≤ 6.

Proof. Let x1 − x2 − x3 − x4 − x5 − x6 − x7 − x1 be a cycle of length 7 in ΓK∗(M).
Then there exists a path x1 − t− x5 of length 2 between x1 and x5 by Theorem 3.5.
If t /∈ {x2, x3, x4}, then x1 − t− x5 − x6 − x7 − x1 is a cycle of length 5 in ΓK∗(M).
Now suppose that t ∈ {x2, x3, x4}. Then we have a cycle with length less than 6. □

Theorem 4.7. Let K be a subtractive subsemimodule of R-semimodule M . If
|S(M) \K| ≥ 4 and 2t ∈ K∗ for every 0 ̸= t ∈ R, then gr(ΓK∗(M)) ≤ 4.

Proof. Let 0 ̸= x ∈ S(M) \K. Then there exists y ∈ S(M) such that x + y = 0. It
is clear that y /∈ K∗ since K is a subtractive subsemimodule. If x = y, then 2x = 0
which contradicts our assumption. Now let z ∈ S(M) \ K and z ̸= x, y. Similarly
z + w = 0 for some w ∈ S(M) \K and w /∈ {x, y, z}.
Case 1. If x + z ∈ K, then y + z = x + z + 2y ∈ K since 2y ∈ I. If y + z = 0, then
y = y + z + w = w, a contradiction. This implies that y + z ∈ K∗. By a similar
argument we can show that y + w,w + x ∈ K∗. So in this case we have a cycle
x− w − y − z − x of length 4 in ΓK∗(M).
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Case 2. Assume that x + z /∈ K. If x + w ∈ K, then x + z = x + w + 2z ∈ K by
assumption which is a contradiction. So we have x+ w /∈ K. Similarly we can show
that y+w, y+z /∈ K. Now we show that (x+z)−(x+w)−(y+w)−(y+z)−(x+z) is
a cycle of length 4 in ΓK∗(M). It suffices to show that x+z ̸= y+w and x+w ̸= y+z.
Suppose that x+z = y+w. Then 2x = 2x+z+w = x+z+x+w = y+w+x+w = 2w.
This implies that 2(x+ z) = 2x+2z = 2w+2z = 2(w+ z) = 0 which contradicts our
assumption. So x+z ̸= y+w. If x+w = y+z, then 2x = 2x+z+w = x+w+x+z =
y + z + x+ z = 2z and we have 2(x+ w) = 2x+ 2w = 2z + 2w = 0, a contradiction.

So we have a cycle (x + z) − (x + w) − (y + w) − (y + z) − (x + z) of length 4 in
ΓK∗(M). □

Theorem 4.8. Let K be a subtractive subsemimodule of R-semimodule M and
|K∗ \ S(M)| ≥ 2. Then ΓK∗(M) is an acyclic graph if and only if it is a distinct
union of some star components.

Proof. Let ΓK∗(M) be an acyclic graph. If ΓK∗(M) has no star components, then
there exists a path x−w1−w2− y of length 3 in ΓK∗(M). If x+ y ̸= 0, then x and y
are adjacent by Theorem 3.4. So we have a cycle in ΓI∗(R) which is a contradiction.
Then we may assume that x+ y = 0.

Let α, β ∈ K∗\S(M) and α ̸= β. If x+α = w1, then y+w1 = y+x+α = α ∈ K∗.
So we have a cycle w1 − w2 − y − w1 in ΓI∗(R), a contradiction. Now assume that
x + α = y, then 2x + α = x + y = 0. This implies that α ∈ S(R) which contradicts
the assumption. Therefore x + α /∈ {x,w1, y}. By a similar argument we have
x + β /∈ {x,w1, y} and y + α /∈ {y, x, w2}. If either x + α ̸= w2 or y + α ̸= w1, then
x−w1−w2− y− (x+α) or (y+α)−x−w1−w2− y is a path of length 4 in ΓI∗(R).
Thus we have a cycle in ΓI∗(R) by Corollary 3.6. So we may assume that x+α = w2

and y + α = w1. If x+ β = w2 = x+ α, then we have α = β, a contradiction. Then
x+ β ̸= w2 and so x− w1 − w2 − y − (x+ β) is a path of length 4 in ΓI∗(R). So we
have a cycle in ΓI∗(R) by Corollary 3.6 which is a contradiction. □

Lemma 4.9. Let K be a subtractive subsemimodule of R-semimodule M with 2v ∈ K∗

for all v ∈ V (ΓK∗(M)). Then:

(i) If x and u are adjacent with x ̸= u and x + x′ = 0 for some x′ ∈ M , then
u+ x′ ∈ K∗.

(ii) If u− x− s is the shortest path between u and s and 2x+ u = 2u+ x = x, then
u+ s = 0 and 2x+ s = 2s+ x = x.

(iii) If x− z − y is the shortest path from x to y, then x+ y = 0.

Proof. (i) It is clear that u + x′ ̸= 0, since x ̸= u by assumption. Suppose that
u+ x′ = n for some n ∈ M , then u+ x = u+ x′ + 2x = n+ 2x. So u+ x′ ∈ K, since
K is a subtractive subsemimodule of M and u+ x, 2x ∈ K.

(ii) Assume that 2x + u = x, so 2x + u + s = x + s ∈ K. This implies that
u+ s ∈ K, since K is subtractive and 2x ∈ K. Therefore u+ s = 0 since d(u, s) = 2.
Also x+ u = 2u+ s+ x = s+ x so we can conclude that 2s+ x = s+ 2x = x.
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(iii) Let x−z−y be the shortest path from x to y. Then 2z+x+y = x+z+z+y ∈ K
and so x+y ∈ K since 2z ∈ K and K is a subtractive subsemimodule of M . Therefore
x+ y = 0 since x and y are not adjacent. □

Theorem 4.10. Let K be a subtractive subsemimodule of R-semimodule M . If
ΓK∗(M) is a connected graph with |M \ K∗| ≥ 4 and 2v ∈ K∗ for all v ∈ M ,
then ΓK∗(M) has no cut-points.

Proof. Suppose that c is a cut-point of ΓK∗(M). So there exist vertices u,w ∈
V (ΓK∗(M)) such that c ̸= u,w and c lies on every path between u to w. The shortest
path between u to w is of length 2 or 3 by Theorem 4.2.
Case 1. Suppose that u − c − y − w is a path of the shortest length between u and
w. So u + w = 0 by Theorem 3.4. Also, 2c + u, 2y + w /∈ K by Lemma 3.1. First
suppose that c /∈ S(M) and y /∈ S(M). If 2c + u = c, then c + w = 2c + u + w =
2c ∈ K∗ follows that c and w are adjacent, a contradiction. Similarly, 2y + w ̸= c. If
2c+ u = 2c+w, then u− (2c+ u)−w is a path of length 2, which is a contradiction.
Hence u− (2c+ u)− (2y +w)−w is a path between u and w, which contradicts our
assumption. Now, suppose that either c ∈ S(M) or y ∈ S(M). If c ∈ S(M), then
u − c′ − w is a path from u to w by Lemma 3.1 and Lemma 4.9, where c + c′ = 0,
which is a contradiction. The case y ∈ S(M) is similar.

Case 2. Assume that u − c − w is a path of the shortest length from u to w. First
suppose that c ∈ S(M). So c+ c′ = 0 for some c′ ∈ M \K by Lemma 3.1. Therefore
u − c′ − w is a path from u to w by Lemma 4.9, which contradicts our assumption.
Now assume that c /∈ S(M). If either 2c+ u ̸= c or c+ 2u ̸= c, then u− (2c+ u)−w
or u − (2u + c) − w is a path between u and w, a contradiction. So we may assume
that 2c+u = 2u+c = c. Since |M \K∗| ≥ 4 and ΓK∗(M) is a connected graph, there
exists m ∈ R \ {u, c, w} such that m /∈ K∗ and m is adjacent to one vertex of path
u− c− w. First suppose that m and c are not adjacent and m− u− c− w is a path
from m to w. If m − u − c − w is the shortest path from m to w, then by Case 1.,
we have a path P from m to w which c /∈ V (P ), so P ′ = P ∪ {u,m} is a path from u
to w which is a contradiction. Now, assume that m− t−w is the shortest path from
m to w where t ̸= c. Thus u −m − t − w is a path from u to w, a contradiction. If
u − c − w − m is a path, the proof is similar. So we may assume that m and c are
adjacent and m+c ∈ K∗. This implies that 2c+u+m = c+m ∈ K, thus u+m ∈ K.
If u+m = 0, then m = u+m+w = w, a contradiction. Thus u+m ∈ K∗. Now we
show that w+m ∈ K∗. We have w+2c+m = w+c+c+m ∈ K. So w+m ∈ K since
2c ∈ K and K is a k-ideal. If w +m = 0, then u = u+ w +m = m, a contradiction.
Therefore u−m− w is a path from u to w which is also a contradiction.

5. Partitioning subsemimodule-based graphs of semimodules

In this section we assume that P is a partitioning subsemimodule (QM -subsemimodule)
of M and we shall describe the ΓP∗(M) graph with its structure, girth and diameter.
First, we have the following lemma.
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Lemma 5.1. Let P be a partitioning subsemimodule of R-semimodule M with Q′
M =

QM \ {q0}. Then the following hold:
(i) Q′

M ⊆ M \ P .

(ii) If q ∈ Q′
M and q + q∗ = 0 for some q∗ ∈ M , then q∗ ∈ M \ P .

(iii) Let q ∈ Q′
M ∩ S(M) and a + q and b + q are adjacent in ΓP∗(M) for some

a, b ∈ P . Then 2q = 0.

Proof. (i) Let q ∈ Q′
M . If q ∈ P , then q ∈ P ∩ QM . So q + q0 ∈ (q + P ) ∩ (q0 + P )

and (q + P ) ∩ (q0 + P ) ̸= ∅. We have q = q0, which is a contradiction.
(ii) It is clear by part (i) and since P is a subtractive subsemimodule by [4,

Theorem 3.2].
(iii) Let a + q and b + q be adjacent. Then 2q + a + b = k for some k ∈ P ∗.

Since q ∈ S(M), so q + p = 0 for some p ∈ M \ P . We have p ∈ q′ + P for
some q′ ∈ Q′

R. Then p = q′ + n for some n ∈ P . Hence q + q′ + n = 0 and
q+a+ b = q+ q′+n+ q+a+ b = q′+2q+a+ b+n = q′+n+n ∈ (q+P )∩ (q′+P ).
Then (q + P ) ∩ (q′ + P ) ̸= ∅ and so q = q′. Thus, we have 2q = 0. □

In the following lemma, we see that if 2 ∈ (K : M), then the adjacent vertices of
ΓP∗(M) are in a same coset of partitioning subsemimodule P of M .

Lemma 5.2. Let P be a partitioning subsemimodule of R-semimodule M with 2 ∈
(P : M). Then:
(i) If v and y are adjacent in ΓP∗(M), then there exists q ∈ QM \ {q0} such that
v, y ∈ q + P .

(ii) If x ∈ V (ΓP∗(M)), then NBΩ(x) ⊆ q + P for some q ∈ QM \ {q0}.
(iii) If q ∈ Q′

M ∩ S(M) and |P ∗| ≥ 1, then 2q +m = 0 for m ∈ P .

Proof. (i) Let v ∈ q1 + P and y ∈ q2 + P for some q1, q2 ∈ QM \ {q0}. We show that
q1 = q2 and so v and y are in a same coset. Assume that v = q1 + a and y = q2 + b
for some a, b ∈ P . Therefore we have q1 + q2 + a+ b = v + y ∈ P ∗, since v and y are
adjacent. Hence q1 + q2 ∈ P since a + b ∈ P and P is a subtractive subsemimodule
by [4, Theorem 3.2]. So q2+2q1 = q1+(q1+ q2) ∈ q1+P . Likewise, q2+2q1 ∈ q2+P
since 2 ∈ (P : M). So q2 + 2q1 ∈ (q1 + P ) ∩ (q2 + P ); hence q1 = q2.

(ii) It is clear from part (i).
(iii) Let q + p = 0 for some p ∈ M \ P . So p ∈ q′ + P for some q′ ∈ Q′

M . Then
p = q′ +m for some m ∈ P . Hence q + q′ +m = 0 and q + q′ +m+ n = n ∈ P ∗ for
every n ∈ P ∗. So q and q′+m+n are adjacent vertices and there exists q′′ ∈ QR\{q0}
such that q, q′ +m+ n ∈ q′′ + P by (i). This implies that q ∈ (q+ P )∩ (q′′ + P ) and
(q+P )∩(q′′+P ) ̸= ∅. Thus q = q′′. On the other hand, q′+m+n ∈ (q′+P )∩(q′′+P )
and then (q+P )∩ (q′+P ) ̸= ∅. So we have q′ = q′′ and 2q+m = q+ q′+m = 0. □

We can now prove the following theorem that provides a characterization of
ΓP∗(M) when 2 ∈ (P : M).

Theorem 5.3. Let P be a partitioning subsemimodule of R-semimodule M with 2 ∈
(P : M) and Q′

M = QM \ {q0}. If |P ∗| ≥ 1, α = |Q′
M \S(M)| and β = |Q′

M ∩S(M)|,
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then ΓP∗(M) is a union of disjoint α complete subgraphs and β connected subgraphs
with a universal vertex.

Proof. Let q ∈ Q′
M . First suppose that q /∈ S(M), then q+n+q+n′ = 2q+n+n′ ∈ P ∗

for every n, n′ ∈ P . So the induced subgraph Γq+P
P∗ (M) of ΓP∗(M) is a complete

subgraph. So we have α disjoint complete subgraphs by Lemma 5.2. Now, assume
that q ∈ S(M). So 2q + m = 0 for some m ∈ P by Lemma 5.2. Then the induced

subgraph Γq+P
P∗ (M) of ΓP∗(M) is a connected graph and q +m is a universal vertex

of this subgraph. Also, these subgraphs are disjoint by Lemma 5.2. □

Proposition 5.4. Let P be a partitioning subsemimodule of R-semimodule M with
Q′

M = QM \ {q0} and |P ∗| ≥ 1. If q + q′ ∈ P for some q, q′ ∈ Q′
M , then the induced

subgraphs of ΓP∗(M) with vertices set V = (q+P )∪ (q′+P ) are connected subgraphs.

Proof. First suppose that q+ q′ = 0. Then q+(q′+x∗) = (q+x∗)+ q′ = x∗ ∈ P ∗ for
every x∗ ∈ P ∗. This implies that every element of q + P are adjacent to q′ in q′ + P
and also, every element of q′ + P is adjacent to q in q + P . Therefore the induced
subgraph with vertices set (q + P ) ∪ (q′ + P ) is a connected subgraph. Now suppose
that q + q′ ̸= 0. We divide the proof into two cases:
Case 1. If S(P ) = P , then q+ q′+y∗ = 0 for some y∗ ∈ P . Now let 0 ̸= n ∈ P . Then
q + n+ q′ + y∗ = q + y∗ + q′ + n = n ∈ P ∗. It means that every element of q + P are
adjacent to q′ + y∗ in q′ + P and also, every element of q′ + P is adjacent to q + y∗

in q + P . Therefore the induced subgraph with vertices set (q + P ) ∪ (q′ + P ) is a
connected subgraph.

Case 2. Assume that S(P ) ̸= P , then there exists m ∈ P such that m + p′ ̸= 0 for
every p′ ∈ P . This implies that q +m+ q′ + p′ = q + p′ + q′ +m ∈ P ∗. Hence every
element of q+P are adjacent to q′ +m in q′ +P and also, every element of q′ +P is
adjacent to q +m in q + P , as required.

Theorem 5.5. Let P be a partitioning subsemimodule of R-semimodule M . Then
diam(ΓP∗(M)) = {1, 2, 3,∞} and gr(ΓP∗(M)) = {3, 4,∞}.

Proof. Let 2 /∈ (P : M) and q ∈ Q′
M = QM \{q0}. If either q ∈ S(M) or NBΩ(q) ̸= ∅,

then q+q′ ∈ P for some q′ ∈ QM . So the induced subgraphs of ΓP∗(M) with vertices
set V = (q + P ) ∪ (q′ + P ) is a connected subgraph by Proposition 5.4. Now assume
that q /∈ S(M) and NBΩ(q) = ∅. If 2q ∈ P , then q+n1 + q+n2 = 2q+n1 +n2 ∈ P ∗

for every n1, n2 ∈ P . So the induced subgraph Γq+P
P∗ (M) is a complete graph. Now,

we may assume that 2q /∈ P , then q + n1 + q + n2 = 2q + n1 + n2 /∈ P for every
n1, n2 ∈ P , since P is a subtractive subsemimodule. Therefore the induced subgraph
with vertices set q + P is a totally disconnected subgraph and the proof is complete
by Theorem 5.3. □

We end the paper with the following example.

Example 5.6. (i) Let R = Z∗ = Z+∪{0} and M = Z6. Then (R,+, .) is a commu-
tative semiring and (M,+6) is an R-semimodule. Set P = {0, 2, 4} and QM = {0, 1}.
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Then P is a partitioning subsemimodule ofM . It is easy to see that 2 ∈ (P : M). Since
|M/P | = 2, so ΓP∗(M) is a complete graph by Theorem 5.3 with diam(ΓP∗(M)) = 1
and gr(ΓP∗(M)) = 3.

(ii) Let R = Z∗ = Z+∪{0} and M = R. Then for each m ∈ R \ {0}, Rm is a QM -
subsemimodule of M where QM = {0, 1, 2, . . . ,m − 1}. If P = 3R = {0, 3, 6, 9, . . .},
then P is a partitioning subsemimodule of M and 2 /∈ (P : M). Then ΓP∗(M) is a
graph with vertices set (1+P )∪ (2+P ). It is easy to see that this graph is bipartite
with diam(ΓP∗(M)) = 2 and gr(ΓP∗(M)) = 4.
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