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MORE ON THE GENERALIZED PASCAL TRIANGLES

M. Etemadi and A. R. Moghaddamfar

Abstract. The aim of this article is to obtain a new factorization of a generalized Pascal
triangle. This factorization particularly emphasizes that there is a close relation between
generalized Pascal triangles and Toeplitz matrices. However, we will show that in general
there is no such relation between generalized Pascal triangles and Hankel matrices.

1. Introduction

Let S(∞) be the infinite symmetric matrix with entries Si,j =
(
i+j
i

)
for i, j ⩾ 0.

Indeed, this matrix has the following form:

S(∞) = [Si,j ]i,j⩾0 =

[(
i+ j

j

)]
i,j⩾0

=


1 1 1 1 . . .
1 2 3 4 . . .
1 3 6 10 . . .
1 4 10 20 . . .
...

...
...

...
. . .

 .
One can easily check that (see also [1, 3]): S(∞) = L(∞)U(∞), where L(∞) is the
infinite left-lower-triangular Pascal’s matrix:

L(∞) = [Li,j ]i,j⩾0 =

[(
i

j

)]
i,j⩾0

=


1
1 1
1 2 1
1 3 3 1
...

...
...

...
. . .

 ,
and U(∞) = L(∞)t, the superscript t denotes transpose. We remark that the entries
of matrix S(∞) satisfy the following recurrence relation:

Si,0 = S0,j = 1 (i, j ⩾ 0), Si,j = Si−1,j + Si,j−1 (i, j ⩾ 1),
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276 Generalized Pascal triangles

while the entries of matrix L(∞) satisfy the following recurrence relation:

Li,0 = 1, L0,j = 0 (i ⩾ 0, j ⩾ 1), Li,j = Li−1,j−1 + Li−1,j (i, j ⩾ 1).

In [1], Bacher introduced the generalized Pascal triangles (which can be regarded
as a generalization of the infinite symmetric matrix S(∞)) as follows. Let α =
(αi)i⩾0 and β = (βi)i⩾0 be two sequences starting with a common first term α0 =
β0. Then, the generalized Pascal triangle associated with α and β, is the infinite
matrix Pα,β(∞) = [Pi,j ]i,j⩾0 with entries Pi,0 = αi, P0,j = βj (i, j ⩾ 0) and Pi,j =
Pi,j−1 + Pi−1,j , for i, j ⩾ 1. In a more general case, we allow the matrix entries
to be defined recursively by Pi,j = xPi,j−1 + yPi−1,j−1 + zPi−1,j , where x, y and z
are constant coefficients. It is worth noting that these matrices and similar matrices
with recursive entries have been studied in scattered articles (see e.g. [2,4–10]). Some
of these articles [2, 7, 9] focused in particular on identifying some factorizations and
determinants of these matrices, while a comprehensive collection of results can be
found in [8].

There is a close relationship between generalized Pascal triangles and Toeplitz
matrices, which we will discuss later. Recall that a matrix T (∞) = [Ti,j ]i,j⩾0 is
Toeplitz if Ti,j = Tk,l whenever i − j = k − l. Obviously, a Toeplitz matrix is
determined by its first row and its first column, so in what follows we use Tα,β(∞) to
describe an infinite Toeplitz matrix T (∞), where α = (Ti,0)i⩾0 and β = (T0,j)j⩾0.

We denote by L(n) (resp. Tα,β(n), Pα,β(n)) the finite submatrix of L(∞) (resp.
Tα,β(∞), Pα,β(∞)) consisting of the entries in its first n rows and columns.

Given an arbitrary sequence α = (αi)i⩾0, the binomial transform of α is the

sequence α̌ = (α̌i)i⩾0 defined by α̌i =
∑i
k=0

(
i
k

)
αk. If we consider the sequence α to

be the (infinite) column matrix [α0, α1, . . .]
t, then we obtain the binomial transform

α̌ = (α̌i)i⩾0 by multiplying this column matrix by the left-lower-triangular Pascal’s
matrix L(∞), that is 

α̌0

α̌1

α̌2

α̌3

...

 =


1
1 1
1 2 1
1 3 3 1
...

...
...

...
. . .




α0

α1

α2

α3

...

 .
This transformation is invertible, and we have

L−1(∞) =

[
(−1)i−k

(
i

j

)]
i,j⩾0

=


1
−1 1
1 −2 1
−1 3 −3 1
...

...
...

...
. . .

 .
Analogously, we define the inverse binomial transform α̂ = (α̂i)i⩾0 of α as α̂i =
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∑i
k=0(−1)i−k

(
i
k

)
αk, or equivalently,

α̂0

α̂1

α̂2

α̂3

...

 =


1
−1 1
1 −2 1
−1 3 −3 1
...

...
...

...
. . .




α0

α1

α2

α3

...

 .
It is clear that (see also [7, Lemma 2.1]):

ˆ̌α = ˇ̂α = α. (1)

In [7, Theorem 3.1] (see also [2,9]), we obtained a factorization of the generalized
Pascal triangle Pα,β(n) associated with the arbitrary sequences α and β (with α0 =
β0), as a product of the left-lower-triangular Pascal’s matrix L(n), the Toeplitz matrix
Tα̂,β̂(n) and the right-upper-triangular Pascal’s matrix U(n) = L(n)t, that is

Pα,β(n) = L(n)Tα̂,β̂(n)U(n). (2)

Similarly, we showed that Tα,β(n) = L(n)−1Pα̌,β̌(n)U(n)−1. In fact, we obtained a
connection between generalized Pascal triangles and Toeplitz matrices. In particular,
it follows easily that det(Pα,β(n)) = det(Tα̂,β̂(n)).

Similarly, a matrix H(∞) = [Hi,j ]i,j⩾0 is Hankel if Hi,j = Hk,l whenever i+ j =
k + l. Thus, a Hankel matrix is characterized by the property that the (i, j)-th
entry depends only on the sum i + j. Again, it is easy to see that an n × n Hankel
matrix H(n) = [Hi,j ]0⩽i,j<n is fully determined by its first row and its last column,
henceforth, we will use Hα,β(n) to describe an n × n Hankel matrix H(n), where
α = (αi)0⩽i<n = (H0,n−1−i)0⩽i<n and β = (βi)0⩽i<n = (Hi,n−1)0⩽i<n. Note that
α0 = β0. There exists a special relation between Toeplitz matrices and the Hankel
matrices. Indeed, if J(n) is the n× n reflection (exchange) matrix, as

J(n) = H(1,0,...,0),(1,0,...,0)(n) =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
0 1 . . . 0 0
1 0 . . . 0 0

 ,
then we have J(n)Hα,β(n) = Tα,β(n), Hα,β(n)J(n) = Tβ,α(n), or equivalently
Hα,β(n) = J(n)Tα,β(n), Hα,β(n) = Tβ,α(n)J(n).

In the present article we obtain a new factorization of generalized Pascal triangles
(Theorem 2.2). Then we show that if we replace “Toeplitz matrices” by “Hankel
matrices” in (2) or (3) in Theorem 2.2, the multiplication of the factors leads again
to a Hankel matrix. Of course, we also note that there are certain families of Hankel
and Toeplitz matrices which are also generalized Pascal triangles.

We conclude the introduction with some notations and terms that are used through-
out the article. Given a matrix A, we denote by Ri(A) and Cj(A) the row i and the
column j of A, respectively. The notation At denotes the transpose of A. In this
article, all matrices are indexed starting with the (0, 0)-th element.
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2. Main results

We begin with the following simple observation.

Lemma 2.1. Let i, j be positive integers and i ⩾ j. Then, we have
i−j∑
t=0

(−1)t
(

i

i− t

)(
i− t

j

)
=

{
0 if i ̸= j,

1 if i = j.

The proof follows from the simple identity
(
i
i−t
)(
i−t
j

)
=
(
i
j

)(
i−j
t

)
.

Let M(n) := L(n)J(n). We call M(n) the n × n right-lower-triangular Pascal’s
matrix, whose (i, j)-th entery is equal to

Mi,j =

{
0 if i < n− j − 1(
i

n−j−1

)
if i ⩾ n− j − 1,

and so

M(n) =

[(
i

n− j − 1

)]
0⩽i,j<n

=



1
1 1

1 2 1
1 3 3 1

...
...

...
...

...(
n−1
n−1

)
· · ·

(
n−1
3

) (
n−1
2

) (
n−1
1

) (
n−1
0

)


.

Let N(n) = M(n)t. We preserve this notation throughout the paper.

Theorem 2.2. Let α = (αi)i⩾0 and β = (βi)i⩾0 be two sequences starting with a
common first term α0 = β0 = γ. Then, we have

Pα,β(n) = M(n)Tβ̂,α̂(n)N(n), (3)

and Tα,β(n) = M(n)−1Pβ̌,α̌(n)N(n)
−1. (4)

Proof. First, we claim that Pα,β(n) = M(n)Q(n), where M(n) = [Mi,j ]0⩽i,j<n is the
right-lower-triangular Pascal’s matrix with

Mi,j =

(
i

n− j − 1

)
,

and Q(n) = (Qi,j)0⩽i,j<n, with Qi,0 = α̂n−i−1, Qn−1,j = βj and

Qi,j = Qi,j−1 +Qi+1,j−1, 0 ⩽ i < n− 1, 0 < j ⩽ n− 1. (5)

For instance, when n = 4 the matrices M(4) and Q(4) are given by:

M(4) =


0 0 0 1
0 0 1 1
0 1 2 1
1 3 3 1

 ,
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and Q(4) =


α3 − 3α2 + 3α1 − γ α3 − 2α2 + α3 α3 − α2 α3

α2 − 2α1 + γ α2 − α1 α2 α2 + α1 + β1
α1 − γ α1 α1 + β1 α1 + β2 + β1
γ β1 β2 β3

 .
Note that the entries of M(n) satisfy the following recurrence

Mi,j = Mi−1,j +Mi−1,j+1, 0 < i ⩽ n− 1, 0 ⩽ j < n− 1. (6)

In order to have a convenient notation, let us write M, N, Q, Pα,β and Tα,β for
M(n), N(n), Q(n), Pα,β(n) and Tα,β(n), respectively. For the proof of the claimed

factorization we compute the (i, j)-th entry of MQ, that is (MQ)i,j =
∑n−1
k=0 Mi,kQk,j .

In fact, it suffices to show that R0(MQ) = R0(Pα,β), C0(MQ) = C0(Pα,β) and

(MQ)i,j = (MQ)i,j−1 + (MQ)i−1,j , for 1 ⩽ i, j < n. (7)

First, suppose that i = 0. Then, we obtain

(MQ)0,j =

n−1∑
k=0

M0,kQk,j = M0,n−1Qn−1,j = 1βj = βj ,

and so R0(LQ) = R0(Pα,β) = (β0, β1, . . . , βn−1).

Next, suppose that i ⩾ 1 and j = 0. In this case, we have

(MQ)i,0 =

n−1∑
k=0

Mi,kQk,0 =

n−1∑
k=n−i−1

{(
i

n− k − 1

)
α̂n−k−1

}

=

n−1∑
k=n−i−1

{(
i

n− k − 1

) n−k−1∑
l=0

(−1)n−k−1+l

(
n− k − 1

l

)
αl

}

=

n−1∑
k=n−i−1

{
n−k−1∑
l=0

(−1)n−k−1+l

(
i

n− k − 1

)(
n− k − 1

l

)
αl

}

=

i∑
l=0

αl

i−l∑
t=0

{
(−1)i+l−t

(
i

i− t

)(
i− t

l

)}

=

i∑
l=0

αl(−1)i+l
i−l∑
t=0

{
(−1)t

(
i

i− t

)(
i− t

l

)}
= αi, (by Lemma 2.1)

and so C0(MQ) = C0(Pα,β) = (α0, α1, . . . , αn−1)
t.

Finally, we must establish (7). We therefore assume that 1 ⩽ i, j < n. In this
case, using (5) and (6), we obtain

(MQ)i,j =

n−1∑
k=0

Mi,kQk,j = Mi,n−1Qn−1,j +

n−2∑
k=0

Mi,k(Qk,j−1 +Qk+1,j−1)

=βj +

n−2∑
k=0

Mi,kQk,j−1 +

n−2∑
k=0

Mi,kQk+1,j−1
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=βj +

n−1∑
k=0

Mi,kQk,j−1 −Mi,n−1Qn−1,j−1 +

n−2∑
k=0

(Mi−1,k +Mi−1,k+1)Qk+1,j−1

=βj + (MQ)i,j−1 − βj−1 +

n−2∑
k=0

Mi−1,kQk+1,j−1 +

n−2∑
k=0

Mi−1,k+1Qk+1,j−1

=βj + (MQ)i,j−1 − βj−1 +

n−2∑
k=0

Mi−1,k(Qk,j −Qk,j−1) +

n−1∑
k=1

Mi−1,kQk,j−1

=βj + (MQ)i,j−1 − βj−1 +

n−2∑
k=0

Mi−1,kQk,j −
n−2∑
k=0

Mi−1,kQk,j−1 +

n−1∑
k=1

Mi−1,kQk,j−1

=βj + (MQ)i,j−1 − βj−1 −Mi−1,n−1Qn−1,j

+

n−1∑
k=0

Mi−1,kQk,j −Mi−1,0Q0,j−1 +Mi−1,n−1Qn−1,j−1

=βj + (MQ)i,j−1 − βj−1 − βj + (MQ)i−1,j − 0 + βj−1 = (MQ)i−1,j + (MQ)i,j−1,

which is precisely (7).

Next, we claim that Q = Tβ̂,α̂N. Note that we have

Ni,j =

{
0 if j < n− i− 1,(

j
n−i−1

)
if j ⩾ n− i− 1,

and it is also easy to see that Ni,j = Ni,j−1 + Ni+1,j−1, 0 ⩽ i < n− 1, 1 ⩽ j < n.

For instance, if n = 4, then the matrices Tβ̂,α̂ and N are given by:

Tβ̂,α̂ =


γ α1 − γ α2 − 2α1 + γ α3 − 3α2 + 3α1 − γ

β1 − γ γ α1 − γ α2 − 2α1 + γ
β2 − 2β1 + γ β1 − γ γ α1 − γ

β3 − 3β2 + 3β1 − γ β2 − 2β1 + γ β1 − γ γ

 ,

and N =


0 0 0 1
0 0 1 3
0 1 2 3
1 1 1 1

 .
Using similar arguments as previously, it suffices to show that

C0(Tβ̂,α̂N) =C0(Q), Rn−1(Tβ̂,α̂N) = Rn−1(Q),

and (Tβ̂,α̂N)i,j =(Tβ̂,α̂N)i,j−1 + (Tβ̂,α̂N)i+1,j−1, (8)

for 0 ⩽ i < n− 1, 0 < j ⩽ n− 1.

As before, the proof of our claim requires some calculations. On the one hand,
we have (Tβ̂,α̂N)i,0 =

∑n−1
k=0 Ti,kNk,0 = Ti,n−1Nn−1,0 = α̂n−i−1 · 1 = α̂n−i−1 = Qi,0,

which implies that C0(Tβ̂,α̂N) = C0(Q). On the other hand, we must evaluate the
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following sum:

(Tβ̂,α̂N)n−1,j =

n−1∑
k=0

Tn−1,kNk,j =
n−1∑
k=0

β̂n−1−k

(
j

n− k − 1

)

=

n−1∑
k=0

{(
n−1−k∑
l=0

(−1)l+n−1−k
(
n− 1− k

l

)
βl

)(
j

n− k − 1

)}

=

n−1∑
k=0

(
n−1−k∑
l=0

(−1)l+n−1−k
(
n− 1− k

l

)(
j

n− k − 1

)
βl

)

=

n−1∑
i=0

βi

{
n−1−i∑
t=0

(−1)i+n−1−t
(
n− 1− t

i

)(
j

n− 1− t

)}
. (9)

Since
(

j
n−1−t

)
= 0 for n − 1 − t > j, we may restrict the second sum on the

right-hand side of (9) to t ⩾ n− 1− j, and so we obtain

(Tβ̂,α̂N)n−1,j =

n−1∑
i=0

βi


n−1−i∑
t=n−1−j

(−1)i+n−1−t
(
n− 1− t

i

)(
j

n− 1− t

) . (10)

Moreover, we have
(
n−1−t

i

)(
j

n−1−t
)
=
(
j
i

)(
j−i

n−1−t−i
)
. If this is substituted in (10), then

we obtain

(Tβ̂,α̂N)n−1,j =

n−1∑
i=0

βi


n−1−i∑
t=n−1−j

(−1)i+n−1−t
(
j

i

)(
j − i

n− 1− t− i

) ,

and after some simplification this leads to

(Tβ̂,α̂N)n−1,j =

n−1∑
i=0

βi

{(
j

i

) j−i∑
t=0

(−1)j+i−t
(

j − i

j − i− t

)}
,

or equivalently,

(Tβ̂,α̂N)n−1,j =

n−1∑
i=0

βi

{
(−1)j+i

(
j

i

) j−i∑
t=0

(−1)t
(
j − i

t

)}
.

Therefore, using the fact that
j−i∑
t=0

(−1)t
(
j − i

t

)
=

{
0 if i ̸= j,

1 if i = j,

it follows that (Tβ̂,α̂N)n−1,j = βj = Qn−1,j , and so Rn−1(Tβ̂,α̂N) = Rn−1(Q), as
desired.

Finally, we assume that 0 ⩽ i < n − 1, 0 < j ⩽ n − 1 and establish (8). Indeed,
using (11), we observe that

(Tβ̂,α̂N)i,j =
n−1∑
k=0

Ti,kNk,j =
n−2∑
k=0

Ti,kNk,j + Ti,n−1Nn−1,j
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=

n−2∑
k=0

Ti,k(Nk,j−1 + Nk+1,j−1) + Ti,n−1 (note that Nn−1,j = 1)

=

n−2∑
k=0

Ti,kNk,j−1 +

n−2∑
k=0

Ti,kNk+1,j−1 + Ti,n−1

=

n−1∑
k=0

Ti,kNk,j−1 − Ti,n−1Nn−1,j−1 +

n−1∑
k=1

Ti,k−1Nk,j−1 + Ti,n−1

=(Tβ̂,α̂N)i,j−1 − Ti,n−1 +

n−1∑
k=0

Ti+1,kNk,j−1 − Ti+1,0N0,j−1 + Ti,n−1

(note that Ti,k−1 = Ti+1,k and Nn−1,j−1 = 1)

=(Tβ̂,α̂N)i,j−1 + (Tβ̂,α̂N)i+1,j−1, ( note that N0,j−1 = 0),

which is (8). The proof of (3) is now complete.
To prove (4), we use the fact that M is invertible. Observe that

M−1Pα̌,β̌N
−1 (3)

= M−1(MT ˆ̌α, ˆ̌β
N)N−1 = T ˆ̌α, ˆ̌β

(1)
= Tα,β .

This completes the proof of the theorem. □

Remark 2.3. Actually, Theorem 2.2 is just a reformulation of [7, Theorem 3.1]. It
is worth pointing out that in (2) L(n) is a lower triangular matrix, while U(n) is an
upper triangular matrix, but here neither of the matrices M and N are lower or upper
triangular matrices, and they have the same structure. Note also that we have proved
Theorem 2.2 without using [7, Theorem 3.1]. Nevertheless, let us give a specific and
at the same time very simple proof of (3) with [7, Theorem 3.1]. For simplicity, we
use the notation M, J , Pα,β and Tα,β for M(n), J(n), Pα,β(n) and Tα,β(n). Using
the fact that J t = J and that JTβ̂,α̂J = (JTβ̂,α̂)J = Hβ̂,α̂J = Tα̂,β̂ , (i.e. Toeplitz

matrices Tα,β are persymmetric), it follows that

MTβ̂,α̂M
t =(LJ)Tβ̂,α̂(LJ)

t = L(JTβ̂,α̂J
t)Lt = L(JTβ̂,α̂J)U = LTα̂,β̂U = Pα,β .

The second main theorem shows that the multiplication of a Hankel matrix by the
matrices L(n) and U(n) = L(n)t (and also M(n) and M(n)t) leads again to a Hankel
matrix.

Theorem 2.4. Let α = (αi)i⩾0 and β = (βi)i⩾0 be two sequences starting with a
common first term α0 = β0 = γ. Let n be a fixed positive integer, and let

ω = (ωi)0⩽i⩽2n−2 = (αn−1, αn−2, . . . , α1, γ, β1, . . . , βn−2, βn−1).

Then there holds

L(n)Hα,β(n)U(n) = Hλ,µ(n), (11)

where λ = (ω̌n−1, ω̌n−2, . . . , ω̌0) and µ = (ω̌n−1, ω̌n, . . . , ω̌2n−2). Also, we have

M(n)Hα,β(n)M(n)t = Hφ,ψ(n), (12)

where φ = (ω̌n−1, ω̌n−2, . . . , ω̌2n−2) and ψ = (ω̌n−1, ω̌n−2, . . . , ω̌0).
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Proof. Again, for the sake of simplicity we use the notation L, U , M, Hα,β , Hλ,µ and
Hφ,ψ for L(n), U(n), M(n), Hα,β(n), Hλ,µ(n) and Hφ,ψ(n). To prove (11), we show
that R0(LHα,βU) = R0(Hλ,µ), Cn−1(LHα,βU) = Cn−1(Hλ,µ), and (LHα,βU)i,j =
(LHα,βU)k,l, whenever i+ j = k + l.

First, suppose that 0 ⩽ j ⩽ n− 1. Then, we obtain

LHα,βU)0,j =R0(LHα,β)Cj(U)

=R0(Hα,β)Rj(L) (note that R0(L) = (1, 0, . . . , 0) and U = Lt)

=

j∑
k=0

(
j

k

)
αn−1−k (note that R0(Hα,β) = (αn−1, αn−2, . . . , α1, γ))

=ω̌j = (Hλ,µ)0,j ,

and so R0(LHα,βU) = R0(Hλ,µ).

Next, suppose that 0 ⩽ i ⩽ n− 1. Then, we obtain

(LHα,βU)i,n−1 =Ri(LHα,β)Cn−1(U) = Ri(LHα,β)Rn−1(L) (since U = Lt)

=

n−1∑
k=0

(LHα,β)i,kLn−1,k =

n−1∑
k=0

{
n−1∑
l=0

Li,l(Hα,β)l,k

}(
n− 1

k

)

=

n−1∑
k=0

{
n−1∑
l=0

(
i

l

)
(Hα,β)l,k

}(
n− 1

k

)
=

n−1∑
k=0

n−1∑
l=0

(
i

l

)(
n− 1

k

)
(Hα,β)l,k

=
∑

0⩽l+k⩽2n−2

(
i

l

)(
n− 1

k

)
(Hα,β)l,k

(note that the (i, j)-th entry depends only on i+ j).

Let d := l + k be fixed with 0 ⩽ d ⩽ 2n− 2. Now we use the fact that the coefficient
(Hα,β)l,k is equal to(

i

0

)(
n− 1

d

)
+

(
i

1

)(
n− 1

d− 1

)
+ · · ·+

(
i

d

)(
n− 1

0

)
,

which is exactly the coefficient of xd in (1+x)i(1+x)n−1 = (1+x)n+i−1, and so this
coefficient is equal to

(
n+i−1
d

)
. Thus we obtain

(LHα,βU)i,n−1 =

n−1∑
d=0

(
n+ i− 1

d

)
(Hα,β)0,d +

2n−2∑
d=n

(
n+ i− 1

d

)
(Hα,β)d,n−1

=

n−1∑
d=0

(
n+ i− 1

d

)
αn−1−d +

2n−2∑
d=n

(
n+ i− 1

d

)
βd−n+1

=

2n−2∑
d=0

(
n+ i− 1

d

)
ωd = ω̌n−i+1 = (Hλ,µ)i,n−1,

and so Cn−1(LHα,βU) = Cn−1(Hλ,µ).

Finally, suppose that i + j = k + l. If one argues exactly as above, one comes to
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the conclusion that

(LHα,βU)i,j =Ri(LHα,β)Cj(U) = Ri(LHα,β)Rj(L) (since U = Lt

=

n−1∑
t=0

(LHα,β)i,tLj,t =

n−1∑
t=0

{
n−1∑
s=0

Li,s(Hα,β)s,t

}(
j

t

)

=

n−1∑
t=0

{
n−1∑
s=0

(
i

s

)
(Hα,β)s,t

}(
j

t

)
=

n−1∑
t=0

n−1∑
s=0

(
i

s

)(
j

t

)
(Hα,β)s,t

=
∑

0⩽s+t⩽2n−2

(
i

s

)(
j

t

)
(Hα,β)s,t (13)

(note that the (s, t)-th entry depends only on s+ t).

Again it follows that if d = s+ t, then the coefficient (Hα,β)s,t is equal to(
i

0

)(
j

d

)
+

(
i

1

)(
j

d− 1

)
+ · · ·+

(
i

d

)(
j

0

)
=

(
i+ j

d

)
.

Since k + l = i+ j, we can write(
i+ j

d

)
=

(
k + l

d

)
=

(
k

0

)(
l

d

)
+

(
k

1

)(
l

d− 1

)
+ · · ·+

(
k

d

)(
l

0

)
.

If this is substituted in (13) and the sums are put together, then we obtain

(LHα,βU)i,j =
∑

0⩽s+t⩽2n−2

(
k

s

)(
l

t

)
(Hα,β)s,t = (LHα,βU)k,l.

This completes the proof of (11).

To prove (12), observe that

MHα,βMt = (LJ)Hα,β(LJ)
t = L(JHα,βJ

t)Lt = L(Hβ,α)L
t = Hφ,ψ,

where φ = (ω̌n−1, ω̌n−2, . . . , ω̌2n−2) and µ = (ω̌n−1, ω̌n−2, . . . , ω̌0). Note that in the
last equality we have applied (11). □

Remark 2.5. We note here that there are some families of Hankel and Toeplitz
matrices, which are also generalized Pascal triangles. It is routine to check that for all
m,n ∈ Z, the Hankel matrices Hm(n) = 2mHα,β(n), where α = (2n−1, 2n−2, . . . , 2, 1)
and β = (2n−1, 2n, . . . , 22n−2), are the only Hankel matrices of this type. Similarly,
the Toeplitz matrices Ta,b(n) = Tφ,ψ(n), where φ = (φi)⩾0 and ψ = (ψi)⩾0 are two
sequences satisfying linear recursions:{

φ0 = a+ b, φ1 = a,

φi = φi−1 − φi−2, i ⩾ 2,
and

{
ψ0 = a+ b, ψ1 = b,

ψi = ψi−1 − ψi−2, i ⩾ 2,

are the only Toeplitz matrices of this type. Note that the sequences φ,ψ are also
6-periodic sequences:

φ =(φi)i⩾0 = (a+ b, a,−b,−b− a,−a, b, a+ b, a, . . .) (6-periodic),

ψ =(ψi)i⩾0 = (a+ b, b,−a,−a− b,−b, a, a+ b, b, . . .) (6-periodic).
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For instance, when m = 0, a = 1, b = 2 and n = 5, we have:

H0(5) =


1 2 4 8 16
2 4 8 16 32
4 8 16 32 64
8 16 32 64 128
16 32 64 128 256

 = P(1,2,4,8,16),(1,2,4,8,16)(5),

and T1,2(5) =


3 2 −1 −3 −2
1 3 2 −1 −3
−2 1 3 2 −1
−3 −2 1 3 2
−1 −3 −2 1 3

 = P(3,1,−2,−3,−1),(3,2,−1,−3,−2)(5).
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