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Abstract. A topological space X is monotonically star countable if for every open
cover U of X we can assign a subspace s(U) ⊆ X, called the kernel, such that s(U) is a
countable subset of X, and st(s(U),U) = X, and if V refines U , then s(U) ⊆ s(V), where
st(s(U),U) =

⋃
{U ∈ U : U ∩ s(U) ̸= ∅}. In this paper we study the relation between mono-

tonically star countable spaces and related spaces, and we also study topological properties
of monotonically star countable spaces.

1. Introduction

By a space we mean a topological space. In this section we give definitions of terms
used in this paper. Let X be a space and U a collection of subsets of X. For A ⊆ X let
st(A,U) =

⋃
{U ∈ U : U ∩A ̸= ∅}. As usual, we write st(x,U) instead of st({x},U).

Definition 1.1 ([1–3, 9]). Let P be a topological property. A space X is said to
be star P if whenever U is an open cover of X, there exists a subspace A ⊆ X with
property P such that X = st(A,U). The set A is called the star kernel of the cover U .

The term star P was coined in [1–3, 9], but certain star properties, in particular
those that are “P=finite” and “P=countable” were first studied by van Douwen et
al. in [5] and later by many other authors. A review of star covering properties
with a comprehensive bibliography can be found in [5, 7]. In [7] and earlier [5] a star
finite space is called starcompact and strongly 1-starcompact, a star countable space
is called star Lindelöf and strongly 1-star Lindelöf.

As a monotone version of star covering properties, Popvassilev and Porter [11]
introduced the following definition.
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Definition 1.2 ([11]). Let P be a topological property. A space X is monotonically
star P if for every open cover U we can assign a subspace s(U) ⊆ X, called a kernel,
such that s(U) has property P, and st(s(U),U) = X, and if V refines U , s(U) ⊆ s(V).

From the above definitions, it is clear that every monotonically star finite space is
monotonically star countable, every monotonically star countable space is star count-
able, and every monotonically star countable space is monotonically star Lindelöf,
but the converses need not be true (see, Examples 2.2, 2.4 and 2.6). The purpose of
this paper is to study the relationship between monotonically star countable spaces
and related spaces, and also to study topological properties of monotonically star
countable spaces.

Throughout the paper, the extension e(X) of a space X is the smallest infinite
cardinal κ such that any discrete closed subset of X has cardinality at most κ. The
cardinality of a set A is denoted by |A|. Let c denote the cardinality of the continuum,
ω1 denote the first uncountable cardinal, and ω denote the first infinite cardinal.
For a pair of ordinals α, β with α < β, we write (α, β) = {γ : α < γ < β},
(α, β] = {γ : α < γ ≤ β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is
an initial ordinal and an ordinal is the set of smaller ordinals. Each cardinal is often
considered as a space with the usual order topology. Other terms and symbols that
we do not define are used as in [6].

2. Monotonically star countable spaces

In this section we first give an example showing the relation between monotonically
starcountable spaces and related spaces. For the next example we need the following
lemma.

Lemma 2.1. A space X with a dense Lindelöf subspace is monotonically star Lindelöf.

Proof. Let D be a dense Lindelöf subspace of X. We show that X is monotonically
star Lindelöf. Let U be an open cover of X. Then s(U) = D defines a monotonically
star Lindelöf operator for X and st(s(U),U) = X since D is a dense Lindelöf subset
of X. □

Example 2.2. There exists a Tychonoff monotonically star Lindelöf-space X which
is not monotonically star countable.

Let D be a discrete space of cardinality c and let D∗ = D ∪ {d∗} be one-point
Lindelöfication of D, where d∗ /∈ D. Let X = (D∗ × (ω + 1)) \ {⟨d∗, ω⟩} be the
subspace of the product of D∗ and ω + 1. Since D∗ × ω is a dense σ-compact subset
of X, and it is Lindelöf, thus X is is monotonically star Lindelöf.

Next, we show that X is not monotonically star countable. We only show that X
is not star countable, because every monotonically star countable is star countable.
Since |D| = c, we can enumerate D as {dα : α < c}. For each α < c, let Uα =
{dα} × (ω + 1). Then Uα ∩ Uα′ = ∅ if α ̸= α′.
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Consider the open cover U = {Uα : α < c} ∪ {D∗ × ω} of X. It suffices to show
that for every countable subset F of X there is a point x ∈ X such that x /∈ st(F,U).
Let F be any countable subset of X. There is an α0 < c such that Uα ∩ F = ∅ for
each α > α0, since F is countable. If we choose α′ > α0, then ⟨dα′ , ω⟩ /∈ st(F,U),
since Uα′ is the only element of U that contains ⟨dα′ , ω⟩, which completes the proof.

For the next example we need the following lemma from [11]. It is known that
star finiteness is equivalent to countably compactness for Hausdorff spaces (see [5, 7]
under another name).

Lemma 2.3. The space ω2 is not monotonically star countable.

Example 2.4. There exists a star finite (hence star countable) space that is not
monotonically star countable.

Let D = ω2 be with the usual order topology. Then X is not monotonically star
countable by Lemma 2.3. Since X is countably compact, X is star finite, thus X is
star countable.

Similar to Lemma 2.1, we have the following result.

Lemma 2.5. A space X having a dense separable subspace is monotonically star count-
able.

Example 2.6. There exists a Tychonoff monotonically star countable space X which
is not monotonically finite.

Let X = ω ∪ A be the Isbell-Mrówka space [10], where A is the almost disjoint
family of infinite subsets of ω with |A| = c. Then X is monotonically star countable
by Lemma 2.5, since ω is a countable dense subset of X. It is well-known that X is
not countably compact, hence it is not star finite, thus X is not monotonically star
finite, since every monotonically star finite space is star finite.

Remark 2.7. Example 2.6 also shows that there exists a Tychonoff monotonically
star countable space X such that e(X) = c. Matveev [8] showed that the extent of
a Tychonoff star countable space can be arbitrarily big. However the authors do not
know whether the extent of a Tychonoff monotonically star countable space can be
arbitrarily big.

From Example 2.6 it is not hard to see that a closed subset of a monotonically
star countable space need not be monotonically star countable, since A is a discrete
closed subset of cardinality c. We now give a stronger example. For the next example,
we give two lemmas.

Lemma 2.8. If X =
⋃
{Xn : n ∈ ω} and every Xn is monotonically star countable,

then X is monotonically star countable.

Proof. Let U be an open cover of X. For every n ∈ ω, since Xn is monotonically star
countable, there exists a monotonically star countable operator sn(U) for Xn such
that Xn ⊆ st(sn(U),U). Let s(U) =

⋃
n∈ω Sn(U). Then s(U) is a monotonically star

countable operator for X. □
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Lemma 2.9. Let D be a discrete space of cardinality c and let D∗ = D ∪{d∗} be one-
point Lindelöfication of D, where d∗ /∈ D. Then D∗ is monotonically star countable.

Proof. Let U be an open cover of D∗, and let s(U) = {d∗}∪(D∗\st(d∗,U)). Then s(U)
is countable by the construction of the topology of D∗. If V ≺ U , clearly s(U) ⊆ s(V).
Hence s(U) is a monotonically star countable operator for D∗. □

Example 2.10. There exists a monotonically star countable space having aGδ regular
closed subspace which is not star countable (hence not monotonically star countable).

Let D = {dα : α < c} be a discrete space of cardinality c, and let S1 = X be the
same space X of the above Example 2.2. Then S1 is not monotonically star countable.

Let S2 = X be the same space X of the above Example 2.6. Then S2 is monoton-
ically star countable.

We assume S1 ∩ S2 = ∅. Let π : D × {ω} → A be a bijection and let X be the
quotient image of the disjoint sum S1⊕S2 by identifying ⟨dα, ω⟩ of S1 with π(⟨dα, ω⟩)
of S2 for every α < c. Let φ : S1 ⊕ S2 → X be the quotient map. Then φ(S1) is a
regular-closed subspace of X. For each n ∈ ω, let Fn = {m ∈ ω : m ≤ n}. For each
n ∈ ω, let Un = φ({{A}∪ (A \Fn) : A ∈ A})∪φ(D∗×ω). Then Un is open in X and
φ(S1) =

⋂
n∈ω Un. Thus φ(S1) is a Gδ regular close subspace of X. However φ(S1)

is not monotonically star countable, since it is homeomorphic to S1.

Finally we show that X is monotonically star countable. To this end, let U be
an open cover of X. Since φ(S2) is homeomorphic to S2, consequently φ(S2) is
monotonically star countable. Let s′(U) be a monotonically star countable operator
for φ(S2) such that φ(S2) ⊆ st(s′(U),U).

On the other hand, for each n ∈ ω, since φ(D∗ × {n}) is homeomorphic to D∗ ×
{n}, it is monotonically star countable by Lemma 2.9. Thus

⋃
n∈ω φ(D∗ × {n})

is monotonically star countable by Lemma 2.8. Let s′′(U) be a monotonically star
countable operator for φ(D∗ × ω) such that

⋃
n∈ω φ(D∗ × {n}) ⊆ st(s′′(U),U).

Let s(U) = s′(U)∪ s′′(U). Then s(U) is monotonically star countable operator for
X such that X = st(s(U),U).

In the following, we give a positive result.

Theorem 2.11. An open Fδ-subset of a monotonically star countable space is mono-
tonically star countable.

Proof. Let X be a monotonically star countable space and let Y =
⋃
{Hn : n ∈ ω}

be an open Fδ-subset of X, where each Hn is a closed subset of X. To show that
Y is monotonically star countable, let U be an open cover of Y . We have to find a
monotonically star countable operator s(U) of Y such that st(s(U),U) = Y . For each
n ∈ ω, consider the open cover Un = U ∪ {X \Hn} of X. Since X is monotonically
star countable, there is a monotonically star countable operator s′ for X such that
X = st(s′(Un),Un). Let s

′′(Un) = s′(Un)∩Y . Then s′′(Un) is a countable subset of Y
and Hn ⊆ st(s′′(Un),U). Thus s(U) =

⋃
n∈ω s′′(Un) is a countable subset of Y such

that Y = st(s(U),U).
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If V ≺ U , then for each n ∈ ω, Vn ≺ Un and s′(Un) ⊆ s′(Vn), hence s′′(Un) ⊆
s′′(Vn), thus s(U) =

⋃
n∈ω s′′(Un) ⊆

⋃
n∈ω s′′(Vn) = s(V). Hence s(U) is monotoni-

cally star countable operator for Y . □

A cozero-set in a space X is a set of the form f−1(R \ {0}) for some real-valued
continuous function f onX. Since a cozero-set is an open Fδ-set, we have the following
corollary of Theorem 2.11.

Corollary 2.12. A cozero-set of a monotonically star countable space is monoton-
ically star countable.

Since every clopen subset is an open Fδ-set, we have the following corollary of
Theorem 2.11.

Corollary 2.13. A clopen subset of a monotonically star countable space is mono-
tonically star countable.

The first author [13] showed that a continuous image of a monotonically star
compact space is monotonically star compact; similarly we have the following result.

Theorem 2.14. A continuous image of a monotonically star countable space is mono-
tonically star countable.

Next we turn to consider preimages. To show that the preimage of a monotonically
star countable space under a closed 2-to-1 continuous map need not be monotonically
star countable, we use the Alexandorff duplicate A(X) of a space X. The underlying
set of A(X) is X ×{0, 1}; each point of X ×{1} is isolated and a basic neighborhood
of a point ⟨x, 0⟩ ∈ X × {0} is of the from (U × {0}) ∪ ((U × {1}) \ {⟨x, 1⟩}), where U
is a neighborhood of x in X. It is well-known that if X is compact (Lindelöf) if and
only if so is A(X).

Example 2.15. There exists a closed 2-to-1 continuous map f : A(X) → X such
that X is a monotonically star countable space, but A(X) is not monotonically star
countable.

Let X be the space S1 of Example 2.6. Then X is monotonically star countable
and has an uncountable discrete closed subset A. Hence the Alexandroff duplicate
A(X) of X is not monotonically star countable by Corollary 2.13, since A×{1} is an
uncountable infinite discrete, open and closed set in A(X). Let f : A(X) → X be the
projection. Then f is a closed 2-to-1 continuous map.

Remark 2.16. The Example 2.6 also shows that there exists a Tychonoff monotoni-
cally star countable space X such that A(X) is not monotonically star countable.

Theorem 2.17. If X is a T1-space and A(X) is a monotonically star counatble space.
Then e(X) < ω1,

Proof. Suppose that e(X) ≥ ω1. Then there exists a discrete closed subset B of X
such that |B| ≥ ω1. Hence B × {1} is an open and closed subset of A(X) and every
point of B×{1} is an isolated point. Thus A(X) is not monotonically star countable
by Corollary 2.13, since B × {1} is not monotonically star countable. □
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Singh [12] proved that, if X is monotonically star compact space with e(X) < ω,
then A(X) is monotonically star compact. Similarly, we will prove the following
result.

Lemma 2.18 ([4]). For T1-space X, e(X) = e(A(X)).

Theorem 2.19. If X is a monotonically star countable space with e(X) < ω1, then
A(X) is monotonically star countable.

Proof. Let U be an open cover of A(X). Let U ′ = {U∩(X×{0}) : U ∈ U}. Then U ′ is
an open cover ofX×{0}. SinceX×{0} is homeomorphic toX andX is monotonically
star countable, thus X × {0} is a monotonically star countable, hence there exists a
countable subset s(U ′) of X such that st(s(U ′),U ′) = X×{0}. Let s(U)′ = A(s(U ′)).
Then s(U)′ is a countable subset. Let AU = A(X)\st(s(U)′,U ′). Then AU is a discrete
closed subset of A(X). By Lemma 2.6, the set AU is countable. Let s(U) = s(U)′∪AU .
Then s(U) is a countable subset of A(X) and A(X) = st(s(U),U).

If V ≺ U , then V ′ ≺ U ′, hence s(U ′) ⊆ s(V ′) and AU ⊆ AV , thus s(U) ⊆ s(V).
Therefore s(U) is monotonically star countable operator for X. □

We have the following corollary from Theorems 2.17 and 2.19.

Corollary 2.20. If X is a T1 monotonically star countable space, then A(X) is
monotonically star countable if and only if e(X) < ω1.

In [5, Example 3.34] van Douwen-Reed-Roscoe-Tree gave an example showing that
there is a star countable space X and a compact space Y such that X×Y is not star-
countable. We now show that the product X×Y is not monotonically star countable.
We give the construction for the sake of completeness.

Example 2.21. There exists a monotonically star countable space X and a compact
space Y such that X × Y is not monotonically star countable.

Let X = ω∪A be the Isbell-Mrówka space, where A is the almost disjoint family of
infinite subsets of ω with |A| = c. Then X is monotonically star countable. Let D be
a discrete space of cardinality c and let Y = D∪{d∗} be one-point compactification of
D, where d∗ /∈ D. However X×Y is not star countable (see [5, Example 3.34]), hence
X × Y is not monotonically star countable, since every monotonically star countable
is star countable.

In the following, we give another example showing the product of a monotonically
star countable space X and a compact space Y such that X×Y is not monotonically
star countable. For the next example, we need the following lemma from [11].

Lemma 2.22 ([11]). The space ω1 is monotonically star countable.

Example 2.23. There exists a monotonically star countable space X and a compact
space Y such that X × Y is not monotonically star countable.

LetX = ω1 with the usual order topology. ThenX is monotonically star countable
by Lemma 2.22. Let D be a discrete space of cardinality ω1 and let Y = D ∪ {d∗}
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be one-point compactification of D, where d∗ /∈ D. To show that X × Y is not
monotonically star countable, we have only to show that X×Y is not star countable,
since every monotonically star countable space is star countable. For each α < ω1,
let Uα = [0, α]× [α, ω1] and Vα = (α, ω1)× {α}. Consider the open cover U = {Uα :
α < ω1} ∪ {Vα : α < ω1} of X × Y and let F be a countable subset of X × Y . Then
π(F ) is a countable subset of X, where π : X × Y → X is the projection. Thus,
there exists β < ω1 such that F ∩ ((β, ω1) × Y ) = ∅. Pick α with α > β. Then
⟨α, β⟩ /∈ st(F,U), since Vβ is the only element of U containing ⟨α, β⟩. Hence X × Y
is not star countable.
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