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EXTREMAL DISCONNECTEDNESS IN

FUZZY TOPOLOGICAL SPACES

Ratna Dev Sarma

Abstract. The notion of extremal disconnectedness is introduced for fuzzy topological
spaces. Various properties of this notion are discussed. Interrelationship of some weaker forms of
fuzzy continuity is studied in the light of extremal diconnectedness.

1. Introduction

Connectedness and its related notions are studied by various researchers for
fuzzy topological space ([3], [5], [13]). In many cases, the study while remaining
parallel to its counterpart in general topology shows divergence due to the fuzzy set-
ting. For example, there are four types of connectedness, namely ci-connectedness
(i = 1, 2, 3, 4) de�ned for an arbitrary fuzzy set. But when considered globally,
that is, when the fuzzy set is considered to be the whole space, all these four types
coincide to one type. Because of these diversities, study of connectedness and re-
lated concepts remain to be an interesting one in the area of fuzzy topology. In
this paper, we add to the existing literature one more notion, namely, extremal dis-
connectedness. Various properties of extremal disconnectedness is studied and the
notion is shown to be compatible with the existing fuzzy topological notions such
as T2-axiom, fuzzy regularity, c-connectedness, zero-dimension etc. Also following
localized approach, we provide a number of characterizations of fuzzy weak con-
tinuity. Alongwith, we study the interrelationship between fuzzy weak continuity
and fuzzy semi-continuity in the context of extremal diconnectedness.

2. Preliminaries

Throughout the paper, X , Y , Z etc. denote ordinary sets while �, �, � etc.
denote fuzzy sets de�ned on an arbitrary set. The fuzzy sets are de�ned with
respect to the closed unit interval I = [0; 1]. The union and intersection of a family
of fuzzy sets f�ig are denoted _�i and ^�i respectively. The constant fuzzy sets
which take each member of X to zero and one respectively are denoted by 0X and
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1X respectively. A fuzzy point with support x and value �, 0 < � 6 1, is denoted
by x�. While x� 6 � implies � 6 �(x); x� " � implies � < �(x) and � 6 � implies
�(x) 6 �(x) for each x. Two fuzzy sets � and � are said to overlap, denoted by
� q �, if there exists x in X such that �(x)+ �(x) > 1. For the de�nition of a fuzzy
topological space (an fts in brief), we refer to Chang [10]. For other de�nitions,
results and notations used in the paper, see [1], [6], [13] or [16].

3. Extremal disconnectedness

Definition 3.1. An fts X is called extremally disconnected if for every open
fuzzy set � in X , cl(�) is a crisp clo-open fuzzy set in X .

Example 3.2. Let X be a non-empty set and T = f0X ; 1Xg[f��g�2�, where
�� is any fuzzy set de�ned on X such that 1

2 < ��(x) < 1, for every x in X . Then
the fts hX;T i is extremally disconnected, although X is not c-connected.

Below we give a necessary and su�cient condition for an fts to be extremally
disconnected.

Theorem 3.3. An fts X is extremally disconnected i� for every pair of non-
overlaping open fuzzy sets � and � in X, cl(�) and cl(�) are non-overlaping crisp
fuzzy sets in X.

Proof. Let X be an extremally disconnected fts and � and � be open fuzzy
sets in X such that � 6 q �. Suppose, if possible, cl(�) overlaps with cl(�). Then
(cl(�))(y)+(cl(�))(y) > 1, for some y in X . Then the fuzzy point Y(cl(�))(y) 6 cl(�)
and Y(cl(�))(y) q cl(�). X being extremally disconnected, cl(�) is open. Then
cl(�) is a Q-nbd of Y(cl(�))(y) and Y(cl(�))(y) 6 cl(�). Therefore � q cl(�). Let
�(x) + (cl(�))(x) > 1. This implies that x1��(x) properly belongs to cl(�), or,
x1��(x)+" 6 cl(�) for some positive real number ". Also x1��(x)+" q �. Therefore
� q �, which is a contradiction.

Conversely, let � be an open fuzzy set in X . Then � and 1X � cl(�) are two
open fuzzy sets such that � 6 q 1X � cl(�). Therefore cl(�) 6 q cl(1X � cl(�)) and
cl(�) is a crisp fuzzy set in X . Now, cl(�) 6 q cl(1X � cl(�)) implies that cl(�) 6
1X�cl(1X�cl(�)) = 1X� (1X� int(cl(�))) = int(cl(�)); so that cl(�) = int(cl(�)).
Thus cl(�) is a crisp clo-open fuzzy set in X . Hence X is extremally disconnected.
This completes the proof.

Theorem 3.4. Every open subspace of an extremally disconnected fts is ex-
tremally disconnected.

Proof. Easy.

In [3] and [5], c-disconnectedness for general fuzzy topological spaces is intro-
duced and studied. An fts X is c-disconnected if there exist two proper open fuzzy
sets � and � such that � ^ � = 0X and � _ � = 1X . It follows that an fts X is
c-disconnected i� there exists a proper crisp clo-open fuzzy set in X . The follow-
ing example alongwith Example 3.2 shows that c-disconnectedness and extremal
disconnectedness are two independent notions.
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Example 3.5. Let A and B be non-empty disjoint sets and X = A [ B. Let

��A and ��B be fuzzy sets de�ned by

��A(x) =

�
�; for x 2 A, 0 6 � 6 1,

0; otherwise,
��B(y) =

�
�; for y 2 B, 0 6 � 6 1,

0; otherwise.

Let T (x) = f��A_�
�
Bg06�;�61. Then the fts hX;T (x)i is c-disconnected and �1A and

�1B are two non-zero open fuzzy sets in X which are providing a c-disconnectedness
of 1X . But this fts fails to be extremally disconnected as the closure of the open

fuzzy set �
1=2
A _ �

1=2
B is not crisp.

The following theorem establishes relationship between c-disconnectedness and
extremal disconnectedness.

Theorem 3.6. Every subspace of an extremally disconnected Hausdor� fts is
c-disconnected.

Proof. LetX be an extremally disconnected Hausdor� fts and A be a subspace
of X . Let x� (0 < � < 1) and y� (0 < � < 1) be two fuzzy points in A with
distinct supports. As X is T2, considering x� and y� as fuzzy points in X , we
get two open fuzzy sets � and � in X such that x� q �, y� q � and � ^ � = 0X .
This implies that x�0 " �, y�0 " � and � ^ � = 0X , where �

0 = 1 � �, �0 = 1 � �.
Now, X being extremally disconnected, cl(�) and cl(�) are crisp clo-open fuzzy
sets in X , so that (cl(�))a and (cl(�))a, where (cl(�))a = cl(�)jA, are crisp clo-
open fuzzy sets in A. Also x�0 " � and x is in A imply that x�0 " (cl(�))a.
Thus (cl(�))a 6= 0A. Similarly y�0 " (cl(�))a. Again that � ^ � = 0X and X is
extremally disconnected together imply that cl(�)+cl(�) 6 1X , in view of Theorem
3.3; whence (cl(�))a + (cl(�))a 6 1A. Therefore (cl(�))a(y) + (cl(�))a(y) 6 1,
that is, (cl(�))a(y) + 1 � � < (cl(�))a(y) + (cl(�))a(y) 6 1. Or, in other words
(cl(�))a(y) < �. Thus (cl(�))a 6= 1A. Therefore (cl(�))

a is a proper crisp clo-open
fuzzy set in A. Consequently A is c-disconnected. This completes the proof.

Remark. In the above theorem, the condition that "X is Hausdor�" can not
be dropped. For example, the fts given in Example 3.2 is extremally disconnected.
But here even X itself is not c-disconnected. It may be noticed that X is not a
Hausdor� fts in this case.

Example 3.7. Let X = fx; yg, S = f�1; �2g [ f���g1=2<�;�61 and consider
the fuzzy topology T (x) generated by S, where

�1(x) = 1; �2(x) = 0; ���(x) = �;

�1(y) = 0; �2(y) = 1; ���(y) = �:

Then hX;T (x)i is both extremally disconnected as well as c-disconnected. Here it
can be veri�ed that X is a T2-fts .

Definition 3.8.[8] An fts X is called zero-dimensional if every crisp fuzzy
point in X has a base of crisp clo-open fuzzy sets.
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An fts X is called a regular fuzzy space ([1], [12]) if each open fuzzy set � in
X is a union of open fuzzy sets �i in X , such that cl(�i) 6 � for each i. We have

Theorem 3.9. Every non-empty extremally disconnected regular fts is zero-
dimensional.

Proof. Easy.

In the rest of the paper, we discuss extremal disconnectedness in the light of
some weaker forms of fuzzy continuity.

Definition 3.10.[4] A mapping f : X ! Y from an fts X to an fts Y is
said to be fuzzy weakly continuous (briey f.w.c.) at a fuzzy point x�, if for each
neighbourhood � of f(x�) in Y , there exists a neighbourhood � of x� in X such
that f(�) 6 cl(�).

f is said to be fuzzy weakly continuous if it is so at each fuzzy point in X .

Below we provide several characterizations of fuzzy weak continuity. Its proof
is similar to that of Theorem 3.4 [4] and it is left for the reader as an exercise.

Theorem 3.11. For a mapping f : X ! Y from an fts X to an fts Y , the
following are equivalent:

(i) f is fuzzy weakly continuous;

(ii) for each open fuzzy set � in Y , f�1(�) 6 int(f�1(cl(�)));

(iii) for each closed fuzzy set � in Y , cl(f�1(int(�))) 6 f�1(�);

(iv) f is f.w.c. at every x�, where 0 < � < 1;

(v) for each fuzzy point x� in X, and for every open fuzzy set � in Y properly
containing f(x�), there is an open fuzzy set � properly containing x� such that
f(�) 6 cl(�);

(vi) for any fuzzy point x� in X and for each Q-nbd � of f(x�), int(f
�1(cl(�)))

is a Q-nbd of x�;

(vii) for any fuzzy point x� in X and for each Q-nbd � of f(x�), there exists
a Q-nbd � of x� such that f(�) 6 cl(�);

(viii) for each fuzzy net fSng converging to any fuzzy point x�, the image fuzzy
net ff(Sn)g eventually overlaps with the closure of each Q-nbd of f(x�);

(ix) for each open fuzzy set � in Y , cl(f�1(�)) 6 f�1(cl(�)).

Definition 3.12. A mapping f : X ! Y , where A � X , is said to be a
retraction of X onto A if f(x) = x i� x is in A.

Theorem 3.13. Let A � X and f : X ! A be a fuzzy weakly continuous
retraction of X onto A. If X is extremally disconnected Hausdor� fts, then A is a
closed subspace of X.

Proof. Suppose, if possible, �
A
is not closed. Then there exists a fuzzy point

x� in X , such that x� 6 cl(�
A
), but x� 
 �

A
. Then x is not in A. Therefore
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f(x) 6= x. Since X is Hausdor�, there exist disjoint Q-nbds � and � of x� and
f(x�) respectively. Now, X being extremally disconnected, � ^ cl(�) = 0X . For, if
y� 6 � ^ cl(�), then �(y) > 0 and (cl(�))(y) > 0. Since cl(�) is a crisp fuzzy set,
(cl(�))(y) = 1. Thus y1 6 cl(�) and �(y) > 0. Therefore, y1 6 cl(�) and y1 q �.
Hence � q �, which is a contradiction, as � ^ � = 0X .

Now, let � be a Q-nbd of x�. Then � ^ � is a Q-nbd of x�. Therefore � ^ �
overlaps with �

A
at some point z in X , as x� 6 cl(�

A
). This implies that

(� ^ �)(z) 6= 0 and z is in A.

That is,
�(z) 6= 0; �(z) 6= 0 and f(z) = z.

Therefore, (cl(�))(z) = 0, �(z) 6= 0 and f(z) = z, using the fact that �^cl(�) = 0X .
Thus,

(cl(�))(f(z)) = 0; f(�)(f(z)) 6= 0:

Hence, f(�) 
 cl(�). This contradicts the fact that f is f.w.c. at x�, in view of
Theorem 3.11. Thus our assumption is wrong and consequently �

A
is a closed fuzzy

set in X . Hence A is a closed subspace of X .

Definition 3.14. (a) A fuzzy set � is called semi-open if there exists an open
fuzzy set �0 such that �0 6 � 6 cl(�0).

(b) The complement of a semi-open fuzzy set is called a semi-closed fuzzy set.

(c) Intersection of all semi-closed fuzzy sets containing a fuzzy set � is called
the semi-closure of � and is denoted by s-cl(�).

Azad [9] has de�ned a fuzzy set � to be semi-closed if there exists an open
fuzzy set � in X such that

int(1X � �) 6 � 6 1X � �:

However, this de�nition can easily be shown to be equivalent to the above mentioned
de�nition.

For a fuzzy set �, cl(�) and s-cl(�) need not be same. This can be veri�ed
from the following example.

Example 3.15. Let X be any non-empty set and T (x) = f0X ; �1=3; �2=3; 1Xg,
where �i(x) = i for all x in X , i = 1=3, 2=3. Then for the fuzzy set �, de�ned by
�(x) = 1

2 for all x in X , we have s-cl(�) = � and cl(�) = �2=3.

Further, from this example it is clear that s-cl(�) and cl(�) need not be same
even if � is semi-open. However, if the fts is extremally disconnected, the closure
and semi-closure of a semi-open fuzzy set turn out to be same. Before proving this
we state the following result.

Theorem 3.16.[11] Let � be a fuzzy set in an fts X. Then x� 6 s-cl(�) i�
every semi-open fuzzy set overlapping with x� overlaps with �.
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Theorem 3.17. In an extremally disconnected fts X, cl(�) = s-cl(�) for every
semi-open fuzzy set � in X.

Proof. In general, s-cl(�) 6 cl(�), as every closed fuzzy set is also semi-closed.
Thus it su�ces to show that cl(�) 6 s-cl(�) for every semi-open fuzzy set in X . Let
x� be a fuzzy point in X such that x� 
 s-cl(�). Then there exists, by Theorem
3.16, a semi-open fuzzy set � in X such that x� q � and � 6 q �. This implies that
x� q � and int(�) 6 q int(�). Since X is extremally disconnected, by Theorem 3.3,
we have cl(int(�)) 6 q cl(int(�)). Also by Theorem 4.2[9] , � 6 cl(int(�)). Therefore,
cl(int(�)) 6 q �. Again, � being semi-open there exists an open fuzzy set �0 such
that �0 6 � 6 cl(�0). Therefore,

�0 6 int(�) 6 � 6 cl(�) 6 cl(�0):

This implies that

cl(�0) 6 cl(int(�)) 6 cl(�) 6 cl(cl(�)) 6 cl(cl(�0)):

Hence cl(�) = cl(int(�)). Thus it follows that cl(�) 6 q �. Also x� q �. Therefore,

(cl(�))(x) + �(x) 6 1 and �+ �(x) > 1;

so that � > (cl(�))(x). Hence x� 
 cl(�). Consequently, cl(�) 6 s-cl(�). This
proves the theorem.

The last theorem is in the spirit of Theorem 3.2 of Noiri [15]. It establishes the
relationship between fuzzy semi-continuity and fuzzy weak continuity in the light of
extremal disconnectedness. We �rst recall the de�nition of fuzzy semi-continuity.

Definition 3.18.[7] A mapping f : X ! Y from an fts X to fts Y is said to
be fuzzy semi-continuous at a fuzzy point x� if for every open fuzzy set � containing
f(x�) there exists a semi-open fuzzy set � containing x� in X such that f(�) 6 �.

f is said to be fuzzy semi-comtinuous, if it is so at every fuzzy point in X .

Theorem 3.19. A mapping f : X ! Y from an fts X to an fts Y is fuzzy
semi-continuous i� f�1(�) is semi-open for every open fuzzy set � in Y .

Proof. Easy.

From the de�nition it is clear that fuzzy continuity implies fuzzy semi-
continuity. The converse is, however, not true. Also, fuzzy weak continuity and
fuzzy semi-continuity are two independent notions.

Example 3.20. Let X be any non-empty set and T1(x) = f0X ; �1=3; 1Xg,
T2(x) = f0X ; �1=2; 1Xg, where �j(x) = j, j = 1=3, 1=2, for every x in X . Then the
identity mapping i : hX;T1(x)i ! hX;T2(x)i is fuzzy semi-continuous but neither
fuzzy continuous nor fuzzy weakly continuous, as it is not f.w.c. at any x�, where
1=3 < � 6 1=2. Again the identity mapping i0 : hX;T2(x)i ! hX;T1(x)i is fuzzy
weakly continuous but not fuzzy semi-continuous as it is not fuzzy semi-continuous
at any x�, where 0 < � 6 1=3.
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We are now in a position to prove the following theorem.

Theorem 3.21. If an fts X is extremally disconnected and f : X ! Y is fuzzy
semi-continuous, then f is fuzzy weakly continuous.

Proof. Let � be an open fuzzy set in Y . Then f�1(�) is a semi-open fuzzy set
in X , as f is fuzzy semi-continuous. Let x� 
 f�1(cl(�)). Then f(x�) 
 cl(�).
Therefore there exists a closed fuzzy set � containing � such that f(x�) 
 �. Since
f is fuzzy semi-continuous, f�1(1Y � �) is semi-open in X . But

f�1(1Y � �) = 1X � f�1(�):

Thus f�1(�) is a semi-closed fuzzy set in X . Also, f�1(�) 6 f�1(�) as � 6 �
and x� 
 f�1(�) as f(x�) 
 �. This implies that x� 
 s-cl(f�1(�)). There-
fore, by Theorem 3.17, x� 
 cl(f�1(�)), as X is extremally disconnected. Thus
cl(f�1(�)) 6 f�1(cl(�)). Hence by Theorem 3.11, f is fuzzy weakly continuous.

Here the condition "extremal disconnectedness" cannot be dropped. For ex-
ample, hX;T1(x)i is not extremally disconnected in Example 3.20. Although the
identity mapping is fuzzy semi-continuous, it is not fuzzy weakly continuous.
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