
MATEMATIQKI VESNIK

47 (1995), 61{84
UDC 519.765

originalni nauqni rad

research paper

AN OBJECT MODEL FOR NATURAL LANGUAGE DOCUMENT

Gordana Pavlovi�c-La�zeti�c, Goran Nenadi�c

Abstract. An object model of a text is de�ned, and structural and manipulative aspects
of the model are presented. The model proposed supports text in its general sence (as a natu-
ral language document), which comprises structural, syntactic, semantic, orthographic, stylistic
properties of both the underlying natural language and the text itself. Extended class algebra is
de�ned as a basis for manipulative part of the model. Set of classes is then proved to be closed
under the operations of the extended class algebra.

1. Introduction

Object programming represents, nowadays, a dominant approach to resolving
problems programmers are faced with, since it often presents the most natural way
of dealing with those problems. This is one of the reasons for database �eld to grow
towards object-oriented systems.

Object data models are not standardized as opposed to other data models (re-
lational, hierarchical and network ones). The core object data model [4] consists
of objects, object identi�ers, classes, attributes, inheritance and class hierarchy,
encapsulation of objects and their behavior, message passing and methods imple-
menting it. Di�erent extensions to the core object model include complex objects
(class composition hierarchy), version handling, dynamic schema changing etc.

Still, text is one of the most frequent objects of computer processing, and
speci�cally of managing in databases, thus making it natural and strongly motivat-
ed to consider object methodology for text processing. The very �rst step is then
to de�ne an object model of natural language (Serbian) text.

In this paper, such a model is de�ned, and structural and manipulative aspects
of the model are presented. As opposed to numerous programming systems that
treat text simply as a string of characters, the model proposed supports text in
its general sense (as a natural language document), which comprises structural,
syntactic, semantic, orthographic, stylistic properties of both the underlying natural
language, and the text itself. Class hierarchies de�ned are rich enough to take into
account speci�c aspects of Serbian language.

Formally, structural part of the model relies on three types of constructors
de�ning a structure of a natural language document. Manipulative aspect of the

61

62 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

model incorporates tools for specifying, addressing and retrieving speci�c properties
of a document, aiming at document creation, retrieval, deletion or updating. A well
known formalism for addressing all the relevant properties of data in the context
of the relational model is relational algebra [1]. It has been extended in di�erent
ways to suite the needs of more structured, or more semantic models such as nested
relational models ([7], [6]), or di�erent object models ([3], [2], [8]). An extension to
the relational algebra for the object model of natural language document de�ned
in the paper is considered (extended class algebra). A set of classes is proved to be
closed under the operators of the extended class algebra.

2. Text and natural language document

Computer processing of textual data, from the very beginning, introduced a
signi�cant distinction between the notions of a text in general and a text in a
computer senses. This distinction persisted till now. A text, in a computer sense,
represents a string of characters, whose domain of interpretation may vary, depend-
ing on a system or user desires, independently of the text itself. Thus, a text is a
computer dependent record of speci�c data, whose interpretation does not recog-
nize semantics of the information that is to be encoded by such a record. A domain
in which a text is to be interpreted (usually visualized) is completely independent
of the text itself. For example, a text intended for recording an information in
English could be easily presented on a screen in Cyrillic.

Natural language document possesses knowledge that (usually) is not stored
with the document itself. First, it comprises speci�cities of a language the document
was created in, document structure, speci�c orthographic and grammatical norms
respected in writing, period of time the document was created in, style, and what
is the most important, natural language (NL) document carries by itself a speci�c
message, i.e. semantics that can be (uniquely or not) extracted from the text.
Thus, as opposed to a computerized text which is linear (or one-dimensional), a
NL document is multilayered i.e. multidimensional and can be viewed on di�erent
levels, each of which covers a speci�c component of such a document. Internal
computer representation is just one of the components. So far, the solutions based
on the procedural approach to programming, usually relied, in natural language
document processing, on a document linearization, while a portion of information
the text possessed was frequently lost. There is a strong impression that object
methodology o�ers a possibility to naturally overcome multidimensionality of a NL
document. It o�ers an approach to a text that enables not only an interpretation
of the text, but a possibility to extract speci�c knowledge and semantics from a
NL document stored in a computer.

In a computer stored NL document, there are three layers representing both
syntactic (notational) and semantic structure of the text. This layered property
determines a way of accessing and processing textual documents. It also induces a
necessary structure of textual type objects (to be indicated later). The following
three layers can be distinguished that need to be stored in a computer:

An object model for natural language document 63

� Internal text representation, devoted to a computer only and represent-
ing, basically, a classic computerized text (a character string carrying speci�c
information). This is the layer that almost all the conventional text processing
is done upon, and it represents the lowest level of a text representation in a
computer.

� Logical organization, devoted to a computer as well as to a human user,
and re
ecting semantic and logical structure of an NL document (chapters,
sections, bibliography, unit titles, keywords, etc.)

� Graphical presentation, devoted to a human user solely, comprises possibil-
ities of text visualization on a human readable media. Thus, it is not necessary
to have this level of a text stored as a separate unit in a computer, but it is
possible to keep just those elements of a graphical structure which provide, on
a demand, for a graphical presentation of a text on a screen or a printer. A
text as a whole, on this level, is a string consisting of graphical characters only
| allograph codes and control characters of a device a text is to be presented
on.

The di�erences mentioned between a "classic\ computerized text and a NL doc-
ument stored in a computer, demand for di�erent software systems for their pro-
cessing. In the �rst case those systems are text editors (word processors), while NL
document processing is in charge of NL document processors.

3. The object model

Development of object-oriented databases was signi�cantly in
uenced by the
object methodology of programming. It also in
uenced organization and access
to textual databases, consisting of integral texts stored in a computer, aiming at
long duration, archiving, interchange, retrieval and intelligent processing (obtaining
speci�c information and knowledge). While �rst three functions mentioned are also
present in classic computerized texts, last two ones are tightly coupled with NL
document and have to be adapted for a language the document is organized in. For
example, retrieval of a textual database containing Serbian language texts has to
provide for unifying
ective forms of words, and it also has to overcome the two-
alphabets problems present. It implies that an implementation of a retrieval method
is dependent on a language a text is created in1, but its interface (its "call\) would
be unique and independent of a natural language, which clearly suggests application
of an object methodology.

Object model of a NL document, regardless of implementation, would have
to re
ect source language origin and a structure of a NL document. It also has
to provide for representing the most part of relevant information the document
possesses, in an abstract way and without obligations toward existing text prepa-
ration systems. The object model would be aimed at organizing complex structure

1Thus, an information about language the document was created in, has to be present (that
is not the case with "classic\ computerized text)

64 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

documents, featuring potentially long life and wide use. Basic demands on such a
model are:

| abstraction and extendibility of a class of documents the model is able to
describe;

| adaptation of the model to a speci�c natural language (Serbian language in
this case), and re
ection (in the model) of all the speci�cities of its use (for
Serbian language | two alphabets,
ection, rich morphology, dialects etc.);

| possibility of e�cient and sophisticated NL document processing, which implies
that the model has to possess and to re
ect precise logical structure of a text,
including word as the most important constitutional unit of a text. The model
also has to provide for text mark up, as well as for logical structure granulation
up to the level necessary for processing;

| possibility of re
ecting and presenting standard NL document types and their
structures, as well as the possibility of organizing and storing texts in accor-
dance with such structures;

| independence of existing systems for graphical text preparation, still provid-
ing for conversion of texts formatted by some of those systems, into objects
according to the model, and vice versa.

Complexity of an NL document, and the feature of it being layered, account
for the presence of both class and class composition hierarchies in the object model
of text:

� vertical hierarchy (type IS-A) comprises inheritance of attributes and methods
between di�erent sorts of documents (e.g., BOOK IS-A NL-DOCUMENT).

� horizontal (or composition) hierarchy (type IS-PART-OF), based on properties
and portions a speci�c sort of documents standardly possesses (e.g., CHAP-
TER IS-PART-OF BOOK).

An object model for natural language document 65

Vertical hierarchy represents interrelationship between di�erent classes of
documents. Existence of di�erent classes of documents has to cover the most part
of standard sorts of documents encountered in textual databases, and to provide
for adding new classes. Inheritance of attributes (properties) between classes has to
re
ect structure, organization and mutual relationship between di�erent classes of
documents, while methods need to provide, in a standardized way (through unique
interfaces, i.e., signature) for classic procedures of textual data processing, taking
into account class of a document (function overloading, encapsulation). Inside
di�erent classes some of the functions are rede�ned or even completely dropped
(e.g., generating index for objects of type BOOK is di�erent from the same function
for objects of type DICTIONARY, while objects of type ARTICLE do not need
such a function at all).

� NL-DOCUMENT � DOCUMENT-PART
� BOOK � CHAPTER

� TEXTBOOK � SECTION
� . . . � PARAGRAPH

� OFFICE-DOCUMENT � TEXT-PARAGRAPH
� REPORT � ABSTRACT
� LICENCE � ENTRY
� STATEMENT � . . .
� AGREEMENT � FIGURE-PARAGRAPH
� . . . � FIGURE

� ARTICLE � BIT-MAP
� DOCUMENT-WITH-ENTRIES � POSTSCRIPT

� DICTIONARY � . . .
� ENCYCLOPEDIA � TABLE

� LETTER � . . .
� PRIVATE � PARAGRAPH-PART
� BUSINESS � NAME

� CALL-FOR-PAPERS � WORD
� . . . � PERSONAL-NAME

� DATE
� . . .

� NUMERAL
� ARABIC
� ROMAN

� OBJECT-REFERENCE
� FIGURE-REFERENCE
� WORD-REFERENCE
� . . .

� HORIZONTAL-SPACE
� TITLE
� FOOTNOTE
� VERTICAL-SPACE
� TABLE-OF-CONTENTS
� . . .

Horizontal hierarchy has to provide for detailed representation of a docu-
ment structure. This hierarchy represents another level of composing and again,
it has to re
ect speci�cities of di�erent classes of documents, representing parts
that speci�c classes consist of. Granulation of a text logical structure is de�ned
explicitly by a horizontal hierarchy, up to a desired depth.

66 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

Document types hierarchy and vertical hierarchy of classes used in class com-
position hierarchy re
ecting structure of a NL-document may be represented, by
indicating just class names and hierarchical organization, in the following way (it
may include other classes, too), see the table on the previous page.

Class DOCUMENT-PART represents the root of the second class hierarchy.
Along with basic IS-A relation between classes presented (e.g., POSTSCRIPT IS-
A FIGURE, FIGURE IS-A FIGURE-PARAGRAPH and FIGURE-PARAGRAPH
IS-A PARAGRAPH, and, at the end, PARAGRAPH IS-A DOCUMENT-PART),
IS-PART-OF relation exists between classes: WORD IS-PART-OF TEXT-PARA-
GRAPH, TEXT-PARAGRAPH IS-PART-OF SECTION, SECTION IS-PART-OF
CHAPTER. Similarly, TEXT-PARAGRAPH consists of WORDs, NUMERALs
and FOOTNOTEs, which, in turn, consist of WORDs, NUMERALs etc.

Object structure of speci�c classes may be very complex, voluminous and de-
manding. Some of the structures will be presented in the following section.

4. Examples of class structure in the object model of text

Before we present some possible structures of speci�c classes, we will sketch the
notation we will use for constructors of types of speci�c attributes (formal descrip-
tion of these constructors will be presented, together with the formal description of
the model, in section 5). Indicator of a speci�c type inside curled braces will denote
a �nite ordered set with a direct access (access to the k-th element) consisting of
objects of that type. Speci�c realization of this constructor may be an array, a
list or a similar structure. A pointer to an object of a given type (in a speci�c
implementation it may be a unique identi�er of the object in the database) will be
denoted by an asterisk followed by a name of the corresponding type. For example,
fWORDg will denote a �nite ordered set of objects of the type WORD, and f�
WORDg { a �nite ordered set of pointers to objects of the type WORD.

4.1. Class NL-DOCUMENT. The class NL-DOCUMENT is an abstract
class and it does not have instances, but it represents the basis of the overall
hierarchy of NL documents. Inside it, declaration of methods and functions needed
in text processing may be given, and a basic structure may be speci�ed that each
NL document has to possess. Thus, basic attributes de�ned in this class will include
the following:

Author : fNAMEg
Title: TITLE
Date: DATE
Abstract : ABSTRACT
Orthography : ORTHOGRAPHY-ID
Versions : f� NL-DOCUMENTg
Contents : f�DOCUMENT-PARTg

The attribute Author consists of an (ordered) set of objects of type NAME,
which can be either personal name (subclass of WORD) or name of an institu-

An object model for natural language document 67

tion. Domain of the class TITLE is set of words, numerals etc., while the at-
tribute Versions may point to the set of earlier versions of the same document.
The attribute Orthography carries information on which orthography norms the
NL document is organized. Speci�cally, this element may be of crucial help for
our language, in checking correctness of text input, since di�erent orthographies
assume di�erent rules for writing speci�c words. It can be also used as a source
of transcription rules for foreign names. The attribute Date contains the date of
creation of the document. The parts of class hierarchy which have roots in classes
NL-DOCUMENT and DOCUMENT-PART are connected with Contents attribute.
Each document has contents represented by objects of DOCUMENT-PART sub-
classes. For di�erent kinds of documents consist of di�erent parts (books consist
of chapters, sections consist of paragraphs, etc.), it is necessary to rede�ne this at-
tribute in NL-DOCUMENT subclasses, namely to specify the appropriate subclass
of DOCUMENT-PART NL document consists of (see examples in 4.1.1 and 4.1.2).

In this class, foundations may be given to methods necessary for NL doc-
ument processing. Among the others, there can be insert-and-save, visualization,
editing-and-changing, morphological-processing, retrieval (by di�erent attribute val-
ues), sorting (on di�erent attributes), concordance-generating, spelling-checking,
consistency-checking, synonym-generating, style-checking, statistics , and so on.
Each of the methods can be (and usually is) rede�ned in subclasses in a way
that makes it possible to save and use all the information relevant for the cor-
responding type of document. Speci�cally, function insert-and-save has to provide
for recording not only contents but also the overall structure of a document, while
visualization, has to produce, based on what has been recorded, the corresponding
string of graphical characters on a screen or printer.

A method conversion may exist, too, that would convert a document organized
in some of the text preparation systems (MS WORD, CHI, TEX, etc.) into the form
implied by the model. This is especially important having in mind existence of
signi�cant textual holdings in di�erent text and word processing systems formats.

4.1.1. Class Book. Class BOOK is a descendant of the class NL-DOCU-
MENT, so it has the following properties, in addition to the ones mentioned with
the class NL-DOCUMENT:

Contents : f�CHAPTER g
Preface: TEXT-PARAGRAPH
Epilogue: TEXT-PARAGRAPH
Appendix : TEXT-PARAGRAPH
Table-of-contents : TABLE-OF-CONTENTS
Bibliography : f� BIB-REFg
Index : f�WORDg
Cataloging : fWORDg
Title-page: fPARAGRAPH-PARTg

The domain of Contents is rede�ned in this class: a book consists of chap-
ters. Class CHAPTER structure is presented in subsection 4.2.2, while TEXT-

68 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

PARAGRAPH objects represent sets including only objects belonging to PARA-
GRAPH-PART subclasses (word, numeral, date, etc.). Objects of class CON-
TENTS are sets of Titles, which match document part titles (in this case titles of
chapters, for books consist of chapters). During the visualization, a page number
of media on which document is presenting can be added to this attribute. In addi-
tion, functions index-generating and table-of-contents-generating may be de�ned,
which may be called for only from the visualization method of this class, while the
method insert-and-save has to be rede�ned as to enable creation of objects of the
type BOOK.

Notice that objects of the type CHAPTER may be saved as standalone ob-
jects and thus may be used as constituent parts of many (di�erent) books (shared
composite reference [4]). Similar holds for bibliography, where the same objects
may be used not only as parts of objects of the type BOOK, but also as parts of
all the other objects referring to some documents.

4.1.2. Class ARTICLE. Class ARTICLE is a descendant of the class NL-
DOCUMENT, too, but it may include just the following additional attributes:

Contents : f� SECTIONg
Acknowledgment : TEXT-PARAGRAPH
Bibliography : f�BIB-REFg
Key-words : fWORDg

The set of functions may be extended by a function for table-of-contents gen-
eration, while some of the inherited parent functions would have to be rede�ned.
By specifying values for Key-words attribute (by the author or automatically | by
performing a method) we have possibility of describing document contents. Thus,
we allow to retrieve documents from database (articles, chapters, even paragraphs)
which cover matter speci�ed as condition in a user query against textual database.

4.2. Class DOCUMENT-PART. The class DOCUMENT-PART repre-
sents an (abstract) root class for the horizontal (composition) hierarchy. Except
that it represents the root class of the hierarchical, logical structure of a document,
its role is also to represent graphical information that are su�cient for presentation
of document parts on an output device. Thus, this class is to pay for visualizing
ability. Speci�c attributes of this class may be:

Font : FONT-ID
Letter-Size: INT
Code-page: CODE-ID
Position: POSITION
Language: LANGUAGE-ID.

Domains of classes FONT-ID, CODE-ID, LANGUAGE-ID have to provide for
recognition and usage of di�erent writings and code pages, as well as possibility of
using di�erent language's words in a document.

All the functions of this class predominantly support visualization and saving
information important for it, so it is necessary to implement methods for intelligent

An object model for natural language document 69

writings conversion (transliteration), changing letter size etc., as well as visualiza-
tion method, di�erent statistics, etc. It is important to point out that all the
document parts are stored in a canonical form (which may be even computer de-
pendent). Only in case of visualization, these parts are presented in accordance
with graphical features of a text, stored in the above attributes. All the processing
is done over canonical form, and speci�cities of visualization are taken care of on
the basis of the above data.

4.2.1. Class WORD. This class has to describe the basic constituent unit
of an NL document. Taking into account all the complexity of a word in Serbian
language (
ective forms, morphographemic aspects), the best solution is to have
an object of this class representing de facto a pointer to the corresponding entry
in an electronic dictionary [9], which directly provides for all the knowledge stored
about the word (i.e., about the word form appeared in the document). Information
about basic form and forms of a word that can appear are present in e-dictionary
(e.g., for nouns: kind { proper, common etc., properties { gender, number, case,
. . . ; for verbs: tense, form, mood, number, . . .). This way all the problems may be
solved concerning spelling checking, determining basic (dictionary) form of a form
occurred (e.g., for index generation),
ection problems, consistency control etc. If
the e-dictionary contains places where "problematic\ words can be hyphenated at
visualization then the problem of hyphenation would be trivial. Along with this
basic data (of pointer type), a dialect of a word may be also stored as an attribute
(e.g. Dialect: (ekav, ijekav, ikav)). This attribute indicates the dialect in which
the word is to be visualized, while keeping it stored in a form and dialect found in
the e-dictionary.

The corresponding set of methods may be easily recognized (from the fore-
going): insert-and-save, dictionary-entry, spelling-checking, forms-by-dialects, hy-
phenation,
ective-forms , etc. Each of these is called from a method implementing
the equivalent function in the context of superordinated classes in a document and
is done by consulting the e-dictionary.

Note that, besides the information mentioned, a punctuation following a word
may be stored, too, which, otherwise, could not be a separate object in a document.
"Following\ punctuation is a space, in case there is no punctuation following the
word. By this approach, it is easy to extract a sentence as a part of a logical
structure of a text. This way a notion of "sentence beginning" could be formalized
(for the purpose of capitalizing the beginning letter in visualization): a new sentence
begins at the beginning of a section, paragraph, etc. or "behind\ a word having
a nontrivial "following\ punctuation. Thus, the �rst word in a sentence does not
have to be stored, internally, with a capital �rst letter (which is convenient for
retrieving, indexing, and similar), except when it is always written that way (e.g.,
proper names).

4.2.2. Class CHAPTER. As a subclass of the basic class DOCUMENT-
PART, this class, together with information necessary for visualization, may contain
the following attributes:

70 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

Title: TITLE
Numaration: INT
Contents : f� SECTIONg
Key-words : fWORDg

There is no need for speci�c methods (except for rede�nition of existing in-
sertion and visualization methods present in the class DOCUMENT-PART). At-
tribute Key-words is of importance for retrieval of such chapters that deal with
speci�c matter speci�ed in a user query.

4.3. The object model graph. It is pointed out that two relationships exist
between classes: IS-A and IS-PART-OF. On the basis of the former it is possible to
de�ne class inheritance graph, having class names as vertices and unlabeled edges
representing IS-A hierarchy. The latter, along with structure of de�ned classes,
de�nes class composition graph. Each edge in this graph is labeled by the attribute
name that indicates IS-PART-OF relation, along with constructor that should be
used (curled braces are used to denote set-constructor, and an asterisk for pointer
to an object). For example, as class BOOK possesses attribute Contents which is
set of pointers to CHAPTER-objects, there exists an edge from BOOK vertex to
CHAPTER vertex, labeled by f� Contentsg, as indicated by a �gure:

BOOK
f�Contentsg
��������! CHAPTER

There could be several edges connecting two vertices (e.g. | BOOK and
TEXT-PARAGRAPH are connected with edges labeled as Preface, Epilogue, Ap-
pendix).

Object model graph is a superposition of the two graphs. It contains vertices
with names of the classes de�ned in the model, and two kinds of edges connecting
them: one inherited from class inheritance graph (unlabeled edges) and second
from class composition graph (labeled as explained). Formal description of object
model graph as an interpretation of object model will be given in the next section.

The �gure on the next page represents a part of object model graph (neither
all the classes, nor all the relationships between them are included).

Labels on edges that have to be labeled are replaced (only for purpose of
representing in this �gure) with numbers. The correspondences are as folows:

1 = f�Contentsg 5 = f� Indexg

2 = Title 6 = fKey-wordsg

3 = fAuthorg 7 = Title-page

4 = Abstract 8 = Cataloging

5. Formal description of the object model

In previous sections, notion of a class was used informally, and in the same
sense as a notion of a type. Further, methods indicated with each class were also
informally speci�ed.

An object model for natural language document 71

In this section, a formal description of the object model of text will be pre-
sented, together with extended class algebra as a basis for manipulative methods
of creation, retrieval, deletion and changing documents.

5.1. Types and classes. Type in the object model of text is a triple
(T; Tv; To), where T { is a type identi�er, Tv { value type, set of values, and To
{ operation type, set of operations on values from Tv. The type (T; Tv; To) will be
also written as T (Tv; To).

Type in the object model of text is de�ned by the following recursive de�nition:

Definition 1. (type) 1. Primitive type is a type whose value type Tv is a
primitive pascal type, i.e., Tv 2 finteger, real, char, boolean, scalar, subrangeg. To
is a set of de�ned arithmetic, character, boolean and comparison operations, which
includes usual operations on speci�c types.

2. Primitive type is a type;

3. If T (Tv; To); T1(Tv1 ; To1); . . . ; Tn(Tvn ; Ton) are types, then

a) STT (STTv; STTo) is a structured tuple type, over the types
T1(Tv1 ; To1); . . . ; Tn(Tvn ; Ton),

b) SST (SSTv; SSTo) is a structured set type over the type T ,

c) SPT (SPTv; SPTo) is a structured pointer type over the type T ,

if

72 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

STT , SST , SPT are type identi�ers; SST and SPT may be empty;

STTv = Tv1 �� � ��Tvn is a value type, i.e., a set of n-tuples of values
from Tv1 ; . . . ; Tvn (Ti may be, and usually is substituted for Tvi , if not empty);

SSTv = fTvg is a value type, i.e., a set of �nite, ordered sets of values
of the type Tv;

SPTv = �Tv is a value type, i.e., a set of pointers to values of the
type Tv;

STTo, SSTo, SPTo are operation types, which include speci�c opera-
tions on those structured types, i-th component (element, pointer, pointed object)
selection operation, and a composition of a selection operation and operations from
the corresponding operation type.

4. Structured type is a type;

5. Type can be constructed by application of items 2, 3. and 4. of this
de�nition only. The following restrictions hold: if type T is obtained by item 3.c)
of this de�nition, then the same item cannot be applied to it in order to obtain
a new type; if type T is obtained by item 3.b) of this de�nition, then neither the
same item nor the item 3.c) can be applied to it in order to obtain a new type.

Example 1. For the type

Word(f e-dictionary words g; f part-of-speech, form, pre�x, ending, lengthg);

according to the items 3.c), 3.b) of De�nition 1, also a type is

Index(f�Wordg; f pointer to ith word in index, ith word in index,

operations on Word applied to ith word in index,

create index, retrieve indexg).

Informally, class is an abstract set of objects with common properties. Common
properties of objects of a class are de�ned by a class declaration, and each speci�c set
of objects with those properties is an extension of the class. The same term class

will be used for both class declaration and class extension, whenever distinction
between the two is not of importance, or meaning of the term is unambiguously
clear.

Definition 2. (class) 1) Class declaration is a triple

(class id; attribute domain list; set of methods);

usually written as class id(attribute domain list; set of methods). Class id is an
identi�er of a class, attribute domain list is a list of components separated by
commas, each of which being of the form attribute name : domain, and methods
are prede�ned and user de�ned operations over objects of the class ('messages'
those objects respond to). Domain is structured out of classes in the following way:

(i) Primitive class declaration corresponds to a primitive type. Thus, if
T (Tv; To) is a primitive type, then T (T : Tv; To) is a primitive class declaration. Set
of methods of a primitive class is a set of operations of the corresponding primitive

An object model for natural language document 73

type. For example, INT (INT : fset of integersg; f+;�; �;�; <;>;=;�;�g)may
be a primitive class declaration.

(ii) Primitive class declaration is a class declaration; class associated with
an only attribute of a primitive class, and with its corresponding domain, is the
primitive class itself; type of a primitive class and of its only domain, is the corre-
sponding primitive type.

(iii) If

C1(a
1
1 : D

1
1 ; . . . ; a

1
n1

: D1
n1
;M1);

C2(a
2
1 : D

2
1 ; . . . ; a

2
n2

: D2
n2
;M2);

. . . ,

Ck(a
k
1 : D

k
1 ; . . . ; a

k
nk

: Dk
nk
;Mk)

are class declarations of classes C1; . . . ; Ck, with corresponding types T1(Tv1 ; To1),
. . . , Tk(Tvk ; Tok), respectively, then

C(a1 : D1; . . . ; ak : Dk;M)

is a class declaration, where

(a) C is a class identi�er

(b) ai; 1 � i � k are (di�erent) attribute names and Di; 1 � i � k are the
corresponding domains (of attributes ai) and

Di � Ci of type Ti, or

Di � �Ci (pointer to a class Ci) of structured pointer type �Ti,
or

Di � fCig (set over a class Ci) of structured set type fTig, or

Di � f�Cig (set of pointers to a class Ci) of structured set
pointer type f�Tig.

A class associated with an attribute ai (and the domain Di) is Ci. Type of
the class C is a structured tuple type T (Tv1 � � � � � Tvk ; To).

(c) M is a set of methods, and it is a set of operations To of the type of
the class.

2) An arbitrary set of values of the type of a class is a class extension (of that class);
an element of a class extension is an instance or an object of the class extension
(of the class).

3) If a set of attributes of a class S contains a set of attributes of a class S0, then
the class S0 is a superclass of the class S, and the class S is a subclass of the class
S0; if the class S0 has attributes a1; . . . ; an, de�ned on domains with associated
classes C1; . . . ; Cn, respectively, then each attribute ai, in the subclass S, is de�ned
either on a domain with the same associated class Ci as in the superclass (which
means, on domain C, fCg, �C or f�Cg), or on a domain whose associated class is
a subclass (direct or indirect) of the class Ci. If classes S and S0 have the same sets
of attributes, then superclass/subclass relationship has to be explicitly de�ned.

74 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

Each class has at least one superclass (assuming an empty-attribute class and
multiple inheritance) and zero or more subclasses.

Remark 1. a) Although a class declaration contains a list of methods, in
addition to a list of attributes and their domains, in what follows, this notion
will assume just class id with attribute domain list. Methods will be considered
separately.

b) In object model implementations, relationship between classes (superclasses,
subclasses, disjunctive, overlapping classes) are explicitly cited with class declara-
tions. If a class S0 is a superclass of a class S, then only speci�c (or rede�ned)
attributes of the class S are speci�ed in its declaration. For example, in decla-
ration of the class BOOK, attributes of its superclass NL-DOCUMENT are not
mentioned (they are assumed), but only speci�c and rede�ned attributes of the
class BOOK (e.g., Preface, Contents, etc.).

5.2. Methods and extended class algebra. A set of methods of a speci�c
class may contain three types of methods:

I User de�ned methods { procedures that objects of a speci�c class respond to.
They may have side e�ects. For example, such a method for a class BOOK may
be index-generating.

II Attribute methods (component-element-object selection)

Let comp ('component') be an arbitrary component in a class structure. For
example, in a structure of the class BOOK, comps are BOOK.Date, BOOK.Index,
BOOK.Indexi (i-th component of attribute Index), BOOK.�Indexi,
BOOK.Authori, but BOOK.Acknowledgement is not a comp of the class BOOK,
since Acknowledgement is an attribute of the class ARTICLE but is not an attribute
of the class BOOK. Property of being comp of a class is de�ned in a similar way
as for nested relational models ([6], [7]), although there are signi�cant di�erences
between nested relational and object models: our model consists of extended set of
type and class constructors, and it supports generalization structure, in addition
to aggregation one (presented by nested relational models).

Since the de�nition of a class is recursive, class structure (and type structure)
may be of unlimited complexity (in case of cyclic de�nitions even in�nite), so a
class component de�nition is recursive, too.

Definition 3. (comp) For the class declaration

class id(a1 : D1; . . . ; an : Dn)

(i) class id is a comp with a domain class id itself;

(ii) if C is a comp with a domain D, and D is an identi�er of a class with a
class declaration D(a01 : D

0
1; . . . ; a

0
k : D0

k), then C:a0j(1 � j � k), is a comp with a

domain D0
j ;

(iii) if C is a comp of the form (C �)C 0:c (c does not contain a dot), with a
domain fDg (D as in (ii)), then C 0:ci is a comp with the domain D; ci is element
of the attribute c;

An object model for natural language document 75

(iv) if C is a comp of the form (C �)C 0:c, with a domain �D (D as in (ii)),
then C 0: � c is a comp with the domain D; �c is then a reference of the attribute c;

(v) if C is a comp of the form (C �)C 0:c, with a domain f�Dg (D as in (ii)),
then C 0:ci; C 0:� ci; C:� c are comps with domains �D;D; and fDg, respectively; �ci

is element reference of the attribute c.

Each comp may be represented as class id:c1:c2 . . . cn (n � 1), where each ci
has the form attr name, �attr name, attr namej , or �attr namej .

Example 2. BOOK.�V ersions3:Author is a set-valued comp;

BOOK.V ersions3:Author is not a comp;

BOOK.Cataloging3is a comp.

III General manipulative methods.

In almost all the methods de�ned in an object model of text, it is necessary
to access a speci�c document, part of a document or a property of theirs. By
operations of an extension of the relational algebra, it is possible to address a
speci�c component or its property, for purposes of retrieving or further processing.
Those operations are equivalent to operations of the relational algebra [1], but they
are de�ned over a semantically richer model, i.e., on classes instead of relations.
Since the operations are common for all the classes in the model, they may be
de�ned in a metaclass of the model.

An operation is unary if it operates over a single class or a portion of a class hi-
erarchy rooted at that class (regardless of operation parameters that can be treated
as other, non-class operands). The similar holds for binary operations.

As an analogue to an operation Op of the relational algebra, in the object
model it is possible to de�ne two corresponding operations, class operation Opc,
and extended class operation Opec. First of them takes into account only classes
the operation is speci�ed for, and the second one is applied to subclasses of those
classes, too.

Definition 4. (projection) Let Ci1 ; . . .Cim be comps of the class declara-
tion (1), with domains D0

i1
; . . . ; D0

im
, respectively. Let all the comps Cij be of the

form Cij = c:cij , (have the common leading part). If a domain of a comp c is a
class D0 with a class declaration including attributes a0i1 ; . . . ; a

0
im
, and each cij is

of the form a0ij ; a
0i
ij
; �a0ij or �a

0i
ij
, then

a) class projection of the class declaration (1) over comps Ci1 ; . . . ; Cim ,
�c((1); Ci1 ; . . . ; Cim) is a class with a class declaration Pc(a

0
i1
: D0

i1
; . . . ; a0im : D0

im
);

b) applied to a class extension r with the class declaration (1), it produces a
set of projections of instances of the class extension r on attributes a0i1 ; . . . ; a

0
im

(or
the corresponding attribute references, attribute elements or attribute element ref-
erences). Those attributes may be attributes of the class with the class declaration
(1), as well as the attributes of classes which are domains of the attributes of the
class (1), i.e., attributes of their class domains, etc.;

76 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

c) if a class projection �c((1); Cii ; . . . ; Cim) is to be permanent, position of its
class declaration in a class hierarchy may be determined in the following way: �nd
the closest to the class (1), its superclass C 0 (if one exists), such that its set of
attributes is contained in the set fa0i1 ; . . . ; a

0
im
g; then new class Pc is a subclass of

the class C 0, and all the (direct) subclasses of the class C 0 become direct subclasses
of the new formed class Pc. If such a superclass does not exist, new formed class is
just a subclass of the root class OBJECT.

The operation of extended class projection, �e
c is de�ned the same way as the

class projection, except that the part b) of the de�nition now has the following form:
�e
c, applied to a class extension r with the class declaration (1), produces a set of

projections on attributes a0i1 ; . . . ; a
0
im

(or the corresponding attribute elements or
references), of instances of the class extension r and of class extensions of all of its
subclasses.

Example 3. For the class BOOK and the comps BOOK.Preface,
BOOK.�Contents1, class projection

�c(BOOK;BOOK.attributes of NL DOCUMENT; BOOK:P reface;

BOOK: � Contents1)

is a class with class declaration

Pc(attr domain list of NL-DOCUMENT; P reface : TEXT-PARAGRAPH,

Contents : CHAPTER)

(preface and the �rst chapter, including inhereted attributes). This class may be
now a superclass of the class BOOK, and a subclass of the class NL DOCUMENT.
The new class extension is a projection, on the corresponding attributes, of all
the instances of the class BOOK, but not of its subclass TEXTBOOK. The corre-
sponding extended class projection, �e

c, produces the same class declaration, but
the corresponding class extension includes, except for projection of instances of the
class BOOK, projections of instances of the class TEXTBOOK, too.

Definition 5. (restriction) Class and extended class restrictions,
restc(class declaration; condition) and restec(class declaration; condition), res-
pectively, are de�ned as follows:

For the class declaration (1), let C1; C2 be two comps, whose domains have the
same associated class, D0. Let c be a constant from a domain with the associated
class D0, and Exp an expression whose operands are comps, constants and user
de�ned methods with a value from a domain with the same associated class D0.
Let f�1; . . . ; �kg be a set of binary boolean-valued operations over the class D0,
where �1 is equality, and others may be <;�; >;�, if ordering is de�ned on the
domain D0, or other operations, e.g., contains, contains-any, leading, trailing, etc.,
over STRING class. Then condition is a boolean-valued expression of the form:
C1�iC2, C1�ic or C1�iExp.

An object model for natural language document 77

Class restriction restc((1); condition) (over a class with the class declaration
(1)) is an operation that

a) produces a class declaration

Rc(a1 : D1; . . . ; an : Dn);

b) applied to a class extension r of the class with class declaration (1), produces
a class extension r0 of the class with class declaration (2), consisting of instances of
the class extension r satisfying condition;

c) If the class Rc is to persist, its superclass is class class id with the class
declaration (1).

Extended class restriction restec((1); condition) di�ers in item b), only. Applied
to a class extension r of the class class id, it produces a class extension r0 of
the class Re

c with the class declaration (2), consisting of all the instances of the
class r satisfying condition, and all the instances, satisfying condition, of union
compatible projections of all the subclasses of the class class id. Union compatible
classes, similarly to union compatible relations, are classes with the same number
of attributes, and whose attributes, in the same order, are de�ned on the same
domains.

Remark 2. Reason for such a position of classes Rc; R
e
c , in a class hierarchy is

the fact that, although classes class id and Rc(R
e
c) have the same sets of attributes,

integrity conditions that classes have to maintain are stronger for the class Rc than
for the class class id. Integrity aspect of the object model is not a subject of this
paper.

Example 4. Let Forms(WORD) be a user de�ned method, which, for a given
word of a class WORD, generates (or reads from a dictionary), all the forms of that
word. The class restriction operation

restc(BOOK; BOOK:T itle contains anyForms('tekst'))

produces a class declaration Rc (same as for the class BOOK) and retrieves all the
books whose title contains any of the word 'tekst' forms. Notice that textbooks
with this property do not participate in the retrieval. The corresponding extended
class restriction operation, restec, retrieves all the books whose title contains any of
the word 'tekst' forms, including textbooks, but with attributes of the class BOOK
only.

Definition 6. (union) Class union, [c, and extended class union, [ec, are
operations de�ned on union compatible classes, in the following way:

Let r be a class extension with a class declaration R(a1 : D1; . . . ; an : Dn) and
s a class extension with a class declaration S(b1 : D1; . . . ; bn : Dn), where classes
R and S are union compatible. Class union, [c, and extended class union, [ec, are
operations which

a) produce a class Uc (i.e., U
e
c) with class declaration

Uc(a1 alias b1 : D1; . . . ; an alias bn : Dn)

(alias is another name for the same attribute);

78 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

b) extensions of classes Uc; U
e
c are de�ned by the following formulas:

r [c s
def
= f t j t is an instance of the class r or t is an instance of the class s g;

r [ec s
def
= f t j t is an instance of the class r or of an union compatible projection

of any of its subclasses g [f t j t is an instance of the class s

or of an union compatible projections of any of its subclasses g:

If necessary, duplicates elimination is based on identity of objects (instances),
and not on identi�ers equality [4].

c) if the class Uc (U
e
c) is to persist, position of its class declaration in a class

hierarchy is determined in the following way: the closest (to the class R) common
superclass of the classes R;S, is assigned to the class Uc(U

e
c) as its (direct) su-

perclass (if there is no other common superclass, common superclass is the class
OBJECT). Classes R;S are assigned the new class Uc as their direct superclass.

Similar considerations hold for operations of class and extended class intersec-
tion and di�erence.

Definition 7. (Cartesian product) Let r be a class extension of a class
with class declaration R(a1 : D1; . . . ; an : Dn) and s a class extension of a class
with class declaration S(b1 : D0

1; . . . ; bn : D0
m). Class Cartesian product, �c and

extended class Cartesian product, �e
c, are operations that

a) produce classes with class declarations CPc; (CP
e
c)(a1 : D1; . . . ; an : Dn; b1 :

D0
1
; . . . ; bm : D0

m);

b) extensions of classes CPc; CP
e
c are de�ned in the following way:

r �c s
def
= f t j t is an instance of the class r g � f t j t is an instance of the class s g

r�e
c

def
= f t j t is an instance of the class r or a compatible projection

of any of its subclassesg � f t j t is an instance of the class s

or a compatible projection of any of its subclasses g;

c) if a class CPc(CP
e
c) is to be permanent, then it is a direct subclass of classes

R and S.

Set of class and extended class operations is extended class algebra.

Remark 3. Class and extended class join operations, although not explicitly
de�ned in the extended class algebra, may be expressed in terms of Cartesian prod-
uct and restriction class and extended class operations. For example, expression

projc(Rc; Rc:Author);

where Rc = restc(CPc; CPc:Author = CPc:Author
0; CPc:T itle <> CPc:T itle

0),
and CPc = BOOK�c BOOK, is equivalent to joining the class BOOK with itself
on equal values of the attribute Author, restricting to di�erent titles and projecting
the result onto the attribute Author,which means, �nding sets of authors published
more than one book.

An object model for natural language document 79

Theorem 1. The set of classes is closed under the operations of the extended
class algebra.

Proof. Proof of the theorem is based on a graph theoretic interpretation of the
object model and the corresponding extended class algebra. The graph theoretic
interpretation chosen is similar to the one of [6], but extended with di�erent kinds
of type and domain constructors. Object model is represented by an object model
graph which is a superposition of two graphs: class inheritance graph and class
composition graph.

Class inheritance graph is a �nite, oriented, weakly connected graph �0 =
(A;R0), where:

1. set of vertices A is a set of class identi�ers;

2. set of edges R0 contains an oriented edge (S; S0) if and only if class S0 is a
subclass of the class S;

Class composition graph is a �nite, oriented, labeled graph �00 = (A;R00),
where:

1. set of vertices A is a set of class identi�ers;

2. set of edges R00 contains an oriented edge (S; S0), if the class S has an
attribute a with a domain S0, fS0g, �S0 or f�S0g; label of each edge is initially
empty;

3. for each class S and each of its attributes a, labels of edges exiting the
vertex S are updated in the following way:

a) if domain of a is S0, (fS0g, �S0, f�S0g), component a (fag, �a, f�ag,
respectively) is added to the label of the edge (S; S0);

b) components of a label are separated by commas.

Object model graph built up of a class inheritance graph �0 = (A;R0) and
a class composition graph �00 = (A;R00), is a �nite, oriented, weakly connected,
labeled graph � = (A;R), where

1. set of vertices A is a set of class identi�ers;

2. set of edges R is union of sets of edges R0 and R00;

3. edge labeling is the same as in the set R00; for unlabeled edges from R0,
empty label is assumed;

4. if there is an unlabeled edge (C 0; C) (on the class inheritance graph), than
for each edge (C 0; D0

i) (on the class composition graph), labeled by a; fag; �a or f�ag,
there is an edge (C;D00

i) (on the class composition graph), labeled by a; fag; �a or
f�ag (not necessarily identically as in the edge (C 0; D0

i)), where the vertex D00
i is

either D0
i or there is a path in the class inheritance graph beginning in the vertexD0

i

and ending in the vertex D00
i . If vertex D

00
i is the same as D0

i, and a corresponding
label component is the same, it can be discarded from label of the edge (C;D0

i); if
the label of the edge (C;D0

i) becomes empty, the edge itself may be discarded.

80 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

Attribute methods (comps) and operations of the extended class algebra, have
the following interpretation:

1) comps of a class class id with class declaration (1), are paths in the class
composition graph starting in vertex class id:

(i) a comp class id is the vertex class id itself; the corresponding path
ends in the same vertex class id and is of 0 length;

(ii) if C is a comp with a domain D, and D is an identi�er of a class with
a class declaration D(a01 : D

0
1; . . . ; a

0
k : D

0
k), then a comp C:a0j(1 � j � k), is a path

of the length length(C)+1, and containing all the edges of the interpretation of the
compC and an edge (D;S), whose component label is a0j ; fa

0
jg; �a

0
j , or f�a

0
jg, if

domain D0
j of the attribute a

0
j is S; fSg; �S or f�Sg, respectively;

(iii) if C is a comp of the form C 0:c, with a set structured domain fDg
(pointer structured domain �D; set pointer structured domain f�Dg), then inter-
pretation of a comp C 0:ci (C 0: � c; C 0:ci; C 0: � ci; C 0: � c, respectively) is the same as
for the comp C.

2) Operations of class and extended class projection, restriction, union, Carte-
sian product, may be interpreted by updating the object model graph in the following
way:

(i) add to the object model graph (to both class composition graph and
class inheritance graph) a vertex result class name;

(ii) add to the class composition graph (and the object model graph) edges,
appropriately labeled (according to item 1(ii) of the interpretation of comps), be-
tween the result class name vertex and the corresponding classes which are asso-
ciated with domains of attributes of the class result class name

(iii) update the class inheritance graph, (and thus the object model graph),
in the following way:

a) In case of projection, let C 0 be a class (if one exists) from the de�nition
of class and extended class projection, to be promoted into a direct superclass of
the result class Pc(P

e
c) (now generally called result class name). Delete edges

(C 0; Ci), for each direct subclass Ci of the class C 0. Add an (unlabeled) edge
(C 0; result class name); add (unlabeled) edges (result class name;Ci), for each
previous direct subclass Ci of the class C

0. If such a class C 0 does not exist, just
add an (unlabeled) edge (OBJECT, result class name).

b) In case of restriction of a class class id, add an (unlabeled) edge
(class id; result class name).

c) In case of union (of union compatible classes R and S), let C be a class
from De�nition 6. of union, to be promoted into a superclass of a result class.
Delete edges (C;R) and (C; S); add (unlabeled) edges (C; result class name) and
(result class name;R); (result class name; S). Similar holds for intersection and
set di�erence operations.

d) In case of Cartesian product (of classes R and S), add (unlabeled)
edges (R; result class name), (S; result class name).

An object model for natural language document 81

All the updating mentioned on the object model graph preserves its basic char-
acteristics of being an interpretation of an (updated) object model, including the
item 4. of interpreting superclass/subclass relationship on object model graph.
Thus, set of classes obtained retain their structural and inheritable characteristics
(in terms of De�nition 2.3) of superclasses and subclasses), which means that set
of classes is closed under the de�ned operations of the extended class algebra.

Remark 4. In case of dropping a class, except for deleting a corresponding
vertex in all the three graphs, all the edges exiting the vertex are also deleted (on
all the three graphs), and class inheritance graph (thus object model graph, too)
is rearranged in accordance with superclass/subclass de�nition (De�nition 2.3)).
Speci�cally, it means that all the direct superclasses of the class dropped become
direct superclasses of all the direct subclasses of the class dropped (with appropriate
interpretation). It further implies that, for an expression of the extended class
algebra, it is possible to retain, as a persistent class, only a result class of the
overall expression, while ignoring intermediate results (as if they had been made
permanent and then have been dropped). This way, potential explosion of classes
is controlled.

6. Advantages and de�ciencies of the object model of text

From the considerations in the previous sections, it is possible to conclude
the following advantages of the object approach and the object methodology to
document processing:

| Segmentation of logical structure: logical structure, which is very impor-
tant for sophisticated processing, is clearly re
ected through the structure of
objects constituting a document. That way, a logic of a text is also re
ected
through internal structure that a document is given in a system using the ob-
ject model, thus eliminating all the problems connected to recognition of a text
structure. By this model, even a word, as the �nest part of a logical structure,
is completely clearly representable.

| Representability of all the document layers: graphical and logical struc-
tures are treated equitably, so the model proposed equally supports both prepa-
ration for visualization and intelligent processing of a document. The model
provides for storing all the relevant information about a document. Internal
representation of a document is of no importance and has no re
ection on
semantics of operations that are to be performed.

| Extendibility of the model: using the object approach, the model is easily
extendible by new classes of documents or by adapting structure of a class to
meet speci�c needs. This comprises that the model can be extended in the
sense of specialization for a speci�c natural language, or its speci�c usage.

| Modularity of a document: document may be composed out of parts (of
an arbitrary complexity in its logical organization) that are independently
stored. It enables multi-user access to documents that are composed out of
many modules that can be independently updated and changed. Such an

82 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

approach provides for existence of di�erent versions of a document sharing
some common parts while di�erent parts are saved and updated separately.
There is no unnecessary repetition of data in a database.

| Updated internal referencing: all the objects inside internal organization
of a document reference each other by means of unique object identi�ers. In
case of changes in contents of an object, references to it are kept updated. In
visualizing a document, internal reference is mapped either into the contents of
the referenced object, or into some kind of association to it (ordinal numeral,
bibliographic reference indicator, etc.).

| E�cient retrieval of documents and document parts that contain certain in-
formation indicated in a user query (intelligent retrieval).

| Using a document as a hypertext: structure of a document described by
this model is marked up, which provides for easy realization (in visualization)
of all the aspects of a hypertextual organization and document presentation.
For example, it is su�cient for each word to provide for a pointer to an object
bound to the word, so as to gather all the information necessary for hypertex-
tual usage of the document. An object bound to a word is to be presented
in case additional explanation is needed, or the corresponding path for hy-
pertextual presentation of the document is chosen. The model is naturally
expanded for purpose of organizing and presentingmultimedia documents,
by adding recorded sound and picture as document parts. Further, methods
for visualization and presentation need to be rede�ned.

Despite all the signi�cant advantages, there are couple of de�ciencies (the
authors are aware of) of the model proposed. The �rst one concerns e�ciency.
Namely, there is a need to provide for e�cient insertion and storing documents
in accordance with the object model. Development of existing (commercial) word
processing systems indicates that even such systems will o�er and ask users to
strictly mark up structure of their documents if they wish to have their documents
used for anything more than just visualizing on a printer. Converting such marked
up representations into the model proposed would be then easily accomplished
and would present a possibility of converting existing document holdings into the
corresponding form.

Another problem concerns organization of objects in a database: segmentation
and re�nement of logical structure of a document up to the word level brings to
"explosion\ of number of identi�ers and objects. Two compromise solutions are
possible: �rst one consists in word identi�cation relative to a document, diminishing
possibilities of document modularity, while second does not consider words as "real"
objects having their own identi�ers, but identi�ers are assigned only to those words
which "demand\ for identi�ers (e.g., there are other objects referencing them).
Still, objects of the type WORD point to an e-dictionary, anyway. The second
solution implies something "larger\ granulation of logical structure (words would
not be accessible "directly" but, in larger units, e.g., paragraphs), which would
require additional processing in situations where accessing words is necessary.

An object model for natural language document 83

We believe that advantages of the model signi�cantly override de�ciencies, so
that the object model proposed is a good solution to managing NL documents.

7. Conclusion

Development of object methodology o�ers a number of advantages and is be-
coming a dominant approach in information processing in general, and especial-
ly in textual data processing. This methodology o�ers attractive possibilities for
overriding starting problems in natural language input processing. In an internal
representation of a document in a textual database, su�cient knowledge can be
recorded for processing this kind of information. The methodology o�ers a possi-
bility to use, in a very
exible way, necessary knowledge about language, stored
in a computerized form (e-dictionary, electronic orthography [5]); a possibility to
uniformly approach NL documents through a standard interface o�ering processing
functions. For the Serbian language speci�cally, this approach o�ers the possibility
of resolving a great number of problems (two-alphabets and mixed writings,
ec-
tion, dialects, nonstandardized forms, foreign words in a text, etc.), providing for
equitable usage of our language with other languages.

The object model of text developed and presented in the paper represents a
frame for consistent application of object methodology to managing natural lan-
guage documents. Structural and manipulative aspects are described and de�ned.
Integrative aspect of the model has not been considered, but is important since it
has impact even on structural part of the model. The model can be applied to
di�erent kinds of data, and especially to both documents and processing rules, for
example, morphological, syntactic, semantic rules, rules for optimization textual
queries, for accessing distributed, heterogeneous textual bases, etc.

There are several directions in which the model could be extended. One that
readily comes to mind, approved by needs of natural language document processing,
is de�nition of an union type, which may gather di�erent classes into a single
type. For example, it would be nice to be able to de�ne an attribute Title to
be a set consisting of words or numerals. Consistent extension of class de�nition,
superclass/subclass relationship and class algebra is necessary, including this and
some other features, interesting in theoretical and useful in practical senses.

REFERENCES

[1] Codd,E.F., Relational completeness of database sublanguages, in Database Systems, Courant
Computer Science Symposia, ed. Rustin,R, Prentice-Hall, Engl.Cli�s, N.J. 1971, 65{98.

[2] Deux, O., et al., The O2 System, in Communications of the ACM, Oct. 1991, 35{48.

[3] Duchene,H., et al., Vodak kernel data model, in Advances in Object-Oriented Database Sys-
tems, K.R.Dittrich (ed.), Springer-Verlag, 1989.

[4] Kim,W., Introduction to Object-Oriented Database, MIT Press, Cambridge, 1990.

[5] Nenadi�c,G., Vitas,D., Orthography as Frame for Natural Language Standardization in Com-

puting Environment, Standardization and Quality in Automated Technologies, June 1995.

[6] Paredaens,J., Gucht,D., Converting nested algebra expression into
at algebra expression, in
ACMTODS 17(1), March 1992, 65{93.

84 G. Pavlovi�c-La�zeti�c, G. Nenadi�c

[7] Roth,M.A., et al., Extended algebra and calculus for nested relational databases, in ACMTODS
13(4), Dec. 1988, 390{417.

[8] Stonebraker,M., et al., The Implementation of POSTGRES, in IEEE Transaction on Knowl-
edge and Data Engineering, March 1990.

[9] Vitas,D., Pavlovi�c-La�zeti�c,G., Krstev,C., Electronic Dictionary and Text Processing in Serbo-

Croatian, Linguistische Arbeiten, 293, Max Niemeyer Verlag, T�ubingen 1993 (1), 225{231.

(received 14.09.1995.)

Faculty of Mathematics, Studentski trg 16, Beograd, Yugoslavia

