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FLOW-ORIENTED DIFFERENCE SCHEME FOR

MULTIDIMENSIONAL CONVECTION-DIFFUSION EQUATION

Desanka Radunovi�c

Abstract. In this paper one 
ow-oriented di�erence scheme for multidimensional convec-
tion-di�usion equation is constructed and analysed. The order of the accuracy is O(�x2), except
for convection dominant case when it decreased by one. The stability depends on the di�usion
coe�cient D, and for the square grid the stability condition is D�t=�x2 � 0:25. Some examples
are presented to illustrate that the scheme is especially applicable for dominantly convection
problems and problems with not enough smooth solutions.

1. Introduction

The convection-di�usion equation is one of the fundamental equations of mi-
croelectronics. In the last several years there has been considerable e�ort aimed at
semiconductor device modelling ([1],[2]). Standard �nite-di�erence or �nite element
methods give rather poor results in modelling such problems, especially when the
convection term is dominant, because spurious oscillations appear. The equation
is o�cially parabolic, but practically hiperbolic as the di�usion term is negligi-
ble in comparison with the convection one. Thus, interior and boundary layers,
i.e. thin regions of fast variation of the solution, appear. This causes di�culties
which can hardly be surpassed by standard techniques. In [3] the necessary criteria
which a good numerical discretization scheme for the convection-di�usion equation
must satisfy are identi�ed. Various ideas were implemented to develop stable and
accurate methods for solving these problems ([3]-[6]).

In this paper one 
ow-oriented di�erence scheme for multidimensional con-
vection-di�usion equation is constructed and analysed (similar approach can be
found in [7]). The basic idea is given in Section 2 and it is applied and analysed for
multidimensional problem in Section 3. The order of the accuracy is O(�x2), except
for convection dominant case when it decreased by one. The stability criterion is
derived in Section 4. In the last section some examples are presented to illustrate
that the scheme is especially applicable for dominantly convection problems and
problems with not enough smooth solutions.
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2. Onedimensional problem

Let us begin with the onedimensional problem

d

dx
(D

du

dx
� Cu) = R; x 2 (0; 1); (1)

D, C and R generally depends on x and u, with arbitrary boundary conditions.
The problem (1) is discretised on the uniform grid

!x = fxi jxi = i�x;�x =
1

n
; i = 0; . . . ; ng:

By use of notation
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where v(x) is the approximate solution of (1), and
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2
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)

�
;

the conservative di�erence approximation of the equation (1) in the interior node
xi is

�xVi = R(xi; v(xi)): (3)

If the coe�cients D and C of the equation (1) are approximated part by part by
constants,

D(x) � Di+ 1
2
= D(xi+ 1

2
; u(xi+ 1

2
)); C(x) � Ci+ 1

2
= C(xi+ 1

2
; u(xi+ 1
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));

x 2 (xi; xi+1), the relation (2) for x 2 (xi; xi+1) can be treated as the �rst-order
di�erential equation with constant coe�cients, and its solution is

v(x) = exp
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By eliminating v(xi+ 1
2
) from (4) by use of v(xi) and v(xi+1) we can express the

term which we need for the di�erence approximation (3)
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: (5)

Here, vi = v(xi) and �i+ 1
2
= �xCi+ 1

2
=(2Di+ 1

2
) is the mesh Peclet number, which

controls the rate of mixing on the grid element. Thus from (5) and (3) the conser-
vative di�erence scheme for the equation (1) becomes
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If the coe�cients D and C are constant and R � 0, the solution of the di�erence
equation (6) vi = A+B exp(i�xC=D) (A andB are appropriate constants) agreeds
in the grid nodes with the solution of the equation (1) u(x) = A+B exp(xC=D).

For the constant coe�cients central di�erence scheme

�x(D�xv � C �xv)jx=xi
= 0; (7)

where �xv(x) =
1
2

�
v(x+ �x

2 ) + v(x� �x
2 )
�
, the solution is

vi = A+B

�
1 +

�x

2
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�i�
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�x

2

C

D

�
�i

:

Thus, it is obvious that for singularly perturbed problems (small D) the solution
is unstable if the mesh size is not small enough.

The expression (5) can be rewritten as

Vi+ 1
2
= (D �xv +D� �xv � C �xv)

���
x= 1

2
(xi+xi+1)

; (8)

where D� = D(�i+ 1
2
cth(�i+ 1

2
)�1). By comparison of the schemes (7) and (3),(8),

it is obvious that the di�usion correction D� �xv made the second scheme stable
also for the large Peclet number �, i.e. when the convection is dominant.

3. Multidimensional problem

Now, consider the multidimensional convection-di�usion equation. Direct im-
plementation of the scheme (6) to every coordinate direction do not give satisfactory
results, as a nonphysical di�usion in the direction normal to the convection, so called
"crosswind\ di�usion, produces spurious oscillations. One stable and nondissipa-
tive scheme is obtained by use in the convection direction the di�usion correction
described in the previous section.

Without lose of generality, we shall treat the twodimensional problem

Lu �
@
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D
@u

@x
� Cxu

�
+

@
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�
D
@u

@y
� Cyu

�
= R (9)

subject to boundary conditions, on the unit square. We construct the di�erence
scheme for the equation (9) on the rectangular grid

!xy = f(xi; yj) jxi = i�x; yj = j�y;�x =
1

n
;�y =

1

m
; i = 0; . . . ; n; j = 0; . . . ;mg;

To obtain the di�usion correction to the convection direction we rotate the
coordinate system (x; y) for the angle

� = arctg (Cy(xi; yj ; u(xi; yj))=Cx(xi; yj ; u(xi; yj))) ;�
�
�

�
=

�
cos � sin �

� sin � cos �

� �
x
y

�
; (10)
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for every grid node (i; j) locally. In new coordinates, assuming that the coe�cients
of the equation are constant, the equation (9) is

D

�
@2u

@�2
+
@2u

@�2

�
�

@

@�
(Cu) = R; (11)

where

C =
q
C2
x + C2

y sign(CxCy):

To apply the approximation (6) we shall rewrite (11) as
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The Laplace operator is invariant towards the rotation (10), so is
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�
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�
: (13)

Only derivatives to the � direction appear in the remaining two terms of the left
side of the equation (12), thus the second term can be approximated by the onedi-
mensional central di�erence

D
@2u

@�2
� D�2�v �

D

�L2
(vD � 2vi;j + vU ); (14)

and the last one by use of the appropriate form of the scheme (6). Approximate
values of the solution in the points D and U (�g.1.) are determined by the bilinear
interpolation from four the nearest nodes of the grid !xy:

vD = vi+p;j +
�x

�y
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;
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j tg �j >
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;

where p = sign(Cx) and q = sign(Cy).
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We replace (13), (14) and (6) (where we put vi+1 � vD ; vi�1 � vU ) into (12)
and obtain the di�erence approximation of the eq.(11) in the interior node of the
grid !xy

�v � D
�
�2xv + �2yv

�
+D (� cth(�)� 1) �2�v � C��v; (15)

where � = C�L=(2D).

For constant coe�cient case and smooth boundary conditions the consistency
of the approximation (15) follow from the expansion
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�
+O(�x2)

= const �
�x2

D
+ O(�x2) =

�
O(�x); for D = O(�x);

O(�x2); for D = O(1).
(16)

As � cth� � 1 = O(�2) = O((�L=D)2) it is clear that for singularly perturbed
problems (for small D) the order of the accuracy is decreased by one.

4. Stability of the initial-value problem

We approximate the nonstationary convection-di�usion equation

@u

@t
� Lu = R; (17)

where the operator L is de�ned in (9), by the second-order accurate approximation
(15) accomplished via the Euler forward scheme for di�erentiation in time

�tv = �v +R: (18)

We put the Fourier expansion of the discrete solution

vni;j =
X

m1;m2

�n exp({(m1 i�x+m2 j�y)); (19)

to the di�erence equation (18) and obtain that the amplifying factor is
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where � = D�t=�x2 and K = �x tg(�)=�y. Therefore, we can write

j�j
2
= f0(m1�x;m2�y) + �t f1(m1�x;m2�y) + �t2 f2(m1�x;m2�y);
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where
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��2
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f1(m1�x;m2�y) and f2(m1�x;m2�y) are bounded functions, thus the approxi-
mation (18) will be stable for jf0(m1�x;m2�y)j < 1, i.e. for

D�t �
1

2

(�x�y)2

�x2 +�y2
; (20)

or, for the square grid (�x = �y), for D �t
�x2

� 1
4 :

The convergence of the scheme (18) follows from the Lax's equivalence theorem
([8]).

5. Numerical results

Following examples illustrate stability and accuracy of the 
ow-oriented scheme
(FOS) for linear and also for nonlinear problems. For the comparison results cal-
culated by use of the central �nite di�erence scheme (CD),

�tv
n
i;j = D(�2xv

n
i;j + �2yv

n
i;j) + Cx �xv

n
i;j + Cy �yv

n
i;j ;

and the upwind scheme (UP)

�tv
n
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n
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n
i;j) +

Cx

2

�
(1� p)�xv

n
i+ 1

2
;j
+ (1 + p)�xv

n
i� 1

2
;j

�
+
Cy

2

�
(1� q)�yv

n
i;j+ 1

2

+ (1 + q)�yv
n
i;j� 1

2

�
where p = sign(Cx) and q = sign(Cy), are presented. In all examples the square
grid is used.

Example 1. The problem is de�ned on the unit square by the equation

@u

@t
= D

�
@2u

@x2
+
@2u

@y2

�
� cos(�)

@u

@x
� sin(�)

@u

@y
:
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The initial conditions are u = 1 for 0 � x � 1; 0 � y � (1� x)=4, otherwise u = 0.
The boundary conditions are de�ned by the initial one and do not change in time.

Calculations are done for grid parameters �x = �y = 0:05 and time step
�t = 0:002. The direction of the convection is determined by the choise of the
angle �. FOS scheme diverges for D = 10, that agreed with (20) (D�t=�x2 = 8),
and converges for small D. The results for � = 45� and D = 10�3 obtained by use
of FOS (�g.2), CD (�g.3.) and UP (�g.4.) schemes are given. The dissipation of
UP scheme is obvious, while CD scheme is very unstable. The nonlinear �ltering
technique proposed in [9] is applied to stabilize CD scheme (�g. 5.), but the results
obtained by FOS scheme are still much better.

Fig. 2. FOS scheme Fig. 3. CD scheme

Fig. 4. UP scheme Fig. 5. CD + �lter scheme

Example 2. The linear problem, de�ned on the unit square by the equation

@u

@t
= D

�
@2u

@x2
+
@2u

@y2

�
� w(x; t)

@u

@x
� w(y; t)

@u

@y
;
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where w(x; t) = (0:1A + 0:5B + C)=(A + B + C) and A = exp(�0:05(x � 0:5 +
4:95t)=D), B = exp(�0:25(x�0:5+0:75t)=D) and C = exp(�0:5(x�0:375)=D), is
solved for t 2 (0; 1) and D = 10�4. The initial and Dirichlet boundary conditions
are determined by the true solution u(x; y; t) = w(x; t)w(y; t).

Fig. 6. presents FOS solution of the problem for t = 0:6 calculated for param-
eters �x = �y = 0:05 and �t = 0:002. The comparison of the numerical solution
v(x; y; t) for y = 0:6 and t = 0:6 obtained for various steps �x = �y and constant
ratio �t=�x2 = 0:8 is given on �g.7. The convergence is obvious.

Fig. 6. FOS solution for t = 0:6 Fig. 7. FOS solution for y = 0:6 and t = 0:6

Example 3. The nonlinear problem, de�ned on the unit square by the equa-
tion

@u

@t
= D

�
@2u

@x2
+
@2u

@y2

�
� 3u

@u

@x
� 3(1:5� u)

@u

@y
;

is solved for t 2 (0; 1) and D = 3 � 10�4. The initial and Dirichlet boundary
conditions are determined by the true solution

u(x; y; t) =
1

4

�
3�

1

1 + exp(0:375(�x+ y � 0:75t)=D)

�
:

Fig. 8. FOS solution for t = 0:6 Fig. 9. FOS solution for y = 0:6 and t = 0:6
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Fig. 8. presents FOS solution of the problem for t = 0:6 calculated for pa-
rameters �x = �y = 0:05 and �t = 0:002. The comparison of the numerical
solution v(x; y; t) for y = 0:6 and t = 0:6 obtained for various steps �x = �y and
constant ratio �t=�x2 = 0:8 is given on �g. 9. The delay of the numerical solu-
tion irrespective of the mesh size, not perceptible for the linear problem (�g. 6.),
is obvious for this nonlinear problem. This might be caused by the low accurate
explicit di�erence scheme used for time di�erentiation.
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