SUBHARMONIC BEHAVIOUR OF SMOOTH FUNCTIONS

Miroslav Pavlović

Abstract. We prove that $|f|^p$, p > 0, behaves like a subharmonic function if f is a C^2 -function such that, for some constants K and K_0 ,

$$|\Delta f(x)| \leqslant Kr^{-1} \sup |\nabla f| + K_0 r^{-2} \sup |f|,$$

where the supremum is taken over $B_r(x) = \{z : |z - x| < r\}$. If in addition $K_0 = 0$, then $|\nabla f|^p$ has a similar property.

Throughout the paper we fix a positive integer n and denote by \mathbf{R}^n the euclidean n-space. The euclidean ball of radius r, centered at $x \in \mathbf{R}^n$, is denoted by $B_r(x)$, and the unit ball is $B = B_1(0)$. By dm we denote the Lebesgue measure in \mathbf{R}^n normalized so that m(B) = 1, hence $m(B_r(x)) = r^n$. Throughout, G will denote a *proper* subdomain of \mathbf{R}^n .

If f is a function harmonic in G, then the function $|f|^p$ for $p \ge 1$ is subharmonic in G and therefore has the sub-mean-value property over balls. If p < 1, then $|f|^p$ need not be subharmonic but, by a result of Hardy and Littlewood [4], Fefferman and Stein [3] and Kuran [6], there exists a constant $K = K(n, p) < \infty$ such that

$$|f(x)|^p \leqslant Kr^{-n} \int_{B_r(x)} |f|^p \, dm$$

whenever $B_r(x) \subset G$. As observed in [1] and [7] a slight modification of Fefferman and Stein's proof yields a more general result. To state it we define a class of functions with subharmonic behaviour.

The class $\operatorname{sh}(G)$. Let $\operatorname{sh}(G)$ denote the class of non-negative, continuous functions u on G such that, for some constant $K \ge 1$,

$$u(x) \leqslant Kr^{-n} \int_{B_r(x)} u \, dm$$

whenever $B_r(x) \subset G$.

THEOREM A. If $u \in \operatorname{sh}(G)$, then $u^p \in \operatorname{sh}(G)$ for every p > 0.

M. Pavlović

A very short proof is in [8].

In [8] we discussed some simple sufficient conditions for a C^1 -function f in order that $|f| \in \operatorname{sh}(G)$ or $|\nabla f| \in \operatorname{sh}(G)$. More precisely, $|f| \in \operatorname{sh}(G)$ if

$$|\nabla f(x)| \leqslant Kr^{-1} \sup\{ |f(z)| : z \in B_r(x) \}$$

$$\tag{1}$$

for some constant $K \ge 0$. And $|\nabla f| \in \operatorname{sh}(G)$ if

$$|\nabla f(x)| \leqslant Kr^{-1}\omega f(x,r), \tag{2}$$

where $\omega f(x, r)$ is the oscillation of f over $B_r(x)$. (In Section 2 we will state a vector variant of these results.)

In this paper we consider sufficient conditions for a C^2 -function f to satisfy (1) or (2). The main result, Theorem 2, asserts that (1) is implied by

$$|\Delta f(x)| \leqslant Kr^{-1} \sup_{B_r(x)} |\nabla f| + K_0 r^{-2} \sup_{B_r(x)} |f|,$$
(3)

while (2) is implied by $(3, K_0 = 0)$. (Here and elsewhere K, K_0, K_1, \ldots denote constants independent of $B_r(x) \subset G$.)

Condition $(3, K_0 = 0)$ is satisfied if, for instance,

- (i) f is harmonic,
- (ii) G is bounded and f is an eigenfunction of the ordinary Laplacian,
- (iii) G = B and f is an eigenfunction of the hyperbolic Laplacian.

Using Theorem 2 we prove that condition $(3, K_0 = 0)$ is satisfied if f is a polyharmonic function (Corollary 5).

1. Classes of smooth functions

For a sufficiently smooth function $f: G \to \mathbf{R}^k$ let $\partial_j f = \partial f / \partial x_j$ (j = 1, ..., n), whence $\partial_j f(x) \in \mathbf{R}^k$ for $x \in G$. The Laplacian Δ is defined by $\Delta f = \sum_{j=1}^n \partial_j (\partial_j f)$ and so $\Delta f(x) \in \mathbf{R}^k$ for $x \in G$. We use the symbol ∇f only in the case k = 1: $\nabla f = (\partial_1 f, \ldots, \partial_n f)$. Thus if k = 1, then ∇f maps G into \mathbf{R}^n . In the general case we denote by Df(x) the derivative of f at $x \in G$ treated as a linear operator from \mathbf{R}^n to \mathbf{R}^k . If f is real valued, then $\|Df(x)\| = |\nabla f(x)|, \nabla(\Delta f) = \Delta(\nabla f)$ and

$$|D(\nabla f)(x)|| \approx \{\sum_{i,j} (\partial_i \partial_j f(x))^2\}^{1/2}, \quad x \in G.$$

(We write $A(x) \simeq B(x)$, $x \in G$, to denote that A(x)/B(x) is between two positive constants independent of x.)

The class $HC^1(G)$. Let $C^1(G)$ be the class of all C^1 -functions defined in Gand with values in some \mathbf{R}^k (k is constant when f is fixed). The class $HC^1(G)$ is the subclass of $C^1(G)$ consisting of those f for which there is a constant $K \ge 0$ such that

$$\|Df(x)\| \leqslant K \sup\{ |f(z)| : z \in B_r(x) \}, \quad B_r(x) \subset G.$$

$$\tag{4}$$

Note that (4) is implied by

$$\|Df(x)\| \leqslant K|f(x)|/\delta_G(x), \qquad (\delta_G(x) = \operatorname{dist}(x, \partial G)) \tag{5}$$

which is a restriction on the growth of f and therefore is much stronger than (4). For example, if f > 0 is a real function on $G = (0, +\infty) \subset \mathbf{R}^1$, then (5) reduces to $f'(x) \leq Kf(x)/x$, which implies that $f(x)/x^K$ is decreasing and $x^K f(x)$ is increasing for x > 0.

Note also that $HC^1(0, +\infty)$ does not contain the function $f(x) = \sin x$, which is seen by choosing $x = 2s\pi$, $r = 2s\pi$ (s = 1, 2, ...).

The class $OC^1(G)$. This is the subclass of $C^1(G)$ consisting of those f such that, for some constant K,

$$\|Df(x)\| \leqslant Kr^{-1}\omega f(x,r), \quad B_r(x) \subset G,$$
(6)

where $\omega f(x,r) = \sup\{ |f(z) - f(x)| : z \in B_r(x) \}$. Clearly $OC^1(G) \subset HC^1(G)$.

It was observed in [8] that every convex (or concave) function from $C^1(G)$ belongs to $OC^1(G)$. In particular the function $f(x) = e^x$ is in $HC^1(0, +\infty)$ but f does not satisfy (5).

The class $HC^2(G)$. This class consists of those $f \in C^2(G)$ for which

$$|\Delta f(x)| \leq Kr^{-1} \sup\{ \|Df(z)\| : z \in B_r(x) \} + K_0 r^{-2} \sup\{ |f(z)| : z \in B_r(x) \}$$
(7)

for some constants K, K_0 .

The condition $|\Delta f(x)| \leq K ||Df(x)|| \delta_G(x)^{-1} + K_0 |f(x)| \delta_G(x)^{-2}$ implies (7) with the same values of K and K_0 .

The class $OC^2(G)$. It consists of those $f \in C^2(G)$ such that

$$|\Delta f(x)| \leqslant Kr^{-1} \sup\{ \|Df(z)\| : z \in B_r(x) \}$$

$$(8)$$

for some constant K. In particular, $OC^2(G)$ contains every function f for which

$$|\Delta f(x)| \leqslant K \|Df(x)\| / \delta_G(x), \quad x \in G.$$
(9)

EXAMPLE 1. Condition (8) is satisfied if f is a harmonic function on an arbitrary domain G. Let f be an eigenfunction of Δ , i.e. $\Delta f \equiv \lambda f$ for some constant λ . Assuming that $cl(rB) \subset G$, where $rB = B_r(0)$, we have

$$n\int_{\partial B}\frac{d}{dr}f(ry)\,d\sigma(y) = r^{1-n}\int_{rB}\Delta f\,dm,$$

where $d\sigma$ is the normalized surface measure on ∂B , which is a special case of Green's formula. Hence

$$r\Delta f(0) = n \int_{\partial B} \frac{d}{dr} f(ry) \, d\sigma(y) - r^{1-n} \int_{rB} (f - f(0)) \, dm$$

and hence $|\Delta f(0)| \leq nr^{-1} \sup_{rB} |\nabla f| + r|\lambda| \sup_{rB} |\nabla f|$. Applying this to the function $z \mapsto f(x+z)$ we conclude that $f \in OC^1(G)$ provided G is bounded. On the

other hand, if $f(x) = \sin x_1$, $G = \{x \in \mathbb{R}^n : x_1 > 0\}$, then $\Delta f = -f$ but f is not in $OC^2(G)$.

EXAMPLE 2. A function $f \in C^2(B)$ is said to be hyperharmonic if $\Delta_h f \equiv 0$, where

 $\Delta_h f(x) = (1 - |x|^2)^2 [\Delta f(x) + 2(n - 2)(1 - |x|^2)^{-1} x \cdot \nabla f(x)].$

 $(x \cdot y \text{ denotes the inner product in } \mathbb{R}^n$.) It is clear that a hyperharmonic function satisfies (9) with K = 2(n-2) and therefore belongs to $OC^2(B)$. More generally, every eigenfunction of Δ_h belongs to $OC^2(B)$, which can be proved by using the hyperbolic variant of Green's formula. (See [5], where a complex hyperbolic analog of (8) was considered.)

2. Results

The following theorem was proved in [8] in the case of scalar functions. The proof of the vector variant is similar and we omit it.

THEOREM 1. (a) If $f \in HC^1(G)$, then $|f| \in \operatorname{sh}(G)$. (b) If $f \in OC^1(G)$, then the function $x \mapsto ||Df(x)|$ belongs to $\operatorname{sh}(G)$.

COROLLARY 1. Let p > 0. A function f from $C^1(G)$ belongs to $HC^1(G)$ if and only if there is a constant K such that

$$|\nabla F(x)| \leqslant Kr^{-n-p} \int_{B_r(x)} |f|^p \, dm, \quad 0 < r < \delta_G(x).$$

Let $\omega_p f(x,r) = \{ r^{-n} \int_{B_r(x)} |f(z) - f(x)|^p dm(z) \}^{1/p}.$

COROLLARY 2. Let p > 0. A function f belongs to $OC^1(G)$ if and only if $|\nabla f(x)| \leq Kr^{-1}\omega_p f(x,r), 0 < r < \delta_G(x)$, for some constant K.

Proof. "If" part is trivial. Let $f \in OC^1(G)$. Then f - c is in $OC^1(G) \subset HC^1(G)$ for an arbitrary vector c. Hence, by Corollary 1,

$$||Df(x)||^p \leq K_1 r^{-n-p} \int_{B_r(x)} |f-c|^p dm.$$

As follows from [8], he constant K_1 depends only on K from (6), p and n (not on c). The desired result now follows by taking c = f(x).

The main result of this paper is the following

THEOREM 2. The following relations hold: (a) $HC^2(G) \subset HC^1(G)$ (b) $OC^2(G) \subset OC^1(G)$.

Before proving the theorem we deduce some consequences.

COROLLARY 3. A function $f \in C^2(G)$ belongs to $HC^2(G)$ if and only if there is a constant K such that $|\Delta f(x)| \leq Kr^{-2} \sup\{|f(z)| : z \in B_r(x)\}.$

Proof. "If" part is trivial. "Only if" part is a consequence of Theorem 2(a). ■

COROLLARY 4. Let p > 0. For a function $f \in C^2(G)$ the following assertions are equivalent:

- (i) There is a constant K such that $|\Delta f(x)| \leq Kr^{-2}\omega f(x,r)$.
- (ii) There is a constant K such that $|\Delta f(x)| \leq Kr^{-2}\omega_p f(x, r)$.
- (iii) There is a constant K such that $|\Delta f(x)|^p \leq Kr^{-n-p} \int_{B_r(x)} \|Df(z)\|^p dm(z)$.
- (iv) $f \in OC^2(G)$.

Proof. The implications (ii) \Rightarrow (i) \Rightarrow (iv) and (iii) \Rightarrow (iv) are trivial. The validity of implication (iv) \Rightarrow (iii) is easily derived from Theorem 2(b), Theorem 1(b) and Theorem A. That (iv) implies (ii) is deduced from Theorem 2(b) and Corollary 2.

As a further application of Theorem 2 we note a sufficient condition for a C^3 -function to be in $OC^2(G)$.

THEOREM 3. A real valued C^3 -function f belongs to $OC^2(G)$ if there are constants K_1 and K_2 such that

$$|\nabla(\Delta f)(x)| \leqslant K_1 r^{-1} \sup_{B_r(x)} \|D(\nabla f)\| + K_2 r^{-2} \sup_{B_r(x)} |\nabla f|.$$
(10)

Proof. Since $\nabla(\Delta f) = \Delta(\nabla f)$ condition (10) means that $\nabla f \in HC^2(G)$. Thus (10) implies $\nabla f \in HC^1(G)$, by Theorem 2(b), which means $||D(\nabla f)(x)|| \leq Kr^{-1} \sup_{B_r(x)} |\nabla f|$ for some constant K. Since obviously $|\Delta f| \leq \text{const} \cdot ||D(\nabla f)||$, it follows that $f \in OC^2(G)$.

COROLLARY 5. A C^4 -function $f: G \to \mathbf{R}$ belongs to $OC^2(G)$ if so does Δf . Consequently a C^{∞} -function f belongs to $OC^2(G)$ if so does $\Delta^k f$ for some integer k. In particular every polyharmonic function of finite order belongs to OC^2 . (A function f is polyharmonic if $\Delta^k f \equiv 0$ for some integer k. For information see [2].)

Proof. Let $\Delta f \in OC^2$. Then $\Delta f \in HC^1$, by Theorem 2, i.e. $|\nabla(\Delta f)(x)| \leq Kr^{-1} \sup_{B_r(x)} |\nabla f|$. Now the desired conclusion follows from Theorem 3.

REMARK 1. As noted in the proof of Theorem 3 condition (10) means $\nabla f \in HC^2$. By Corollary 3 condition (10) implies the existence of a constant K such that $|\nabla(\Delta f)(x)| \leq Kr^{-2} \sup_{B_r(x)} |\nabla f|$, which is aparently stronger than (10).

REMARK 2. It follows from the proofs of Theorem 3 and Corollary 5 that there hold the following implications:

$$\Delta f \in HC^1 \implies \nabla f \in OC^2 \implies \nabla f \in HC^1 \implies f \in OC^2.$$

M. Pavlović

3. Proof of theorem 2.

The proof is based on the following consequence of Green's formula.

LEMMA 1. If $f: B_r(x) \to \mathbf{R}^k$ is a C²-function, then

$$\|Df(x)\| \leq nr^{-1} \sup_{B_r(x)} |f| + \frac{n}{n+1} r \sup_{B_r(x)} |\Delta f|.$$
(11)

Proof. In the case k = 1 a proof is in [2] (Proposition 3.1). If k > 1, we consider the functions $u(z) = f(z) \cdot \xi$, $\xi \in \mathbf{R}^k$, then use the formula $\nabla u(x) = Df(x)^*\xi$ and choose ξ so that $|\xi| = 1$ and $|Df(x)^*\xi| = ||Df(x)^*|| = ||Df(x)||$. Then the result follows from the inequalities $|u(z)| \leq |f(z)|$ and $|\Delta u(z)| = |(\Delta f)(z) \cdot \xi| \leq |\Delta f(z)|$.

LEMMA 2. Let F_1 , F_2 and F_3 be nonnegative, continuous functions on G such that, for some constant K,

$$F_1(x)/K \leqslant r^{-1} \sup_{B_r(x)} F_2 + r \sup_{B_r(x)} F_3$$
(12)

and

$$F_3(x)/K \leqslant r^{-1} \sup_{B_r(x)} F_1 + r^{-2} \sup_{B_r(x)} F_2$$
(13)

whenever $B_r(x) \subset G$. Then there is a constant C = C(K) such that

$$F_1(x) \leqslant Cr^{-1} \sup_{B_r(x)} F_2.$$
 (14)

Proof. By translations the proof of (14) reduces to the case x = 0. Let $cl(B_{\varepsilon}(0)) \subset G$ and $F_2 \leq 1$ on $B_{\varepsilon}(0)$. (In the general case we consider the functions F_i/A , where A is chosen so that $F_2(z) \leq A$ for all $z \in B_{\varepsilon}(0)$.) Choose $x \in B_{\varepsilon}(0)$ so that $F_1(y)(\varepsilon - |y|) \leq F_1(x)(\varepsilon - |x|)$ for all $y \in B_{\varepsilon}(0)$. This implies that $F_1(y) \leq 2F_1(x)$ for $y \in B_{\delta}(x)$, where $\delta = (\varepsilon - |x|)/2$. Now we use the hypotheses to find $y \in cl(B_{\delta}(x))$ so that

$$F_1(x)/K \leq r^{-1} + (Kr/t)F_1(y) + Krt^{-2}$$

for all r, t > 0 such that $r + t = \delta$, which implies $F_1(x)/K \leq r^{-1} + (2Kr/t)F_1(x) + Krt^{-2}$. Now choose r, t so that $r + t = \delta$ and 2Kr/t = 1/2K, which implies that $r = c_1(\varepsilon - |x|), t = c_2(\varepsilon - |x|)$ for some $c_i = c_i(K)$, to obtain

$$F_1(x)/K \leq F_1(x)/2K + K_1(\varepsilon - |x|)^{-1}$$

where $K_1 = c_1^{-1} + c_1 c_2^{-2}$. Hence $F_1(0)\varepsilon \leq F_1(x)(\varepsilon - |x|) \leq 2KK_1$, and this concludes the proof.

Proof of Theorem 2. Let f satisfy (7). We may assume that $K \ge n$ and $K_0 \ge n$. Define functions

$$F_1(x) = \|Df(x)\|, \quad F_2(x) = |f(x)|, \quad F_3(x) = |\Delta f(x)|.$$

Then (12) is sastisfied because of (11), and (13) is satisfied because of (7). Hence $f \in HC^1(G)$, by Lemma 2. This proves assertion (a).

To prove (b) let $f \in OC^2(G)$. Applying (a), together with its proof, to the functions f - c we find a constant K_1 independent of x, r, c so that $||Df(x)|| \leq K_1 r^{-1} \sup_{B_r(x)} ||f - c||$. Finally we take c = f(x) to finish the proof.

REFERENCES

- P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball in Cⁿ, Rev. Mat. Iberoamericana 4 (1988), 123-153.
- [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, *Polyharmonic Functions*, Clarendon Press, Oxford 1983.
- [3] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [4] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. reine angew. Math. 167 (1931), 405-423.
- [5] M. Jevtić and M. Pavlović, M-Besov p-classes and Hankel operators in the Bergman space on the unit ball, Arch. Math. 61 (1993), 367-376.
- [6] U. Kuran, Subharmonic behaviour of $|h|^p$ (p > 0, h harmonic), J. London Math. Soc. 8 (1974), 529–538.
- [7] M. Pavlović, Mean values of harmonic conjugates in the unit disc, Complex Variables 10 (1988), 53-65.
- [8] M. Pavlović, On subharmonic behaviour and oscillation of functions on balls in Rⁿ, Publ. Inst. Math. (N.S.) 55(69) (1994), 18-22.

(received 14.09.1995.)

Faculty of Mathematics, P.O.B. 550, 11000 Beograd, Yugoslavia