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HYPERBOLIC REALIZATIONS OF TILINGS BY ZHUK SIMPLICES

Milica Stojanovi�c

Abstract. One possibility to classify hyperbolic sapce groups is to look for their fundamental
domains. For simplicial domains are combinatorialy classi�ed face pairing identi�cations, but
the space of realization is not known. In this paper two series of fundamental simplices are
investigated, which have three equivalence classes for edges and two for vertices. Three edges
in the �rst class belong to the same face and vertices of that face are in the same class. Those
simplices are hyperbolic, mainly with outer vertices. If so, then truncated simplex tilings are also
investigated and classi�ed with their metric data and other conditions.

1. Introduction

Hyperbolic space groups are isometry groups, acting discontinuously on the
hyperbolic 3-space with compact fundamental domain. In aim of classifying them
one may look for their fundamental domains. Face pairing identi�cations of a given
polyhedron give us generators and relations for a space group by Poincar�e theorem
[1], [2], [5].

The simplest fundamental domains are simplices and truncated simplices by
polar planes of vertices when they lie out of the absolute. There are 64 combina-
torially di�erent face pairings of fundamental simplices [12], [13], [8], furthermore
35 solid transitive non-fundamental simplex identi�cations [8]. I. K. Zhuk [12],
[13] has classi�ed Euclidean and hyperbolic fundamental simplices of �nite vol-
ume up to congruence. Some completing cases are discussed in [4], [7], [10], [11].
Algorithmic procedure is given by E. Moln�ar and I. Prok [7]. In [8] and [9] the
authors summarize all these results, arranging identi�ed simplices into 32 families.
Each of them is characterized by the so-called maximal series of simplex tilings.
Besides spherical, Euclidean, hyperbolic realizations there exist also other metric
realizations in 3-dimensional simply connected homogeneous Riemannian spaces,
moreover, metrically non-realizable topological simplex tilings occur as well.

Two simplices, investigated in this paper, were described and considered in spe-
cial cases with other methods for �rst time by I. K. Zhuk [12], [13]. They have three
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equivalence classes for edges: afA0A1g, bfA1A2; A1A3g, cfA0A2; A2A3; A3A0g and
two for vertices: fA1g resp. fA0; A2; A3g (Fig. 1.a, 2.a).

Sum of dihedral angles around edges in the same equivalence class is always of
the form �=�. That is the reason we have three parameters a, b and c. I. K. Zhuk
obtained in [12], [13] only values of parameters for which simplices are either spher-
ical of hyperbolic with �nite vertices. E. Moln�ar, I. Prok and J. Szirmai have

extended these results in [9] for some parameters, to the Nil and ŜL2R geometries
(see also [6]). Some cases of simplices in hyperbolic space with vertices out of ab-
solute, are also mentioned in [10], [11]. In this paper we have classi�ed all cases of
these simplices which are realizable in spaces of constant curvature including hy-
perbolic simplices with vertices which are not �nite. With previous investigations
this provides complete result for all values of parameters.

When vertices are out of the absolute, the simplex is not compact and then
we truncate it with polar planes of the vertices. The new compact polyhedron
obtained in that way is fundamental domain of some larger group. It has new
triangular faces whose pairing gives new generators. Dihedral angles around new
edges are �=2. That means there are four congruent polyhedra around them in the
fundamental space �lling.

The geometrical results of this paper will be given in section 4 and the metrical
ones in section 5 in Theorems 2 and 3.

I started with investigations in this �eld during my studies in Budapest, under
supervision of Prof. Emil Moln�ar.

2. Projective metrics, spherical and hyperbolic spaces

The projective 3-space P 3 can be introduced in the usual way by the 4-
dimensional real vector space V 4 and its dual space V�

4 of linear forms. Then
the 1-dimensional subspaces of V 4 (or the 3-subspaces of V�

4 ) represent the points
of P 3, the 1-subspaces of V�

4 (or the 3-subspaces of V 4) represent the planes of P 3

and 2-subspaces of V 4 (or of V�

4 ) represent the straight lines of P
3. The point X(x)

and the plane �(a) are incident i� xa = 0, (x 2 V 4 n f0g, a 2 V�

4 n f0g). If feig is a
basis in V 4 and fejg is its dual basis in V�

4 , i.e. eie
j = �ji (the Kronecker symbol),

then the form a = ejaj takes the value xa = xiai on the vector x = xiei. We use
the summation convention for the same upper and lower indices.

We can take basis fbig in V�

4 in such a way to represent planes containing
simplex faces opposite to the vertices Ai, respectively. Projective metric in P 3 can
be introduced by giving a bilinear form

h ; i : V�

4 � V�

4 ! R; hbiui; bjvji = uib
ijvj ;

where (hbi; bji) = (bij) is a Schl�ai matrix. Vectors aj of the dual basis fajg in V 4,
de�ned by ajb

i = �ij represent the vertices Aj of the same simplex. The induced
bilinear form

h ; i : V 4 � V 4 ! R; hxiai; yjaji = xiaijy
j

is de�ned by the matrix (hai; aji) = aij inverse to (bij).
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We assume that the bilinear form h ; i by (bij) has either signature (+;+;+;�)
which characterizes the hyperbolic metric, or (+;+;+;+), this will be the el-
liptic (spherical) metric. Euclidean geometry would be described by signature
(+;+;+; 0), that will not occur in our considerations.

It is well-known that the bilinear form induces the distance and the angle
measure of the 3-space. Let X(x) and Y (y) be two points in the projective space
P 3. Then their distance d(x; y) is determined by

cos(d(x; y)) =
hx; yiphx;xihy; yi and ch(d(x; y)) = � hx; yiphx;xihy; yi (1)

for elliptic and hyperbolic case, respectively.

The next lemma will be used in section 5.

Lemma 1. For any (r + 1)-minor determinant of a regular matrix (aij) and
complementary (n� r)-minor of its inverse (bij) the following equality holds0

B@
ai0j0 . . . ai0jr
...

...
airj0 . . . airjr

1
CA = det(aij)

0
@ bir+1jr+1 . . . bir+1jn

...
...

binjr+1 . . . binjn

1
A �:

Here � = sign(i0; . . . ; ir; ir+1; . . . ; in)�sign(j0; . . . ; jr; jr+1; . . . ; jn) denotes the sign
product of the corresponding permutations of the elements 0; 1; . . . ; n.

3. Construction of discontinuously acting isometry groups

Identi�cations on the simplex T are face pairings by isometries, satisfying the
following conditions

a) For each face fg�1 of T there is another face fg and an identifying isometry
g of the space S3(H3), which maps fg�1 onto fg and T onto T g � T , the neighbor
of T along fg.

b) The isometry g�1 maps the face fg onto fg�1 and T onto T g�1 , joining the
simplex T along fg�1 .

The face pairing identi�cations of T generate an isometry group G.

These generators induce subdivision of the edges into oriented segments
such that a segment does not contain two equivalent points in its interior. An
equivalence class consisting of edge segments e1; e2; . . . ; er with dihedral angles
"(e1); "(e2); . . . ; "(er), respectively, is de�ned by the following algorithm

(e1; fg�1
1

)
g1! (e2; fg1); (e2; fg�1

2

)
g2! (e3; fg2); . . . ; (er; fg�1

r

)
gr! (e1; fgr ) (2)

where the symbols are not necessarily distinct.

In other words the segment e1 is successively surrounded by simplices

T ; T g�1
1 ; T g�1

2
g�1
1 ; . . . ; T g�1

r
���g�1

2
g�1
1
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which �ll an angular region of measure 2�=�. If plane reection mi = gi occurs
then each edge segment comes two times in (2) and so

"(e1) + � � �+ "(er) = �=�; (3)

otherwise
"(e1) + � � �+ "(er) = 2�=�: (4)

The cycle transformation c = g1g2 � � � gr belonging to the edge segment class
feig is a rotation, say, of order �. Thus we have the cycle relation

(g1g2 � � � gr)� = 1 (5)

in the second case and an analogous in the �rst case.

c) Assume that (3) or (4) holds for the dihedral angles at fe1g in each segment
equivalence class.

We need the speci�ed Poincar�e theorem:

Theorem 1. Let T be a simplex, or a truncated simplex in a space S3 of con-
stant curvature and G be the group generated by the face identi�cations, satisfying
conditions a){c). Then G is discontinuously acting group on S3, T is a fundamen-
tal domain for G and the cycle relations of type (5) for every equivalence class of
edge segments form a complete set of relations for G, if we also add the relations
g2i = 1 to the occasional involutive generators gi = g�1i .

4. Zhuk simplices and their isometry groups

a) Isometries which identify faces of simplex T1 (Fig. 1. a) are

r1 :

�
A1 A2 A3

A1 A3 A2

�
; r2 :

�
A0 A2 A3

A3 A2 A0

�
; r :

�
A0 A1 A2

A0 A1 A3

�
:

By notations in [8], [9] it is representing simplices from Family 30 with groups of
simplex tilings �39(a; 2b; 6c). In the �rst edge equivalence class denoted by a is
the edge A0A1, in the class b are the edges A1A2 and A1A3, and in the class c
lie A0A2, A0A3 and A2A3. The face pairing isometries divide edges in class c into
two equivalent oriented segments. Vertices A0, A2 and A3 are in one and A1 is in
another equivalence class of vertices. Relations for the isometry group are obtained
by Theorem 1 and the presentation is

G(T1; a; b; c) = (r1; r2; r � (r)a = (rr1)
b = (r1r2rr2r

�1r2)
c

= r21 = r22 = 1; a � 3; b � 2; c � 1):

Considering vertex �gures on a 2-dimensional surface around the vertices, we
can obtain a fundamental domain for the stabilizer group GA1

of vertex A1 and
e.g. GA3

of vertex A3. Transformation r1 is mapping vertex �gure TA3
onto T r1

A2

and r2 is mapping TA3
onto T r2

A0
. That means that TA3

and T r1
A2

have a joint
edge corresponding to the joint face fr1 of the simplices T1 and T r1

1 and similarly,
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Fig. 1

TA3
and T r2

A0
have a joint edge corresponding to fr2 . One of the domains for GA3

(Fig. 1.b) is

PA3
:= T r1

A2
[ TA3

[ T r2
A0
:

In the diagram for PA3
and PA1

the minus sign in notations a�, b� and c�

means that edges in these classes are directed to vertices according to vertex �gure
(plus means opposite direction).

When parameters a; b; c are such that simplex T1 is hyperbolic and that the
vertices either in the �rst or in the second equivalence class are out of the absolute,
it is possible to truncate the simplex by polar planes of the vertices. Then we get
a compact polyhedron denoted by O1. If we equip O1 with additional face pairing
isometries, it will be a fundamental domain for the group G(O1; a; b) which will be
a supergroup for G(T1; a; b). Trivial group extension with plane reections in polar
planes of the outer vertices is always possible. In the case of vertices A0; A2; A3 the
new relations, which are necessary to add to group G(T1; a; b) to obtain supergroup
in this way, are (Fig. 1.c)

m2r1m3r1 = (m2r2)
2 = m0r2m3r2 = m2rm3r

�1 = m0rm0r
�1

= m2
0 = m2

2 = m2
3 = 1

where mi is plane reection corresponding to the vertex Ai. There are no more
possibilities for face pairing isometries for this equivalence class (see [4] and [10]).
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Fig. 2

For vertex A1 these relations with trivial extension are (Fig. 1.d)

(m1r1)
2 = m1rm1r

�1 = m2
1 = 1:

For A1 it is also possible to equip the new triangular face with half-turn r3 and
then the new relations are (Fig. 1.e)

(r1r3)
2 = (rr3)

2 = r23 = 1:

If a 6= 2b then T1 and O1 are maximal (without further symmetries) (see [8],
[9]).

b) Notations for simplex T2 and its isometry group in [8], [9] are Family 26
and �29(a; 4b; 12c), respectively. Face pairing isometries of T2 (Fig. 2.a) are

m :

�
A1 A2 A3

A1 A2 A3

�
; r1 :

�
A0 A2 A3

A3 A2 A0

�
; r :

�
A0 A1 A2

A0 A1 A3

�
:

Division of edges and vertices into equivalence classes is similar as for simplex T1
and the isometry group has the presentation

G(T2; a; b; c) = (m; r1; r � (r)a = (rmr�1m)b1 = (r1rr1r
�1r1mr1rr1r

�1r1m)c1

= r21 = m2 = 1; a � 3; b1 � 1; c1 � 1):

For 2b1 = b and 2c1 = c simplex T2 has the same metrical properties as the simplex
T1 with even b and c.
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Fundamental domain for the stabilizer group GA3
of vertex A3, say, contains

vertex �gure around that vertex. Since r1 is mapping vertex �gure TA3
onto T r1

A0

and r�1 is mapping TA3
onto T r�1

A2
, one domain of GA3

(Fig. 2.b) is

PA3
:= T r1

A0
[ TA3

[ T r�1

A2
:

If simplex T2 is hyperbolic with vertices outside of absolute, we have analogous
cases as at T1. For outer A0; A2; A3 we consider the polar planes and corresponding
plane reections m0;m2;m3 (Fig. 2.c). We get the new relations

(m2m)2 = (m3m)2 = m0r1m3r1 = (m2r1)
2 = m2rm3r

�1 = m0rm0r
�1

= m2
0 = m2

2 = m2
3 = 1:

For outer A1 we have two possibilities to equip the polar planes with identi�-
cation either with plane reection m1 (Fig. 2.d) to get new relations

(m1m)2 = m1rm1r
�1 = m2

1 = 1;

or with half-turn r2 (Fig. 2.e) and new relations

(r2m)2 = (rr2)
2 = r22 = 1:

The groups of tessellations with T2 and O2 are maximal, if a 6= 4b.

5. Realization of Zhuk simplices in spaces of constant curvature

Schl�ai matrix for simplices T1 and T2 are the same

B = (bij) =

2
64
1 r s s
r 1 q q
s q 1 p
s q p 1

3
75 ; (6)

where p = � cos 2�=a, q = � cos , r = � cos(�=c � 2), s = � cos�=b, with the
natural parameters a � 3, b � 2, c � 1 and 0 <  < �=2c. In agreement with
mentioned in sect. 4 for simplex T2 parameters b and c can take only even values
(2b1 = b; 2c1 = c), thus we deal with simplex T1 that is more general.

Symmetries of simplex T1 are giving us a necessary condition d(A0; A2) =
d(A2; A3). Using the inverse matrix (aij) in (1) we can express any side length (or
its function) by the angles, so

a202
a00a22

=
a223

a22a33
or

a00a22 � a202
a00a22

=
a22a33 � a223

a22a33
:

Applying our lemma, we get

a33(b11b33 � b213) = a00(b00b11 � b201)

and with notations as in (6),
f() = 0 (7)

for f() = (1� p)(1+ p� 2q2)(1� r2)� (1� q2 � r2 � s2 +2rsq)(1� q2). Angle 
can take its values from interval (0; �=2c).
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Lemma 2. Equation (7) has unique solution for (a; b; c), except a � 6, b = 2,
c = 1. These cases are discussed in [6] and [9].

Proof. A) Note that it holds f(0) < 0 and f(�=2c) > 0 for c � 2 and all values
of parameters a and b. It is possible to prove that then f 0() > 0. So, for c � 2,
(7) has the unique solution.

B) If c = 1 then r = 2q2 � 1 and f() = (1� q2)f1() where

f1() = �4q4(1� 2p)� 4q3s+ q2(1� 4p2) + 2qs+ s2:

Since 1� q2 > 0 (except for q2 = 1 i.e. for  = 0) we may consider f1() instead of
f().

a) In the case b = 2 it is f1() � 0 for a = 3 and f1() = 0 , q2 = 1+2p
4

for
a � 4. In the �rst case (a; b; c) = (3; 2; 1), we get spherical simplex with dihedral
angles �=2 and �=4 at edges A2A3 and A0A2 (A0A3), respectively. Second case is
true only for a = 4 and a = 5.

b) If b � 3 and a = 3 then f1(0) < 0, f1(�=2) > 0 and f 01() = 2q0s(1 �
6q2) where q0 = sin . Since f 01() changes sign only for q = �1=p6 (i.e.  =

arccos(1=
p
6)), the equation f1() = 0 holds and so (7) has unique solution (with

 2 (0; arccos(1=
p
6)).

c) For b � 3 and a � 4 again f1(0) < 0, f1(�=2) > 0, and f 01() = 2q0f2(),
with f2() = q(1 � 2p)(1 + 2p � 8q2) + s(1 � 6q2). Since 2q0 > 0, sign of f 01() is
the same as of f2(). Function f2() changes sign: f2(0) > 0, f2(�=2) < 0 and

f 02() = q0(�24q2(1� 2p)� 12qs+ 1� 4p2):

It is possible to check that f 02() < 0 for a � 6 (since q < 0) and f 02() changes sign
only for a = 4 and a = 5. So, (similarly as in b)) f2() (i.e. f

0

1()) changes sign
only once. That means that (7) has the unique solution.

Theorem 2. Simplex T1 is spherical when (a; b; c) takes (3; 2; 1), (4; 2; 1),
(5; 2; 1), (3; 3; 1). Simplex is hyperbolic for (a; b; 1), a � 3, b � 3 except (3; 3; 1),
and for (a; b; c), a � 3, b � 2, c � 2. Simplex T2 is hyperbolic for all parameters.

Remark. In [8], [9] it is proved that simplex tiling by T1 is realizable in Nil
space for (6; 2; 1) and for (a; 2; 1), a � 7 in the universal covering space of SL2(R).

Proof. Signature ofB in (6), obtained by �nding the eigenvalues, is (+;+;+;�),
(+;+;+; 0) or (+;+;+;+) whenever necessary condition is satis�ed. Then we have
simplex in hyperbolic, Euclidean or spherical space, respectively. The last critical
sign is also possible to get as the sign of detB. In our case detB = (1� p)Q, with
Q = (1 + p)(1 � r2) + 4qrs � 2(q2 + s2). Since 1 � p > 0 it is enough to consider
sign of Q.

A) For c � 2, q2, r2 are in interval (1=2; 1) and p � 1=2, s � 0 hold. Then
Q < O, so these are hyperbolic cases.

B) a) If c = 1 and b = 2 then q2 = 1+2p

4
(for a 2 f3; 4; 5g) and so Q =

q2(�2p2 + p+ 1) > 0. These are spherical cases.
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b) If c = 1, b � 3 and a � 4 it is easy to prove that Q < 0, so we have
hyperbolic cases.

c) For c = 1, a = 3 and b � 3 it is Q = �2f1()+2q2(2�3q2) (f1() is de�ned
in Lemma 2.). According to Lemma 2, f1() = 0 has to be satis�ed. Thus, sign

of Q depends on sign of 2 � 3q2. Since f1(arccos
p
2=3) is positive for a = 3 and

negative for a � 4, we have spherical and hyperbolic simplex, respectively.

Since parameters b = 2b1, c = 2c1 for simplex T2 are even, then case B never
appears thus T2 is always hyperbolic.

For hyperbolic simplices it is interesting to investigate the cases when the
vertices are proper, or they lie on the absolute or out of the absolute. Therefore,
we need any submatrix Bii of B in (6), corresponding to the vertex Ai, which we
obtain by excluding i-th row and i-th column. Since vertices A0, A2 and A3 are in
the same equivalence class it is enough to consider only B00 for vertex A0 and B11

for A1.

Equivalently, as a 2-dimensional situation, we obtain well known simpler cri-
teria in

Theorem 3. a) The vertex A1 is proper (>), lies on the absolute (=) or out
of it (<) if

1

a
+

1

b
+

1

c
T 1

2
:

b) The vertices A0; A2; A3 are proper (>), they are on the absolute (=) or out
of it (<) if

1

a
+

1

b
+

1

c
T 3

2
:

We see that A0; A2; A3 are outer vertices for any c � 2, since a � 3, b � 2 hold
by our starting assumption.
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