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BOUNDEDLY LIPSCHITZIAN AND STRONGLY MONOTONE
MAPPINGS

Nguyen Buong and Nguyen Gia Dang

Abstract. In this paper, for solving a variational inequality problem governed by a
boundedly Lipschitzian and strongly monotone mapping over the set of common fixed points
of a sufficiently large finite family of nonexpansive mappings on Hilbert spaces, we propose
a new strongly convergent self-adaptive hybrid steepest-descent block-iterative scheme. The
strong convergence of any sequence, generated by this scheme, is proved under weaker con-
ditions on iterative parameters without any additional assumption on the family of fixed
point sets as well as the dimension of the spaces. An application to networked systems and a
convex optimization problem over the intersection of a finite family of closed convex subsets
with numerical experiments are given for illustration.

1. Introduction

Let H be a Hilbert space equipped with the inner product (.,.) and with the corre-
sponding norm ||.||. Let C and F be a closed convex subset and a mapping in H,
respectively. The variational inequality problem, considered in this paper, is formu-
lated as finding a point

px € C such that (Fp.,p. —p) <0 Vp e C. (1)

The variational inequality problem with a closed convex subset C and an operator
F in a Hilbert space H has been firstly introduced and investigated in [7,14]. A
fundamental method to solve (1), when F' is [-Lipschitzian and 7-strongly monotone,
is the projected gradient iterative method

2F T = Po(I — pp F)x®, (2)
introduced by Goldstein [6], where Pc is the metric projection from H onto C, I

is the identity of H, ux = u, a constant in (0,2n/1?), and the starting point z°
is any point in C. Since then, two basic directions to develop method (2) were
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2 Iterative schemes for variational inequalitiess

attracted a great number of mathematicians. In the first direction, one tried to relax
the Lipschitzian and monotone properties of F' and to choose i at each iteration
step without knowledge of the values n and I. He et al. [9] suggested a self-adaptive
choice in their method as follows. Choose g € C and set k := 1. Calculate x; by
x1 = Po(xg — Fag). If 1 = x¢ then z¢ is a solution. If it is not the case, the value
pr in (2) is chosen by uy = n/L3 where ng and Ly, are defined, respectively, by the
following rules:

: (FPrp—Fxi_1,05—2k—1) (Frpx—Fzo,xx—x0) :
Wi e T S T Tmewlr [ 2R # 20
Nk = (Fep—F >
: L= Tp—1,Tk—Tk—1 .
ming Ng—1, Ton—ar1l? }, otherwise
|Fes—Fagp_1| [|Fz*—Faol .
maxy Li—1, o= T Terwoll (0 U Tk 7 To
and L, =
|Fay—Fxi_1]| .
maxq Li—1, =2 otherwise,

where 19 = (Fa1 — Fxo, 21 — x0)/||z1 — x0||? and Lo = ||Fx1 — Fxol|/||z1 — x0]|. Some
related results in this direction has been given in [5,8,13] where the Lipschitzian and
monotone properties of F' are replaced by the weaker ones such as non-Lipschitzian,
boundedly Lipschitzian and pseudo-monotone. The second direction concerns the
closed form expression of Pg, that unfortunately is not always known, and the choice
of uy in independence on [ and 7. The first result in this direction has been belonged
to Yamada [18]. By replacing Pc by T', a nonexpansive mapping on H, he introduced
the hybrid steepest-descent method,

" = (I — tyuF)Ta®, k>0, (3)

and proved the strong convergence of a sequence {z*}, generated by (3), to a point
in Fix (T), the fixed point set of T, with the same p € (0,2n/1?) under the following
two conditions:

(t) tr € (0,1) for all &k > 1, limg 00t = 0, Zkzo tr, = oo and

(t/) E:O:O ‘tk — tk.i,_l‘ < +o00 or hmk‘—mo(tk/tk—i-l) =1.

Several results, related with method (3) in the case that C' is the either intersection
of fixed point sets of nonexpansive mappings or set of common zeros of a finite family
of nonlinear mappings of monotone-type, were given in [2,3]. Buong et al. [2], for
solving the accretive variational inequality problem (F'p,, j(p. —p)) < 0, an extension
of (1) to Banach spaces, where j is the normall duality mapping of a Banach spaces
FE, F is an n-strongly accretive and 7y-strictly pseudocontractive mapping on E with
N+~ > 1, and C is the intersection of an infinite family of nonexpancive mappings
T; on E, studied the iterative method

" = (I =t P)T*a2", T" = (1= Bp)I + BW*((1 — )T + xW¥), k>1,
t), satisfies condition (t), By € [a,b] C (0,1),ap € [0,a] with @ < 1, and W* is a
combination of T; with i = 1, ..., k. Meantime, for finding a solution of the accretive
variational inequality when C' is the set of common zeros of a family of m-accretive
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mappings 4; on E with ¢ =1,..., N, Buong et al. [3] introduced the iterative method
2 = (1 — ) (I — tp F)a® + v Pea® + ef, 2t e B, k>1,

where the parameters

(a) tx satisfies condition (¢);

(b) ~yk satisfies a condition 0 < liminfy_, o B < limsup,_, ., Bk < 1;
() ri >e>0foralli=1,2,...,N;
(d) either Y77, [le¥| < oo or limy_g [|€¥||/tx = O;

and Pp= JAY TN T T = (T4 Ay
kT Tk Tk

Up to now, there are a few works [10,11], where one combined the two basic directions.
Recently, when C' is the fixed point set of a nonexpansive mapping 7" and F' is bound-
edly Lipschitzian and 7-strongly monotone, He et al. [11] proposed a self-adaptive

hybrid steepest-descent method,

oF T = T(I — tpup F)z®, k> 1, (4)
where py, is selected through a self-adaptive way: py, = /L% with ny, and Ly defined,
respectively, by

. Fxp—FT* Yooz, —T" 'a : k—1
e = {mln{nkl, (Fzp 0: Tk °>}, if g T g
e =

lzk—T*= ol
Nie—1, otherwise,
Fa,—FT* 1z . 1
maX{Lkl, I"Ol}, if oy, # TF 1

lzp =Tk Laol|

and Ly =
Ly 1, otherwise,

for arbitrary two initial points z¢ and x; such that x; # zo. They proved a strong

convergence result with two conditions (t) and (¢').

Let L = {1,...,m}. When m is sufficiently large, for finding a point p € C' =
NierCs, where C; is a closed convex subset in H, Butnariu and Censor [4] proved the
strong convergence of the almost simultaneous block-iterative projection scheme

ot = 2F 4 oy (TF2F — 2F), TV = waPCi, (5)
icL
where «y, is a relaxation parameter, satisfying 0 < a < o < @ < 2, wf > 0 with
D iel wk = 1, if one of the following conditions conditions are satisfied:
(¢1) there exists 79 € L such that C;, N Int[N;;, C;i] # 0;

(c2) all, except for possibly one of the sets C;, are uniformly convex;
(c3) each C; is a halfspace;
(cq) at least one set C; is boundedly compact;

(c5) H is finite-dimensional.
In this paper, we consider problem (1) with C' = N;cC; # 0 and the set C; = Fix (T3),
where T; is a nonexpansive mapping on H and the number of T;, m, is sufficiently
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large. Based on methods (2)-(5), we propose a new self-adaptive hybrid steepest-
descent iterative scheme for solving (1) when F' is boundedly Lipschitzian and n-
strongly monotone. The strong convergence of our scheme is proved without any
condition on C; = Fix (7T;) from (c1)-(c5) and (¢') above. Moreover, our choice of
g is different from that in (4). Note that in this situation, problem (1) possesses a
unique solution p, (see [8]).

The rest of this paper is organized as follows. In Section 2, we list some terminolo-
gies, using in this paper, and related facts, that will be used in the proof of our results.
In Section 3, we prove a strongly convergent theorem for the introduced scheme. Ap-
plications to some networked systems and a convex optimization problem over the
intersection of a finite family of closed convex subsets with numerical experiments are
given for illustration.

2. Preliminaries

It is well known that in any real Hilbert space H, we have

lz +yl* < ll=]1* + 2{y, = + )

laz + (1 — a)yll? = afla|* + (1 — @)y = a(l — o)l — yII%.
for any x,y € H and « € [0,1]. An operator T in H is called

e nonexpansive if ||Tx — Ty|| < allx — y|| for all z,y € D(T), the domain of T, with
a =1 and a contraction if a € [0,1).

o [-Lipschitzian and n-strongly monotone, if it satisfies, respectively, the conditions
[Tz —Ty|| <lllx —y[| and (Tz — Ty, —y) > nlla — y||* with { > 7 > 0.

e boundedly Lipschitzian on D(T) if it is Lipschitzian on each bounded subset of
D(T); namely, for each bounded non-empty subset B of D(T'), there exists a positive

constant {? depending only on the set B such that | Tz — Ty|| < IZ||x — y]| for all
x,y € B.

e demiclosed if for any sequence {z*¥} C H the following implication holds
(z"converges weakly to z and ||(T — I)z"|| = 0) = = € Fix(T),
where Fix (T) ={p€ H : p=Tp}.

LEMMA 2.1 ([18]). Let H be a real Hilbert space and let F be an l-Lipschitz continuous
and n-strongly monotone mapping in H with some positive constants | > n > 0. Let
TH =1 —puF and let TH* = I —tuF. Then, for a fivred number u € (0,2n/12) and any
t€(0,1), I —uF and I —tuF are all contractions with coefficients 1 — 1 and 1 —t,
respectively, where T = (1/2)u(2n — pl?).

LEMMA 2.2 ([17]). Let {ar}, {br} and {cr} be sequences of real numbers such that,
for all k >0, agyr1 < (1 — by)ag + bpck; ax > 0; by satisfies a condition of type (t);
and either Z;ozl bi|ck| < oo orlimsupy_, . ¢k < 0. Then, we have limy_,scar, = 0.
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LEMMA 2.3 ([15]). Let {ar} be a sequence of real numbers with a subsequence {ny} of
{k} such that an, < an,+1. Then, there exists a non-decreasing sequence {my} C {k}
such that my, — 00, am, < am,+1 and ag < am, 41 for all (sufficiently large) numbers
k> 0. In fact, mp = max{n < k:a; < apy1}.

3. Main results

Our iterative scheme is constructed as follows.
Step 1 Let 2%, 2! be any two points in H such that ! # 20 and let s be any fixed
positive integer. Set k := 1.

Step 2 For t = 1,2,---,s, let L®! be a non-empty ordered subset of L, satisfying
the condition L = L*'UL*2U...UL** and let L and P* be two mappings defined
by £F = TFTE ... TF and Pk = £kch=1 .. L1 respectively, where

TF=1+a,(T)-1),TF = Z win Tice)

i(t)eLk:t

wf(t) is chosen so that wf(t) > w >0, Zi(t)em,, wf(t) = 1, and the parameter oy €
[a, @] C (0,1).
Step 3 Given the iterate z*. Calculate 2* = (I- tk,ukF):ck , where t;, satisfies only
condition (¢) and py, is chosen by

(Fak —FPF—140 oF —pk—150) k k—1,.0
M { 9 X #PS x 9
k p—

|Fzk—FPE=120|2
Hk—1, otherwise.

Step 4 Compute ¢t = £F2*. Set 2F := 2**! and k := k + 1. Return to Step 2.
First, we prove the following lemmas.

LEMMA 3.1. Let H be a real Hilbert space, let F' be boundedly Lipschitzian and n-
strongly monotone on H and, for each i € L := {1,...,m}, let T; be a nonexpansive
mapping such that C = NiepFix (T;) # 0. Then, any sequence {x*}, generated by
the introduced iterative scheme, is bounded. Moreover, if limy_,oo || Tix* — 2| = 0 for
every i € L then

lim sup(Fp., p. — ) <0. (6)

k—oc0

Proof. Obviously, u, = /12, where

Fak _Fph—150 gh_pk—1,0 _
{(w s T, s @) xk7gpf 19c0,

llak—Ps~ 0|2 ’

= ,
Nk—1, otherwise,
| Fa®—FPE—al| k k—1,.0
= e -1z T

and Iy =4 la*=Ps™ a0 7 7 Ps ’
li_1, otherwise.
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Put P2z = x for any z € H and y**! = L¥(I — tpup F)PF 120, Then, since L is
nonexpansive, we have
[t — "2 = (L5 (T =ty F)a® — L5(T =t )P 2|

<N = g F)a* — (T — by FYPE 1202

= Jla* = PE Y0 — by (Fab — FPA100)|2

= ||lz* — PF120)? — 2ty pup (Fa® — FPE-120 2% — pr-120)

+ || Fa® — FPY a|?
= ok~ PEO? — 2t — PE 02 + 2Rt — PO

M | o
- (1 2t} lg +til§)||xk _phe10)2,
k

Hence,
2
o+t =t < (1= g2 ) ) Ja - At
Therefore,
[+t — b1 < (1 — 1 ;71’; (2 - tk)> |lz* — PF=120). (7)

On the other hand,

ly**t = Pla®|| = | L5(I =ty F)PY1a® = LEPE 20| < tyopure| FPE ).
As Ti;p = p for any p € C and for any ¢ € L, Ttkp = p for any k£ > 1 and any
t € {1,2,...,s}. Hence, T\p = pand Pkp = pforall k > 1l and t = 1,...,s
Consequently, |P*~12% — p|| < ||z° — p||. It means that {P*~12°} is bounded. Since

F is boundedly Lipschitzian, sup,sq ||[F° PV < M for some positive constant M.
Then, from (7) it follows that

[+t — Pl < [|la* T - ’““II + [yt — P
< (1 . 20 (2 - tk)) % — PE 120 + tj, Lk 20 Ml/nk

<1 — g Zg) |z — PF120) 44, 212
because of t; € (0,1) and n; > 1. Hence, ||2FT! — PFa0|| < max{||z! — 20|, 2M; /n}.
Therefore, {z*} is bounded.

Let B :=co{{p.} U{x*}1>0} U{PF2°};>1}, the closed convex hull containing p.,
{x*} and {PFz°}. Clearly, B is a bounded closed convex subset of H. Then, F is
Lipschitzian on B, i.e., |Fx — Fy| < IB|lz — y|| for any x,y € B where IF is some
positive constant and the intersection D := B N C' is also non-empty closed convex.

22M1/777

Now, if limg_, || T2% — 2*|| = 0 for every i € L then any weak cluster point j of
{z*}, by the demiclosed property of T}, belongs to D. Therefore,

— 00

k—o0
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because p, is a unique solution of (1) with C replaced by D. This completes the
proof. 0

Further, let 250 = 2% and 2%t = TF261=1 for t = 1,...,s. Then, zFt! = 2F=.

LEMMA 3.2. Let all the assumptions in Lemma 3.1 be satisfied. Then, for any se-
quence {z*} generated by the introduced iterative scheme, we have

M) < (1= weBe)llz® — ol + 29 ((Fp, p — 2%) + i (Fp, Fa*))

’CO‘Z Y Wil @i — D vpeD (8)

t=1 §(t)e Lkt

[z

and for all k > k' that is a positive integer, satisfying 1 — v, By > ¢, some positive real

number, i, € (0,n/(1%)?) and By, > n/2, where vy, = typ, Br = (1/2)(2n — w(17)?),
and a = a1 — @).

Proof. Using the definition of 2%, the properties of ||.||?, H and T}, we obtain

15 =l < D0 witg (= an) (T =) + Ty 2 = p)I1?
i(t)eLk:t

= Y win((@=ap)lM = plP + | Ty 2 = )2
i(t)eLk:t

— (1= ap)|(Tigey — D2M1?)

<Ml o Y0 wig I (Tie — DR,
i(t)eLk:t
forallt =1,2,...,s. Summing the last inequality with ¢t = 1, ..., s and replacing z**

and 20 by their values in the scheme, we get

2"+t —pl|* < (I — trpnF)z* —pl|* — az > whpl(Tiy — DR (9)
t=1i(t)cLk:t

Evidently,
|Fa® — FPi—taf| B
77§7)k > ||xk7PSk_11-0” = Ik Sl 3
and hence,
n Nk 1 1
<pp=-5 < — < = (10)
(17)? =~

Since t, — 0 as k — oo, by (10), v € (0,1/(1%)?) and B > n/2 for all k > k', some
positive integer. Moreover, we can chose an integer k' so that 1 — v, 3, > ¢ for all
k > k'. Then, from Lemma 2.1 it follows that

(I =y F)z* —pl|* = (I — wF)z* — (I — v F)p — v Fp|?

< (L= mB)lle® = plI? + 27 ((Fp,p — *) + . (Fp, Fa*)).
This together with (9) implies (8). The proof is completed. O



8 Iterative schemes for variational inequalitiess

Now, we are in the position to prove our main result.

THEOREM 3.3. Let H,F and T; be as in Lemma 3.1. Then, any sequence {z*},
generated by our iterative scheme, as k — oo, converges strongly to the point p.,
solving (1) where C' = N Fix (T3).

Proof. We need only to consider two cases.
Case 1. [|z*T! — p.|| < ||2* — p.| for all k > k.
Then, there exists limy, o ||2¥ — p.||. From (8) we get
COZZ Y Wil @iy = D <l = pl? = 2 = pl + e, (A1)
t=14(t)eLk*
where dy, = 2||Fp||(r + (n/(lB)Q)Mg) and My = supy>, ||[Fz*|. Next, we prove that

li (Typy — D2P11)? 12
kggoz > wlinl(Tiy — D2 = (12)

t=1 §(t)e Lkt
Clearly, if

Caz Z 1(t)|| (Tyy — D257 < dy
t=14(t)eLk*

for all k> k', then (12) holds, since v = trur < tx/n and t;, — 0. If

Caz > wWipl(Tiey — DEHP > d

t=14(t)eL*t
for all k > k!, then from (11) it follows that

_ 1
z(caz Y Wk (T — D 1||2—d%)<||x’“ P M 2,

k=k! t=14(t)eLkt
for any positive integer M. Thus,

— 1
Z(“Z Y wiplTig = D2 1||2_d7k)§||$k — %

k=k1 i(t)yeLkt
Therefore,

lim caz > Wy l(Ti — D2H? = dy)=0,

k—)oo
t=1 i(t)e Lkt
and hence, we have (12). Clearly, (12) is equivalent to
Jim Z Wi [Ty = D212 =0
z(t)EL’C t
fort=1,...,s. Then,
Jim Y7 wfy [Ty — D2 =0 (13)

i(t)eLk:t
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since wf(t) > w for all i(t) € L¥ and t = 1,...,s. Next, by the definition of 2¥! and

the property of ay,
I25F =25 < ST Wl I(Tiy — D251

i(t)eLk:t
This together with (13) implies that
T (|25 — R =, (14)
forallt =1,---,s. Now, since L*'U---UL** = L, for any i € L there exist at least

an integer ¢ such that i € LF = {iy(t),... sBy ey iypkag|(t)}. Then, from (13)
with t = tg, it deduces that

0<w lim (=D < lim 0wy |[(Ti = D1 = 0.

i(tk)ELk’tk

Therefore, limy_, oo ||(T;—1)2%t~1|| = 0, from which and (14) follows that lim_, . ||(T;
—I)z*|| = 0 for every i € L. So, (6) holds. Further, noting (8), the inequality

2"+ = pul® < (1= Br)llz® = pull® + 29 (Fps, e — &) + | Fps|| M),
followed from (9) with p = p,, and B, > 1/2,

12 = pull? < (1= wBi)lla® = paI® + B2 ((Fpus px — 2*1) 4 3| Fpl| M2) /1.

From this, (8) and Lemma 2.2 we deduce that limy_,. ||2* — p.| = 0.

Case 2. There exists a subsequence {ny} C {k} such that ||z —p,|| < [T —p,||
for all kK > k. Then, by Lemma 2.3, there exists a non-decreasing sequence {my} C
{k : k > Kk'} such that my — oo as k — oo,

lz™ = pu| < a™F = p.| and [a* = p.l < 2™ = pu. (15)
Hence, from (8) and the first inequality in (15), we know
2™ = pul? < ALFpas pe — &™) + Yo, || Fp| | Mo] /1) (16)
and 60‘2 w:?tk)”(Tz(t) - I)ka’t71H2 < d’Ymk'

t=1i(t)eL™k "
By the similar argument as in the first case, limy_, o ||(T; — I)z™*|| = 0 for each
i € L. So, we have (6) with k replaced by my. This together with (16) and ~,, — 0
implies that

lim ||z™* —p.|| = 0. (17)
k—o0
Using (8) with &k and p replaced, respectively, by my and p., we can write
2™ —pu* < (L= B ™ =D [P+ 29m ((F s D2 =™ )49, | i M2) /1.

From this, (17), and 7, —0, we deduce that limy_, o [|[2™* T —p,||?> = 0. The last limit
together with the second inequality in (15) implies that limp_, o ||2* —p.|| = 0. O

REMARK 3.4. 1. Consider the case when m = 1. Then, we have s = 1, t = 1,
Ly = T, the mappings Pf = £¥ci~' ... L1 and T = T + o (Ty — I). By our
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scheme, 21! is calculated by
" = (I +ap(Ty — 1)) — tppiF)a", (18)
where py is defined by the formula

(ka—FPfflwo,wk—Pfflx% J)k 7& ,Pk;_lxo
= | Fak—FPy=' 0|2 ’ 1 ’
Mk—1, otherwise.

Obviously, method (18) is different from (4) and converges without condition (¢').
Moreover, the choice py in our scheme is simpler than that in (4). So, it is a improved
modification of (4).

2. We want to say a few words regarding possible extensions of this work.

One possible extension is to consider the case when TP is a convex combination
of products of the mappings T}, i.e.,
Ni,t
ik kit
Ty = an H Ty,
n=1 i(t)eLy’

: . N,
where Lkt = LF1 .ULi}z’t, wkt is chosen so that wf! > w > 0and 3, 51wkt =1

forallk >0and t=1,...,s.
Another possible extension is to consider the obtained result in a Banach space as
the accretive variational inequality investigated in [2,3].

4. Applications and numerical experiments

4.1 Applications to networked systems

We show that our results can be applied to solving a networked system consisting of
an operator, who manages the system, and a finite number m — 1 of participating
users. In the system the manage operator can be seen as a user m. We suppose that
each user i € L has its own private objective function f(;y on E®, an n-dimensional
FEuclidian space, and a nonempty closed convex C; in E™. Moreover, the following is
assumed.

(a1) T; is nonexpansive on E® with Fix (T;) = C; for each i € L and the intersection
mieLFiX (Tl) 75 Q]

(a2) f(;) is concave and Fréchet differentiable on E* and — </ f (1) is boundedly Lips-
chitzian and 7;-strongly monotone.

(a3) User i € L can use its own private C; and f;).

(a4) The operator can communicate with all users.
The considered problem can be formulated as finding a point p, in E® such that

f(pe) = max fp), f(@) = fiy(x),C = Nic Fix (T)). (19)

i€L
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Problem (19) is closely related to network recourse allocation [1,16] which is a central
issue in modern communication networks. The main objective of the allocation is to
share the available resources among users in the network so as to maximize the sum of
their utilities subject to the feasible regions for allocating the resources. Problem (19)
is equivalent to the following one, f(p.) = infyec f(p), where f = —f is convex
and Fréchet differentiable with boundedly Lipschitzian and n-strongly monotone 57 f
and 7 = min;er 1;. To solve (19), when — 7 f;) is l;-Lipschitzian and n;-strongly
monotone, liduka [12] introduced a parallel optimization algorithm, at each iteration
steep of which the value p is chosen in dependence of n; and I;. It is easy to see that
the considered problem can be solved by our iterative scheme, where F' = 7 f and C
is given in (19). In the next subsection, we consider a convex optimization problem
and an example for computations.

4.2 Convex optimization and numerical experiments

Clearly, the results in the previous section can be applied to finding a solution of the
following convex optimization problem: Find a point

P € Cs p(py) = min (p), € = NierCi, (20)
where C; is a closed convex subset in a real Hilbert space H and ', the gradient of
¢ is boundedly Lipschitzian and n-strongly monotone. Obviously, C; = Fix (T;), the
fixed point set of T; = Pc,, the metric projection from H onto C;. It is well known
that T; is nonexpansive. We also know that p. is a solution of (20) if and only if it
solves (1) where F' = ¢’ and C = N Fix (T;).

For computational illustration, we consider the case, when
Fz= (x4 20 + 25, —21 + 20 + 23),
Ci={zcE*: ||z—d|<1},iec L=1{1,...,8},
a' =(0,1/2), a®=(0,-1/2), a*®=(1/2,0),
(14 = (_1/2a0)7 a5 = (1/271/2)7 a6 = (_1/2a_1/2)a
a” = (1/2,-1/2), a®=(-1/2,-1/2).
It is easy to see that the real functions z3 and z” are strictly increasing in E.

Therefore, F is 1-strongly monotone on E2. Moreover, F is only boundedly Lips-
chitzian on E? (see [9]).

The numerical results are calculated with 20 = (2,1),2! = (1,2), a3, = 1/2, s = 2,
ie., L¥ = {1,2,3,4} and L*? = {5,6,7,8} and t;, = 1/(k+ 1). We take LK1 =
LETULY! where L' = {1,2}, L' = {3,4} and L¥2 = LY2ULY? with L? = {5,6},
LE% = {7,8}.

The numerical result in Table 1 shows the effectiveness of the introduced iterative
scheme.
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k xlf"'l z§+1

5 | 0.0027502427 | 0.0215071004
10 | -0.0000888099 | 0.0005021674
15 | -0.0000047155 | 0.0000124442
20 | -0.0000001741 | 0.0000003201
25 | -0.0000000006 | 0.0000000008

Table 1: Numerical results calculated by our iterative scheme

5. Conclusion

In this paper, for solving the variational inequality problem, governed by a boundedly
Lipschitzian and strongly monotone mapping, over the set of common fixed points of a
large finite family of nonexpansive mappings, we suggested a strongly convergent self-
adaptive hybrid steepest-descent block-iterative scheme, strong convergence of which
is proved without any additional condition on the family of fixed point sets as well
as the dimension of setting spaces and condition (') needed in the recent literature.
We also gave applications to some networked systems and the convex optimization
over the intersection of a finite family of closed convex subsets with computational
experiments for illustration.
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