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MAPPINGS

Nguyen Buong and Nguyen Gia Dang

Abstract. In this paper, for solving a variational inequality problem governed by a
boundedly Lipschitzian and strongly monotone mapping over the set of common fixed points
of a sufficiently large finite family of nonexpansive mappings on Hilbert spaces, we propose
a new strongly convergent self-adaptive hybrid steepest-descent block-iterative scheme. The
strong convergence of any sequence, generated by this scheme, is proved under weaker con-
ditions on iterative parameters without any additional assumption on the family of fixed
point sets as well as the dimension of the spaces. An application to networked systems and a
convex optimization problem over the intersection of a finite family of closed convex subsets
with numerical experiments are given for illustration.

1. Introduction

Let H be a Hilbert space equipped with the inner product ⟨., .⟩ and with the corre-
sponding norm ∥.∥. Let C and F be a closed convex subset and a mapping in H,
respectively. The variational inequality problem, considered in this paper, is formu-
lated as finding a point

p∗ ∈ C such that ⟨Fp∗, p∗ − p⟩ ≤ 0 ∀p ∈ C. (1)

The variational inequality problem with a closed convex subset C and an operator
F in a Hilbert space H has been firstly introduced and investigated in [7, 14]. A
fundamental method to solve (1), when F is l-Lipschitzian and η-strongly monotone,
is the projected gradient iterative method

xk+1 = PC(I − µkF )xk, (2)

introduced by Goldstein [6], where PC is the metric projection from H onto C, I
is the identity of H, µk = µ, a constant in (0, 2η/l2), and the starting point x0

is any point in C. Since then, two basic directions to develop method (2) were
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2 Iterative schemes for variational inequalitiess

attracted a great number of mathematicians. In the first direction, one tried to relax
the Lipschitzian and monotone properties of F and to choose µk at each iteration
step without knowledge of the values η and l. He et al. [9] suggested a self-adaptive
choice in their method as follows. Choose x0 ∈ C and set k := 1. Calculate x1 by
x1 = PC(x0 − Fx0). If x1 = x0 then x0 is a solution. If it is not the case, the value
µk in (2) is chosen by µk = ηk/L

2
k where ηk and Lk are defined, respectively, by the

following rules:

ηk =


min

{
ηk−1,

⟨Fxk−Fxk−1,xk−xk−1⟩
∥xk−xk−1∥2 , ⟨Fxk−Fx0,xk−x0⟩

∥xk−x0∥2

}
, if xk ̸= x0

min

{
ηk−1,

⟨Fxk−Fxk−1,xk−xk−1⟩
∥xk−xk−1∥2

}
, otherwise

and Lk =


max

{
Lk−1,

∥Fxk−Fxk−1∥
∥xk−xk−1∥ , ∥Fxk−Fx0∥

∥xk−x0∥

}
, if xk ̸= x0

max

{
Lk−1,

∥Fxk−Fxk−1∥
∥xk−xk−1∥

}
, otherwise,

where η0 = ⟨Fx1−Fx0, x1−x0⟩/∥x1−x0∥2 and L0 = ∥Fx1−Fx0∥/∥x1−x0∥. Some
related results in this direction has been given in [5,8,13] where the Lipschitzian and
monotone properties of F are replaced by the weaker ones such as non-Lipschitzian,
boundedly Lipschitzian and pseudo-monotone. The second direction concerns the
closed form expression of PC , that unfortunately is not always known, and the choice
of µk in independence on l and η. The first result in this direction has been belonged
to Yamada [18]. By replacing PC by T , a nonexpansive mapping on H, he introduced
the hybrid steepest-descent method,

xk+1 = (I − tkµF )Txk, k ≥ 0, (3)

and proved the strong convergence of a sequence {xk}, generated by (3), to a point
in Fix (T ), the fixed point set of T , with the same µ ∈ (0, 2η/l2) under the following
two conditions:

(t) tk ∈ (0, 1) for all k ≥ 1, limk→∞ tk = 0,
∑

k≥0 tk = ∞ and

(t′)
∑∞

k=0 |tk − tk+1| < +∞ or limk→∞(tk/tk+1) = 1.

Several results, related with method (3) in the case that C is the either intersection
of fixed point sets of nonexpansive mappings or set of common zeros of a finite family
of nonlinear mappings of monotone-type, were given in [2, 3]. Buong et al. [2], for
solving the accretive variational inequality problem ⟨Fp∗, j(p∗−p)⟩ ≤ 0, an extension
of (1) to Banach spaces, where j is the normall duality mapping of a Banach spaces
E, F is an η-strongly accretive and γ-strictly pseudocontractive mapping on E with
η + γ > 1, and C is the intersection of an infinite family of nonexpancive mappings
Ti on E, studied the iterative method

xk+1 = (I − tkF )T kxk, T k = (1− βk)I + βkW
k
(
(1− αk)I + αkW

k
)
, k ≥ 1,

tk satisfies condition (t), βk ∈ [a, b] ⊂ (0, 1), αk ∈ [0, a] with a < 1, and W k is a
combination of Ti with i = 1, . . . , k. Meantime, for finding a solution of the accretive
variational inequality when C is the set of common zeros of a family of m-accretive
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mappings Ai on E with i = 1, . . . , N , Buong et al. [3] introduced the iterative method

xk+1 = (1− γk)(I − tkF )xk + γkPkx
k + ek, x1 ∈ E, k ≥ 1,

where the parameters

(a) tk satisfies condition (t);

(b) γk satisfies a condition 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1;

(c) rik ≥ ε > 0 for all i = 1, 2, . . . , N ;

(d) either
∑∞

k=1 ∥ek∥ < ∞ or limk→0 ∥ek∥/tk = 0;

and Pk = JAN

rNk
J
AN−1

rN−1
k

· · · JA1

r1k
, JAi

rik
= (I + rikAi)

−1.

Up to now, there are a few works [10,11], where one combined the two basic directions.
Recently, when C is the fixed point set of a nonexpansive mapping T and F is bound-
edly Lipschitzian and η-strongly monotone, He et al. [11] proposed a self-adaptive
hybrid steepest-descent method,

xk+1 = T (I − tkµkF )xk, k ≥ 1, (4)

where µk is selected through a self-adaptive way: µk = ηk/L
2
k with ηk and Lk defined,

respectively, by

ηk =

{
min{ηk−1,

⟨Fxk−FTk−1x0,xk−Tk−1x0⟩
∥xk−Tk−1x0∥2 }, if xk ̸= T k−1x0

ηk−1, otherwise,

and Lk =

max

{
Lk−1,

∥Fxk−FTk−1x0∥
∥xk−Tk−1x0∥

}
, if xk ̸= T k−1x0

Lk−1, otherwise,

for arbitrary two initial points x0 and x1 such that x1 ̸= x0. They proved a strong
convergence result with two conditions (t) and (t′).

Let L = {1, . . . ,m}. When m is sufficiently large, for finding a point p ∈ C =
∩i∈LCi, where Ci is a closed convex subset in H, Butnariu and Censor [4] proved the
strong convergence of the almost simultaneous block-iterative projection scheme

xk+1 = xk + αk

(
T kxk − xk

)
, T k =

∑
i∈L

ωk
i PCi

, (5)

where αk is a relaxation parameter, satisfying 0 < α ≤ αk ≤ α < 2, ωk
i ≥ 0 with∑

i∈L ωk
i = 1, if one of the following conditions conditions are satisfied:

(c1) there exists i0 ∈ L such that Ci0 ∩ Int[∩i ̸=i0Ci] ̸= ∅;

(c2) all, except for possibly one of the sets Ci, are uniformly convex;

(c3) each Ci is a halfspace;

(c4) at least one set Ci is boundedly compact;

(c5) H is finite-dimensional.

In this paper, we consider problem (1) with C = ∩i∈LCi ̸= ∅ and the set Ci = Fix (Ti),
where Ti is a nonexpansive mapping on H and the number of Ti, m, is sufficiently
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large. Based on methods (2)-(5), we propose a new self-adaptive hybrid steepest-
descent iterative scheme for solving (1) when F is boundedly Lipschitzian and η-
strongly monotone. The strong convergence of our scheme is proved without any
condition on Ci = Fix (Ti) from (c1)-(c5) and (t′) above. Moreover, our choice of
µk is different from that in (4). Note that in this situation, problem (1) possesses a
unique solution p∗ (see [8]).

The rest of this paper is organized as follows. In Section 2, we list some terminolo-
gies, using in this paper, and related facts, that will be used in the proof of our results.
In Section 3, we prove a strongly convergent theorem for the introduced scheme. Ap-
plications to some networked systems and a convex optimization problem over the
intersection of a finite family of closed convex subsets with numerical experiments are
given for illustration.

2. Preliminaries

It is well known that in any real Hilbert space H, we have

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩
∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2,

for any x, y ∈ H and α ∈ [0, 1]. An operator T in H is called
• nonexpansive if ∥Tx − Ty∥ ≤ a∥x − y∥ for all x, y ∈ D(T ), the domain of T , with
a = 1 and a contraction if a ∈ [0, 1).

• l-Lipschitzian and η-strongly monotone, if it satisfies, respectively, the conditions
∥Tx− Ty∥ ≤ l∥x− y∥ and ⟨Tx− Ty, x− y⟩ ≥ η∥x− y∥2 with l ≥ η > 0.

• boundedly Lipschitzian on D(T ) if it is Lipschitzian on each bounded subset of
D(T ); namely, for each bounded non-empty subset B of D(T ), there exists a positive
constant lB depending only on the set B such that ∥Tx − Ty∥ ≤ lB∥x − y∥ for all
x, y ∈ B.

• demiclosed if for any sequence {xk} ⊂ H the following implication holds

(xkconverges weakly to x and ∥(T − I)xk∥ → 0) =⇒ x ∈ Fix(T ),

where Fix (T ) = {p ∈ H : p = Tp}.

Lemma 2.1 ([18]). Let H be a real Hilbert space and let F be an l-Lipschitz continuous
and η-strongly monotone mapping in H with some positive constants l ≥ η > 0. Let
Tµ = I−µF and let T t,µ = I− tµF . Then, for a fixed number µ ∈ (0, 2η/l2) and any
t ∈ (0, 1), I − µF and I − tµF are all contractions with coefficients 1− τ and 1− tτ ,
respectively, where τ = (1/2)µ(2η − µl2).

Lemma 2.2 ([17]). Let {ak}, {bk} and {ck} be sequences of real numbers such that,
for all k ≥ 0, ak+1 ≤ (1 − bk)ak + bkck; ak ≥ 0; bk satisfies a condition of type (t);
and either

∑∞
k=1 bk|ck| < ∞ or lim supk→∞ ck ≤ 0. Then, we have limk→∞ak = 0.
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Lemma 2.3 ([15]). Let {ak} be a sequence of real numbers with a subsequence {nk} of
{k} such that ank

< ank+1. Then, there exists a non-decreasing sequence {mk} ⊆ {k}
such that mk → ∞, amk

≤ amk+1 and ak ≤ amk+1 for all (sufficiently large) numbers
k ≥ 0. In fact, mk = max{n ≤ k : al ≤ an+1}.

3. Main results

Our iterative scheme is constructed as follows.

Step 1 Let x0, x1 be any two points in H such that x1 ̸= x0 and let s be any fixed
positive integer. Set k := 1.

Step 2 For t = 1, 2, · · · , s, let Lk,t be a non-empty ordered subset of L, satisfying
the condition L = Lk,1∪Lk,2∪· · ·∪Lk,s, and let Lk

s and Pk
s be two mappings defined

by Lk
s = T k

s T k
s−1 . . . T k

1 and Pk
s = Lk

sLk−1
s . . .L1

s, respectively, where

T k
t = I + αk

(
T̃ k
t − I

)
, T̃ k

t =
∑

i(t)∈Lk,t

ωk
i(t)Ti(t)

ωk
i(t) is chosen so that ωk

i(t) ≥ ω > 0,
∑

i(t)∈Lk,t ωk
i(t) = 1, and the parameter αk ∈

[α, α] ⊂ (0, 1).

Step 3 Given the iterate xk. Calculate zk = (I − tkµkF )xk , where tk satisfies only
condition (t) and µk is chosen by

µk =

{
⟨Fxk−FPk−1

s x0,xk−Pk−1
s x0⟩

∥Fxk−FPk−1
s x0∥2

, xk ̸= Pk−1
s x0,

µk−1, otherwise.

Step 4 Compute xk+1 = Lk
sz

k. Set xk := xk+1 and k := k + 1. Return to Step 2.

First, we prove the following lemmas.

Lemma 3.1. Let H be a real Hilbert space, let F be boundedly Lipschitzian and η-
strongly monotone on H and, for each i ∈ L := {1, . . . ,m}, let Ti be a nonexpansive
mapping such that C := ∩i∈LFix (Ti) ̸= ∅. Then, any sequence {xk}, generated by
the introduced iterative scheme, is bounded. Moreover, if limk→∞ ∥Tix

k −xk∥ = 0 for
every i ∈ L then

lim sup
k→∞

⟨Fp∗, p∗ − xk⟩ ≤ 0. (6)

Proof. Obviously, µk = ηk/l
2
k, where

ηk =

{
⟨Fxk−FPk−1

s x0,xk−Pk−1
s x0⟩

∥xk−Pk−1
s x0∥2

, xk ̸= Pk−1
s x0,

ηk−1, otherwise,

and lk =

{
∥Fxk−FPk−1

s x0∥
∥xk−Pk−1

s x0∥
, xk ̸= Pk−1

s x0,

lk−1, otherwise.
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Put P0
sx = x for any x ∈ H and yk+1 = Lk

s(I − tkµkF )Pk−1
s x0. Then, since Lk

s is
nonexpansive, we have

∥xk+1 − yk+1∥2 = ∥Lk
s(I − tkµkF )xk − Lk

s(I − tkµkF )Pk−1
s x0∥2

≤ ∥(I − tkµkF )xk − (I − tkµkF )Pk−1
s x0∥2

= ∥xk − Pk−1
s x0 − tkµk(Fxk − FPk−1

s x0)∥2

= ∥xk − Pk−1
s x0∥2 − 2tkµk⟨Fxk − FPk−1

s x0, xk − Pk−1
s x0⟩

+ t2kµ
2
k∥Fxk − FPk−1

s x0∥2

= ∥xk − Pk−1
s x0∥2 − 2tkµkηk∥xk − Pk−1

s x0∥2 + t2kµ
2
kl

2
k∥xk − Pk−1

s x0∥2

=

(
1− 2tk

η2k
l2k

+ t2k
η2k
l2k

)
∥xk − Pk−1

s x0∥2.

Hence,

∥xk+1 − yk+1∥2 ≤
(
1− tk

η2k
2l2k

(2− tk)

)2

∥xk − Pk−1
s x0∥2.

Therefore,

∥xk+1 − yk+1∥ ≤
(
1− tk

η2k
2l2k

(2− tk)

)
∥xk − Pk−1

s x0∥. (7)

On the other hand,

∥yk+1 − Pk
s x

0∥ = ∥Lk
s(I − tkµkF )Pk−1

s x0 − Lk
sPk−1

s x0∥ ≤ tkµk∥FPk−1
s x0∥.

As Tip = p for any p ∈ C and for any i ∈ L, T̃ k
t p = p for any k ≥ 1 and any

t ∈ {1, 2, . . . , s}. Hence, T k
t p = p and Pk

s p = p for all k ≥ 1 and t = 1, . . . , s.
Consequently, ∥Pk−1

s x0 − p∥ ≤ ∥x0 − p∥. It means that {Pk−1
s x0} is bounded. Since

F is boundedly Lipschitzian, supk≥1 ∥FPk
s x

0∥ ≤ M1 for some positive constant M1.
Then, from (7) it follows that

∥xk+1 − Pk
s x

0∥ ≤ ∥xk+1 − yk+1∥+ ∥yk+1 − Pk
s x

0∥

≤
(
1− tk

η2k
2l2k

(2− tk)

)
∥xk − Pk−1

s x0∥+ tk
η2k
2l2k

M1/ηk

≤
(
1− tk

η2k
2l2k

)
∥xk − Pk−1

s x0∥+ tk
η2k
2l2k

2M1/η,

because of tk ∈ (0, 1) and ηk ≥ η. Hence, ∥xk+1 − Pk
s x

0∥ ≤ max{∥x1 − x0∥, 2M1/η}.
Therefore, {xk} is bounded.

Let B := co{{p∗} ∪ {xk}k≥0} ∪ {Pk
s x

0}k≥1}, the closed convex hull containing p∗,
{xk} and {Pk

s x
0}. Clearly, B is a bounded closed convex subset of H. Then, F is

Lipschitzian on B, i.e., ∥Fx − Fy∥ ≤ lB∥x − y∥ for any x, y ∈ B where lB is some
positive constant and the intersection D := B ∩ C is also non-empty closed convex.

Now, if limk→∞ ∥Tix
k − xk∥ = 0 for every i ∈ L then any weak cluster point p̃ of

{xk}, by the demiclosed property of Ti, belongs to D. Therefore,

lim sup
k→∞

⟨Fp∗, p∗ − xk⟩ = lim
k→∞

⟨Fp∗, p∗ − xnk⟩ = ⟨Fp∗, p∗ − p̃⟩ ≤ 0,
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because p∗ is a unique solution of (1) with C replaced by D. This completes the
proof. □

Further, let zk,0 = zk and zk,t = T k
t zk,t−1 for t = 1, . . . , s. Then, xk+1 = zk,s.

Lemma 3.2. Let all the assumptions in Lemma 3.1 be satisfied. Then, for any se-
quence {xk} generated by the introduced iterative scheme, we have

∥xk+1 − p∥2 ≤ (1− γkβk)∥xk − p∥2 + 2γk
(
⟨Fp, p− xk⟩+ γk⟨Fp, Fxk⟩

)
− c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 ∀p ∈ D (8)

and for all k ≥ k1 that is a positive integer, satisfying 1−γkβk ≥ c̃, some positive real
number, γk ∈ (0, η/(lB)2) and βk ≥ η/2, where γk = tkµk, βk = (1/2)(2η − γk(l

B)2),
and α = α(1− α).

Proof. Using the definition of zk,t, the properties of ∥.∥2, H and Ti, we obtain

∥zk,t − p∥2 ≤
∑

i(t)∈Lk,t

ωk
i(t)∥(1− αk)(z

k,t−1 − p) + αk(Ti(t)z
k,t−1 − p)∥2

=
∑

i(t)∈Lk,t

ωk
i(t)

(
(1− αk)∥zk,t−1 − p∥2 + αk∥Ti(t)z

k,t−1 − p∥2

− αk(1− αk)∥(Ti(t) − I)zk,t−1∥2
)

≤ ∥zk,t−1 − p∥2 − α
∑

i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2,

for all t = 1, 2, . . . , s. Summing the last inequality with t = 1, . . . , s and replacing zk,s

and zk,0 by their values in the scheme, we get

∥xk+1 − p∥2 ≤ ∥(I − tkµkF )xk − p∥2 − α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2. (9)

Evidently,

η ≤ ηk ≤ ∥Fxk − FPk−1
s x0∥

∥xk − P k−1
s x0∥

= lk ≤ lB ,

and hence,

η

(lB)2
≤ µk =

ηk
l2k

≤ 1

ηk
≤ 1

η
. (10)

Since tk → 0 as k → ∞, by (10), γk ∈ (0, η/(lB)2) and βk ≥ η/2 for all k ≥ k1, some
positive integer. Moreover, we can chose an integer k1 so that 1 − γkβk ≥ c̃ for all
k ≥ k1. Then, from Lemma 2.1 it follows that

∥(I − γkF )xk − p∥2 = ∥(I − γkF )xk − (I − γkF )p− γkFp∥2

≤ (1− γkβk)∥xk − p∥2 + 2γk
(
⟨Fp, p− xk⟩+ γk⟨Fp, Fxk⟩

)
.

This together with (9) implies (8). The proof is completed. □
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Now, we are in the position to prove our main result.

Theorem 3.3. Let H,F and Ti be as in Lemma 3.1. Then, any sequence {xk},
generated by our iterative scheme, as k → ∞, converges strongly to the point p∗,
solving (1) where C = ∩i∈LFix (Ti).

Proof. We need only to consider two cases.
Case 1. ∥xk+1 − p∗∥ ≤ ∥xk − p∗∥ for all k ≥ k1.

Then, there exists limk→∞ ∥xk − p∗∥. From (8) we get

c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + dγk, (11)

where dk = 2∥Fp∥(r + (η/(lB)2)M2) and M2 = supk≥1 ∥Fxk∥. Next, we prove that

lim
k→∞

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 = 0. (12)

Clearly, if

c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 ≤ dγk

for all k ≥ k1, then (12) holds, since γk = tkµk ≤ tk/η and tk → 0. If

c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 > dγk

for all k ≥ k1, then from (11) it follows that
M∑

k=k1

(
c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 − dγk

)
≤ ∥xk1

− p∥2 − ∥xM+1 − p∗∥2,

for any positive integer M . Thus,
∞∑

k=k1

(
c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 − dγk

)
≤ ∥xk1

− p∗∥2.

Therefore,

lim
k→∞

(
c̃α

s∑
t=1

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 − dγk

)
= 0,

and hence, we have (12). Clearly, (12) is equivalent to

lim
k→∞

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥2 = 0

for t = 1, . . . , s. Then,

lim
k→∞

∑
i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥ = 0 (13)
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since ωk
i(t) ≥ ω for all i(t) ∈ Lk

t and t = 1, . . . , s. Next, by the definition of zk,t and
the property of αk,

∥zk,t − zk,t−1∥ ≤
∑

i(t)∈Lk,t

ωk
i(t)∥(Ti(t) − I)zk,t−1∥.

This together with (13) implies that

lim
k→∞

∥zk,t − zk,t−1∥ = 0, (14)

for all t = 1, · · · , s. Now, since Lk,1 ∪ · · · ∪Lk,s = L, for any i ∈ L there exist at least
an integer tk such that i ∈ Lk,tk := {i1(tk), . . . , i, . . . , i|Lk,tk |(tk)}. Then, from (13)
with t = tk, it deduces that

0 ≤ ω lim
k→∞

∥(Ti − I)zk,tk−1∥ ≤ lim
k→∞

∑
i(tk)∈Lk,tk

ωk
i(tk)

∥(Ti(tk) − I)zk,tk−1∥ = 0.

Therefore, limk→∞ ∥(Ti−I)zk,tk−1∥ = 0, from which and (14) follows that limk→∞ ∥(Ti

−I)xk∥ = 0 for every i ∈ L. So, (6) holds. Further, noting (8), the inequality

∥xk+1 − p∗∥2 ≤ (1− γkβk)∥xk − p∗∥2 + 2γk
(
⟨Fp∗, p∗ − xk⟩+ γk∥Fp∗∥M2

)
,

followed from (9) with p = p∗, and βk ≥ η/2,

∥xk+1 − p∗∥2 ≤ (1− γkβk)∥xk − p∗∥2 + γkβk2
(
⟨Fp∗, p∗ − xk+1⟩+ γk∥Fp∥M2

)
/η.

From this, (8) and Lemma 2.2 we deduce that limk→∞ ∥xk − p∗∥ = 0.

Case 2. There exists a subsequence {nk} ⊂ {k} such that ∥xnk −p∗∥ ≤ ∥xnk+1−p∗∥
for all k ≥ k1. Then, by Lemma 2.3, there exists a non-decreasing sequence {mk} ⊆
{k : k ≥ k1} such that mk → ∞ as k → ∞,

∥xmk − p∗∥ ≤ ∥xmk+1 − p∗∥ and ∥xk − p∗∥ ≤ ∥xmk+1 − p∗∥. (15)

Hence, from (8) and the first inequality in (15), we know

∥xmk − p∗∥2 ≤ 4[⟨Fp∗, p∗ − xmk⟩+ γmk
∥Fp∗∥M2]/η (16)

and c̃α
s∑

t=1

∑
i(t)∈Lmk,t

ωmk

i(t)∥(Ti(t) − I)zmk,t−1∥2 ≤ dγmk
.

By the similar argument as in the first case, limk→∞ ∥(Ti − I)xmk∥ = 0 for each
i ∈ L. So, we have (6) with k replaced by mk. This together with (16) and γmk

→ 0
implies that

lim
k→∞

∥xmk − p∗∥ = 0. (17)

Using (8) with k and p replaced, respectively, by mk and p∗, we can write

∥xmk+1−p∗∥2 ≤ (1−γmk
βmk

)∥xmk−p∗∥2+2γmk

(
⟨Fp∗, p∗−xmk⟩+γmk

∥Fp∗∥M2

)
/η.

From this, (17), and γmk
→0, we deduce that limk→∞∥xmk+1−p∗∥2 = 0. The last limit

together with the second inequality in (15) implies that limk→∞∥xk−p∗∥ = 0.

Remark 3.4. 1. Consider the case when m = 1. Then, we have s = 1, t = 1,
Lk
1 = T k

1 , the mappings Pk
1 = Lk

1Lk−1
1 . . .L1

1 and T k
1 = I + αk

(
T1 − I

)
. By our
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scheme, xk+1 is calculated by

xk+1 =
(
I + αk(T1 − I)

)
(I − tkµkF )xk, (18)

where µk is defined by the formula

µk =


⟨Fxk−FPk−1

1 x0,xk−Pk−1
1 x0⟩

∥Fxk−FPk−1
1 x0∥2

, xk ̸= Pk−1
1 x0,

µk−1, otherwise.

Obviously, method (18) is different from (4) and converges without condition (t′).
Moreover, the choice µk in our scheme is simpler than that in (4). So, it is a improved
modification of (4).

2. We want to say a few words regarding possible extensions of this work.

One possible extension is to consider the case when T̃ k
t is a convex combination

of products of the mappings Ti, i.e.,

T̃ k
t =

Nk,t∑
n=1

ωk,t
n

∏
i(t)∈Lk,t

n

Ti(t),

where Lk,t = Lk,t
1 ∪ . . .∪Lk,t

Nk,t
, ωk,t

n is chosen so that ωk,t
n ≥ ω > 0 and

∑Nk,t

n=1 ω
k,t
n = 1

for all k ≥ 0 and t = 1, . . . , s.
Another possible extension is to consider the obtained result in a Banach space as

the accretive variational inequality investigated in [2, 3].

4. Applications and numerical experiments

4.1 Applications to networked systems

We show that our results can be applied to solving a networked system consisting of
an operator, who manages the system, and a finite number m − 1 of participating
users. In the system the manage operator can be seen as a user m. We suppose that
each user i ∈ L has its own private objective function f(i) on En, an n-dimensional
Euclidian space, and a nonempty closed convex Ci in En. Moreover, the following is
assumed.
(a1) Ti is nonexpansive on En with Fix (Ti) = Ci for each i ∈ L and the intersection
∩i∈LFix (Ti) ̸= ∅.

(a2) f(i) is concave and Fréchet differentiable on En and −▽ f (i) is boundedly Lips-
chitzian and ηi-strongly monotone.

(a3) User i ∈ L can use its own private Ci and f(i).

(a4) The operator can communicate with all users.
The considered problem can be formulated as finding a point p∗ in En such that

f(p∗) = max
p∈C

f(p), f(x) =
∑
i∈L

f(i)(x), C = ∩i∈LFix (Ti). (19)
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Problem (19) is closely related to network recourse allocation [1,16] which is a central
issue in modern communication networks. The main objective of the allocation is to
share the available resources among users in the network so as to maximize the sum of
their utilities subject to the feasible regions for allocating the resources. Problem (19)
is equivalent to the following one, f̃(p∗) = infp∈C f̃(p), where f̃ = −f is convex

and Fréchet differentiable with boundedly Lipschitzian and η-strongly monotone ▽f̃
and η = mini∈L ηi. To solve (19), when − ▽ f(i) is li-Lipschitzian and ηi-strongly
monotone, Iiduka [12] introduced a parallel optimization algorithm, at each iteration
steep of which the value µ is chosen in dependence of ηi and li. It is easy to see that
the considered problem can be solved by our iterative scheme, where F = ▽f̃ and C
is given in (19). In the next subsection, we consider a convex optimization problem
and an example for computations.

4.2 Convex optimization and numerical experiments

Clearly, the results in the previous section can be applied to finding a solution of the
following convex optimization problem: Find a point

p∗ ∈ C; φ(p∗) = min
p∈C

φ(p), C = ∩i∈LCi, (20)

where Ci is a closed convex subset in a real Hilbert space H and φ′, the gradient of
φ is boundedly Lipschitzian and η-strongly monotone. Obviously, Ci = Fix (Ti), the
fixed point set of Ti = PCi

, the metric projection from H onto Ci. It is well known
that Ti is nonexpansive. We also know that p∗ is a solution of (20) if and only if it
solves (1) where F = φ′ and C = ∩i∈LFix (Ti).

For computational illustration, we consider the case, when

Fz = (x1 + x2 + x5
1,−x1 + x2 + x7

2),

Ci = {x ∈ E2 : ∥x− ai∥ ≤ 1}, i ∈ L = {1, . . . , 8},
a1 = (0, 1/2), a2 = (0,−1/2), a3 = (1/2, 0),

a4 = (−1/2, 0), a5 = (1/2, 1/2), a6 = (−1/2,−1/2),

a7 = (1/2,−1/2), a8 = (−1/2,−1/2).

It is easy to see that the real functions x3 and x7 are strictly increasing in E1.
Therefore, F is 1-strongly monotone on E2. Moreover, F is only boundedly Lips-
chitzian on E2 (see [9]).

The numerical results are calculated with x0 = (2, 1), x1 = (1, 2), αk = 1/2, s = 2,
i.e., Lk,1 = {1, 2, 3, 4} and Lk,2 = {5, 6, 7, 8} and tk = 1/(k + 1). We take Lk,1 =

Lk,1
1 ∪Lk,1

2 where Lk,1
1 = {1, 2}, Lk,1

2 = {3, 4} and Lk,2 = Lk,2
1 ∪Lk,2

2 with Lk,2
1 = {5, 6},

Lk,2
2 = {7, 8}.
The numerical result in Table 1 shows the effectiveness of the introduced iterative

scheme.
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k xk+1
1 xk+1

2

5 0.0027502427 0.0215071004
10 -0.0000888099 0.0005021674
15 -0.0000047155 0.0000124442
20 -0.0000001741 0.0000003201
25 -0.0000000006 0.0000000008

Table 1: Numerical results calculated by our iterative scheme

5. Conclusion

In this paper, for solving the variational inequality problem, governed by a boundedly
Lipschitzian and strongly monotone mapping, over the set of common fixed points of a
large finite family of nonexpansive mappings, we suggested a strongly convergent self-
adaptive hybrid steepest-descent block-iterative scheme, strong convergence of which
is proved without any additional condition on the family of fixed point sets as well
as the dimension of setting spaces and condition (t′) needed in the recent literature.
We also gave applications to some networked systems and the convex optimization
over the intersection of a finite family of closed convex subsets with computational
experiments for illustration.
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