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Abstract. This paper deals with the existence and asymptotic analysis of positive con-
tinuous solutions for the following nonlinear polyharmonic boundary value problem:

(−∆)mu = b(x)up, in D,

lim
|x|→1

(
|x|2 − 1

)1−m
u(x) = 0,

lim
|x|→∞

(|x|2 − 1
)1−m

u(x) = 0.

Here m is an integer greater than 2, p ∈ (−1, 1), D is the complementary of the closed unit
ball of Rn with n > 2m, and the function b is nonnegative and continuous on D, satisfying
some appropriate assumptions related to Karamata regular variation theory.

1. Introduction

Let m be an integer greater than 2, D := {x ∈ Rn; |x| > 1} be the complementary
of the closed unit ball of Rn with n > 2m. In this paper, we deal with the following
higher order elliptic equation

(−∆)mu = b(x)up, in D, (1)

subject to the boundary conditions

lim
|x|→1

(
|x|2 − 1

)1−m
u(x) = lim

|x|→∞
(|x|2 − 1

)1−m
u(x) = 0. (2)

Where p ∈ (−1, 1) and the nonlinearity b satisfies a suitable condition relying to
Karamata regular variation theory.

The topic of higher order differential equations, known as polyharmonic equations,
has recently received considerable attention [3, 12, 16, 18]. Such equations appear
naturally in physics and engineering. Indeed, many phenomena from the theory of
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2 Positive solutions for a polyharmonic problem outside the unit ball

plates, the theory of elasticity, and the creeping flow of a viscous fluid can be modeled
by polyharmonic differential equations [2, 8, 17]. The investigation of higher order
differential equations is also important in many areas of mathematics, such as free
boundary problems [1], conformal geometry involving Q-curvature and the Paneitz
operator [6,7]. Besides, one more motivation to address polyharmonic equations is to
see whether the results available in the elliptic case (m = 1) can also be proved for
any m ⩾ 2.

For m = 1, the non-existence, existence and asymptotic analysis of positive so-
lutions for equation (1) in both bounded and unbounded domains of Rn(n ⩾ 2),
subject to various boundary conditions, have been extensively studied; see, for in-
stance, [4, 14,15].

In [15], the authors have considered the elliptic counterpart of problem (1)-(2),
which is given by −∆u = b(x)up, in D,

lim
|x|→1

u(x) = lim
|x|→∞

u(x) = 0. (3)

By using Karamata regular variation theory and the sub-supresolutions method, the
authors in [15] have shown that for p < 1 and b satisfying a suitable assumption
related to slowly varying functions, problem (3) admits a unique classical positive
solution with a specific asymptotic behavior.

In this paper our objective is to expand the result established in [15, Theorem 1.5],
to address problem (1)-(2). To achieve this and present our principal result, we must
introduce the Karamata classes K0 and K∞, which play a crucial role in our analysis
of asymptotic behavior.

Definition 1.1. (i) The class K0 is the set of all functions L0 defined on (0, a] for
some a > 0, by

L0(t) := c exp

(∫ a

t

k(s)

s
ds

)
,

where c > 0 and k is a continuous function on [0, a], with k(0) = 0.

(ii) The class K∞ is the set of all functions L∞ defined on [1,∞) by

L∞(t) := c exp

(∫ t

1

k(s)

s
ds

)
,

where c > 0 and k is a continuous function on [1,∞) such that limt→∞ k(t) = 0.

Remark 1.2. (i) A function L0 ∈ K0 if and only if L0 is a positive function in

C1 ((0, a]), for some a > 0 satisfying lim
t→0+

tL′
0(t)

L0(t)
= 0.

(ii) A function L∞ is in K∞ if and only if L∞ is a positive function in C1 ([1,∞))

satisfying lim
t→∞

tL′
∞(t)

L∞(t) = 0.

(iii) Let M be a function defined on [1,∞). The map t 7→M(t) belongs to K∞ if and
only if the map t 7→M( 1t ), defined on (0, 1], belongs to K0.



Z. Ben Yahia, Z. Zine El Abidine 3

We emphasize that the functions in the class K0 (resp. K∞) are slowly varying
near 0 (resp. ∞). The concept of slowly varying functions was originally introduced
by Jovan Karamata [13] and has proven to be extremely useful in the analysis of
qualitative properties and the asymptotic behavior of positive solutions for differential
equations and problems, due to the pioneering works of Ĉırstea and Rădulescu [10,
11]. Subsequently, these early studies have been followed by several investigations to
explore the asymptotic analysis of positive solutions for a wide variety of boundary
value problems in both bounded and unbounded domains. See, for example, the
papers [4, 9, 12] and the references cited therein.

To simplify our statements, we introduce some notations. For x ∈ D, we set
ρ(x) = 1 − 1

|x| . We denote by ∂D := {x ∈ Rn; |x| = 1} the boundary of D and

by D := D ∪ ∂D the closure of D. Moreover, for two nonnegative functions f and
g defined on a set S, we will use the notation f ≈ g to indicate the existence of a
positive constant c > 0 such that for all x ∈ S, c−1g(x) ≤ f(x) ≤ c g(x). Also,
we define L1

Loc(D) as the set of real measurable functions that are locally integrable
within D, C(D ∪∞) as the collection of continuous functions on D that have a finite
limit at ∂D and ∞. The collection C0(D) is the subset of C(D ∪ ∞) consisting of
functions vanishing continuously at ∂D and ∞. Throughout the paper we adopt the
following assumption:
(H) b is a nonnegative continuous function on D, satisfying for x ∈ D,

b(x) ≈
(
ρ(x)

)−µ|x|−λL0(ρ(x))L∞(|x|),
where µ ⩽ m(1+p)+1−p, λ⩾2m, L0∈K0 defined in (0, a], a>1, L∞∈K∞ such that:∫ a

0

tm(1+p)−p−µL0(t)dt <∞ and

∫ ∞

1

t2m−1−λL∞(t)dt <∞.

To provide an example of a function b satisfying (H), we can take the function defined
on D by:

b(x) =
(
ρ(x)

)−µ|x|−λ exp

(√
ln(

2

ρ(x)
)

)
ln−ν(2|x|),

where µ < m(1 + p) + 1− p, λ ⩾ 2m and ν > 1.
Now we are ready to present our main result.

Theorem 1.3. Let p ∈ (−1, 1) and assume (H). Then problem (1)-(2) has a positive
continuous solution u satisfying, for x ∈ D,

u(x) ≈ (ρ(x))min( 2m−µ
1−p ,m)

|x|min(λ−2m
1−p ,n−2m)

FL0,µ,p(ρ(x))GL∞,λ,p(|x|),

where FL0,µ,p is the function defined on (0, 1], by

FL0,µ,p(t) :=



1, if µ < m(1 + p),(∫ a

t
L0(s)

s ds
) 1

1−p

, if µ = m(1 + p),

(L0(t))
1

1−p , if m(1 + p) < µ < m(1 + p) + 1− p,(∫ t

0
L0(s)

s ds
) 1

1−p

, if µ = m(1 + p) + 1− p,

(4)
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and GL∞,λ,p is defined on [1,∞), by

GL∞,λ,p(t) :=



(∫∞
t

L∞(s)
s ds

) 1
1−p

, if λ = 2m,

(L∞(t))
1

1−p , if 2m < λ < n− p(n− 2m),(∫ t+1

1
L∞(s)

s ds
) 1

1−p

, if λ = n− p(n− 2m),

1, if λ > n− p(n− 2m).

(5)

The remainder of the paper is structured as follows. In Section 2, we present
some already known results on functions in K0 and K∞. In Section 3, we provide
some preliminary results related to potential theory tools associated to the operator
(−∆)m on D under Dirichlet boundary conditions. We also derive estimates on some
potential functions. Section 4 is devoted to the proof of Theorem 1.3. The last section
is reserved for an illustrative example of our main result.

2. Properties of the Karamata classes K0 and K∞

We collect in this paragraph some fundamental properties of functions belonging to
the Karamata classes K0 and K∞. We refer the interested reader to [19].

Lemma 2.1. (i) Let σ ∈ R, M, N ∈ K0 (resp. K∞). Then the functions M + N ,
MN and Mσ belong to the class K0 (resp. K∞).

(ii) Let α > 0 and M ∈ K0(resp. K∞). Then we have limt→0+ t
αM(t) = 0 (resp.

lim
t→∞

t−αM(t) = 0).

(iii) Let η > 0 and M ∈ K∞ then we have M(t+ η) ≈M(t), for t ⩾ 1.

Lemma 2.2 (Karamata’s Theorem). (a) Let γ ∈ R and L0 ∈ K0 defined on (0, a],
a > 0. Then we have the following:

(i) If γ > −1, then
∫ a

0
tγL0(t)dt converges and

∫ t

0
sγL0(s)ds ∼

t→0+

t1+γL0(t)
1+γ .

(ii) If γ < −1, then
∫ a

0
tγL0(t)dt diverges and

∫ a

t
sγL0(s)ds ∼

t→0+
− t1+γL0(t)

1+γ .

(b) Let γ ∈ R and L∞ ∈ K∞. Then we have the following:

(i) If γ < −1, then
∫∞
1
tγL∞(t)dt converges and

∫∞
t
sγL∞(s)ds ∼

t→∞
− t1+γL∞(t)

1+γ .

(ii) If γ > −1, then
∫∞
1
tγL∞(t)dt diverges and

∫ t

1
sγL∞(s)ds ∼

t→∞
t1+γL∞(t)

1+γ .

Lemma 2.3. Let L0 ∈ K0 defined on (0, a], a > 0, then we have

lim
t→0+

L0(t)∫ a

t
L0(s)

s ds
= 0 and t 7−→

∫ a

t

L0(s)

s
ds ∈ K0.
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If further,
∫ a

0
L0(s)

s ds converges, then

lim
t→0+

L0(t)∫ t

0
L0(s)

s ds
= 0 and t 7−→

∫ t

0

L0(s)

s
ds ∈ K0.

Lemma 2.4. Let L∞ ∈ K∞, then we have

lim
t→∞

L∞(t)∫ t

1
L∞(s)

s ds
= 0 and t 7→

∫ t+1

1

L∞(s)

s
ds ∈ K∞.

If further,
∫∞
1

L∞(s)
s ds converges, then

lim
t→∞

L∞(t)∫∞
t

L∞(s)
s ds

= 0 and t 7→
∫ ∞

t

L∞(s)

s
ds ∈ K∞.

3. Potential theory tools

3.1 Green’s function Gm,n

Let m ⩾ 1, n ⩾ 2 and Gm,n be the Green’s function of (−∆)m on D with Dirichlet

boundary conditions ∂ju
∂νj = 0, j ∈ {0, . . . ,m − 1}, where ∂

∂ν
is the outward normal

derivative. The explicit expression of Gm,n is given on D ×D (see [3]):

Gm,n(x, y) = km,n|x− y|2m−n

∫ [x,y]
|x−y|

1

(t2 − 1)m−1

tn−1
dt,

where km,n > 0 and for x, y in D, [x, y]2 = |x− y|2 + (|x|2 − 1)(|y|2 − 1).

In what follows, we refer to Vm,nf the m-potential of a Borel nonnegative mea-
surable function f on D defined by

Vm,nf(x) =

∫
D

Gm,n(x, z)f(z)dz, x ∈ D.

Recall that if f ∈ L1
Loc(D) and Vm,nf ∈ L1

Loc(D), then we have, (−∆)
m
(Vm,nf) = f ,

in the distributional sense.

3.2 Kato class K∞
m,n

We recall the definition and some properties of the Kato class K∞
m,n with m ⩾ 1 and

n ⩾ 2. We give, in particular, a characterization of radial functions belonging to
K∞

m,n. For more details, we refer to [3].

Definition 3.1. A Borel measurable function q defined on D belongs to the Kato
class K∞

m,n if the following hypotheses are fulfilled:

lim
r→0

(
sup
x∈D

∫
D∩B(x,r)

(
ρ(z)

ρ(x)

)m

Gm,n(x, z)|q(z)|dz
)

= 0,
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lim
M→∞

(
sup
x∈D

∫
|z|⩾M

(
ρ(z)

ρ(x)

)m

Gm,n(x, z)|q(z)|dz
)

= 0.

Proposition 3.2. Let q be a radial function on D and ν = max (0, 2m− n). Then
the following assertions are equivalent:
(i) q ∈ K∞

m,n;

(ii)



∫ ∞

1

rν(r − 1)2m−1|q(r)|dr <∞, if n ̸= 2m,

∫ ∞

1

r(r − 1)2(m−1) log(r)|q(r)|dr <∞, if n = 2m.

Proposition 3.3. Let q be a nonnegative function in K∞
m,n. The family of functions{

1

(|.|2 − 1)m−1

∫
D

Gm,n(., y)(|y|2 − 1)m−1g(y)dy, |g| ⩽ q

}
is uniformly bounded and equicontinuous on D ∪ {∞}. Consequently, it is relatively
compact in C(D ∪ {∞}).

3.3 Estimates of some potential functions

Let n > 2m ⩾ 2. We are going to give estimates on the potential functions Vm,n(bθ
p),

where p ∈ (−1, 1), b is a function satisfying (H) and θ is the function defined on D by

θ(x) :=
(ρ(x))min( 2m−µ

1−p ,m)

|x|min(λ−2m
1−p ,n−2m)

FL0,µ,p(ρ(x))GL∞,λ,p(|x|), (6)

with FL0,µ,p and GL∞,λ,p are respectively given by (4) and (5).
These estimates will be useful in the proof of our main result stated in Theorem 1.3.

Proposition 3.4. We consider the function f defined on D by

f(x) =
(
ρ(x)

)−β |x|−αM0(ρ(x))M∞(|x|),
where β ⩽ m+1, α ⩾ 2m, M0 ∈ K0, defined in (0, a], a > 1 and M∞ ∈ K∞, such that∫ a

0

tm−βM0(t)dt <∞ and

∫ ∞

1

t2m−1−αM∞(t)dt <∞.

Then, we have for x ∈ D

Vm,nf(x) ≈
(ρ(x))min(m,2m−β)

|x|min(n,α)−2m
FM0,β,0(ρ(x))GM∞,α,0(|x|).

Where FM0,β,0, GM∞,α,0 are respectively given by (4) and (5).

Proof. Let B = {x ∈ Rn; |x| < 1} denote the unit ball of Rn, and let GB
m,n be the

Green function of the polyharmonic operator (−∆)m on B with Dirichlet boundary

conditions ∂ju
∂νj = 0, for j ∈ {0, . . . ,m− 1}. It is well known that for each x, y ∈ D,

Gm,n(x, y) = |x|2m−n|y|2m−nGB
m,n(x

∗, y∗), (7)
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where x∗ = x
|x|2 represents the Kelvin transformation from D to B\{0}. Using (7),

we obtain for x ∈ D,

Vm,nf(x) =

∫
D

|x|2m−n|y|2m−nGB
m,n(x

∗, y∗)
(
ρ(y)

)−β |y|−αM0(ρ(y))M∞(|y|)dy.

By the change of variable z = y∗, we obtain that

Vm,nf(x) = |x|2m−n

∫
B

GB
m,n(x

∗, z)(δ(z))−βM0(δ(z))|z|−n−2m+αM∞(
1

|z|
)dz,

where δ(z) = 1− |z|.
We denote by N0 the function defined on (0, 1] by N0(t) = M∞( 1t ), then we

get that for x ∈ D, Vm,nf(x) = |x|2m−nV B
m,nh(x

∗), where for z ∈ B, h(z) =(
δ(z)

)−β
M0(δ(z))|z|−(n+2m−α)N0(|z|).

We put γ = n + 2m − α and ν = β. We note that γ ⩽ n, ν ⩽ m + 1, M0, N0 ∈ K0

satisfying ∫ 1

0

sn−γ−1N0(s)ds <∞ and

∫ 1

0

sm−νM0(s)ds <∞.

Hence by applying [5, Proposition 2.15], we obtain that for x ∈ D,

Vm,nf(x) ≈ |x|2m−n|x∗|min(0,2m−γ)(δ(x∗))min(m,2m−ν)M̃0,(δ(x
∗))Ñ0(|x∗|),

where the functions Ñ0 and M̃0 are defined on (0, 1) respectively by

M̃0(t) =



1, if ν < m,∫ a

t

M0(s)

s
ds, if ν = m,

M0(t), if m < ν < m+ 1,∫ t

0

M0(s)

s
ds, if ν = m+ 1,

and

Ñ0(t) =



1, if γ < 2m,∫ 1

t

N0(s)

s
ds, if γ = 2m,

N0(t), if 2m < γ < n,∫ t

0

N0(s)

s
ds, if γ = n.

A straightforward computation gives that for x ∈ D,

Vm,nf(x) ≈
(ρ(x))min(m,2m−β)

|x|min(n,α)−2m
FM0,β,0(ρ(x))GM∞,α,0(|x|).

This completes the proof. □

The following proposition plays a key role in this paper.

Proposition 3.5. Let p ∈ (−1, 1), b a function satisfying (H) and θ be the function
given by (6). Then for x ∈ D, we have Vm,n(bθ

p)(x) ≈ θ(x).
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Proof. Let p ∈ (−1, 1) and b be a function satisfying (H). From hypothesis (H) and (6)
we obtain that for x ∈ D,

(bθp)(x)≈(ρ(x))9µ+pmin( 2m9µ
19p ,m)(L0F

p
L0,µ,p

)(ρ(x))|x|9λ9pmin(λ92m
19p ,n92m)(L∞G

p
L∞,λ,p)(|x|)

:=
(
ρ(x)

)9β |x|9αM0(ρ(x))M∞(|x|).
Here, β = µ − pmin( 2m−µ

1−p ,m), α = λ + pmin(λ−2m
1−p , n − 2m), and M0 = L0F

p
L0,µ,p

,

M∞ = L∞G
p
L∞,λ,p.

We can easily see that β ⩽ m+ 1, α ⩾ 2m, M0 ∈ K0 and M∞ ∈ K∞ satisfying∫ a

0

tm−βM0(t)dt <∞ and

∫ ∞

1

t2m−1−αM∞(t)dt <∞.

Applying Proposition 3.4 and noting that min(2m − β,m) = min
(

2m−µ
1−p ,m

)
and

min(n, α)−2m = min
(

λ−2m
1−p , n− 2m

)
, we obtain by elementary calculus the desired

result. □

4. Proof of Theorem 1.3

Let b be a function satisfying (H) and let θ be the function given in (6). For x ∈ D,
we set φ(x) = (|x|2 − 1)1−mθ(x). We remark that φ ∈ C0(D). By Proposition 3.5,
there exists M > 1 such that for each x ∈ D,

1

M
θ(x) ≤ Vm,n(bθ

p)(x) ≤Mθ(x). (8)

This implies that for x ∈ D,
1

M
φ(x) ≤

(
|x|2 − 1

)1−m
Vm,n(bθ

p)(x) ≤Mφ(x). (9)

We shall use a fixed point argument to construct a solution of problem (1)-(2). With

this aim, we put C =M
1

1−|p| and we consider the closed convex set given by

Λ =

{
v ∈ C(D ∪ {∞}); 1

C
φ ≤ v ≤ Cφ

}
.

We define the operator T on Λ as follows

Tv(x) =

∫
D

(
|y|2 − 1

|x|2 − 1

)m−1

Gm,n(x, y)b(y)
(
|y|2 − 1

)(p−1)(m−1)
vp(y)dy, x ∈ D.

Let v ∈ Λ. For y ∈ D,
(
|y|2 − 1

)(p−1)(m−1)
b(y)vp(y) ⩽ C |p|q(y), where q(y) =(

|y|2−1
)1−m

b(y)θp(y). By the virtue of Proposition 3.2, we get that the function q is

in K∞
m,n. Hence, Proposition 3.3 implies that TΛ is relatively compact in C(D∪{∞}).
Next we shall prove that TΛ ⊂ Λ. Let v ∈ Λ then we have,

1

C |p|φ
p(x) ≤ vp(x) ≤ C |p|φp(x), for x ∈ D. (10)

It follows from (9) and (10) that 1
C|p|

1

M
φ ≤ Tv ≤ C |p|Mφ. Since MC |p| = C and
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TΛ ⊂ C(D ∪ {∞}), we deduce that TΛ ⊂ Λ.

Now, we will establish that T is continuous with reference to the uniform norm
on C(D ∪ {∞}) given by ∥u∥∞ = sup

x∈D∪{∞}
|u(x)| .

We consider a sequence (vk)k in Λ which converges uniformly to a function v in
Λ. For k ∈ N, we have for x ∈ D,

|Tvk(x)− Tv(x)| ≤ 1(
|x|2 − 1

)m−1

∫
D

Gm,n(x, y)b(y)
(
|y|2 − 1

)p(m−1)∣∣vpk(y)− vp(y)
∣∣dy.

Since for x, y ∈ D,

Gm,n(x, y)b(y)
(
|y|2 − 1

)p(m−1)∣∣vpk(y)− vp(y)
∣∣ ≤ 2C |p|Gm,n(x, y)b(y)θ

p(y),

we obtain from (8), that for x ∈ D,

1(
|x|2 − 1

)m−1

∫
D

Gm,n(x, y)b(y)
(
|y|2 − 1

)p(m−1)∣∣vpk(y)− vp(y)
∣∣dy <∞.

Hence, by the dominated convergence theorem we get that for x ∈ D, |Tvk(x) −
Tv(x)| → 0 as k → ∞.

Due to the fact that TΛ is relatively compact in C(D ∪ {∞}), then we obtain the
uniform convergence. Therefore, T is a compact mapping from Λ to itself. So by the
Schauder fixed point theorem, there exists a function v ∈ Λ such that Tv = v.

Put u(x) =
(
|x|2 − 1

)m−1
v(x), x ∈ D. We clearly have that u(x) ≈ θ(x), for

x ∈ D. On the other hand, one can easily that

u ∈ C0(D), (11)

and satisfies on D the integral equation

u = Vm,n(bu
p). (12)

Using hypothesis (H), (11) and (12), we obtain that the functions bup and Vm,n(bu
p)

are in L1
loc(D). Hence, u satisfies in the distributional sense,

(−∆)mu = (−∆)mVm,n(bu
p) = bup, in D.

The fact that u ∈ C0(D) implies that lim
|x|→∞

(|x|2 − 1)1−mu(x) = 0.

Finally, we obviously have

0 ≤ lim
|x|→1

(|x|2 − 1)1−mu(x) ≤M lim
|x|→1

(|x|2 − 1)1−mθ(x) = 0.

This completes the proof.

5. Example

Let p ∈ (−1, 1). We consider b the function defined on D by

b(x) =
(
ρ(x)

)−µ|x|−λ log(
4

ρ(x)
) log−α(2|x|),

where the real numbers µ, λ and α satisfy one of the following conditions:
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• µ < m(1 + p) + 1− p, λ > 2m and α ∈ R;

• µ < m(1 + p) + 1− p, λ = 2m and α > 1.

One can easily see that hypothesis (H) is fulfilled. Then by Theorem 1.3, the problem
(1)-(2) has a positive continuous solution u satisfying for x ∈ D, u(x) ≈ ϕ(ρ(x))ψ(|x|),
where

ϕ(ρ(x)) =


(ρ(x))m, if µ < m(1 + p),

(ρ(x))m
(
log( 4

ρ(x) )
) 2

1−p , if µ = m(1 + p),

(ρ(x))
2m−µ
1−p

(
log( 4

ρ(x) )
) 1

1−p , if m(1 + p) < µ < m(1 + p) + 1− p,

and

ψ(|x|) =



(
log(2|x|)

) 1−α
1−p , if λ = 2m and α > 1,

|x|
2m−λ
1−p

(
log(2|x|)

) −α
1−p , if 2m < λ < n− p(n− 2m) and α ∈ R,

|x|2m−n
(
log(2|x|)

) 1−α
1−p , if λ = n− p(n− 2m) and α < 1,

|x|2m−n
(
log(log(2|x|))

) 1
1−p , if λ = n− p(n− 2m) and α = 1,

|x|2m−n, if λ = n− p(n− 2m) and α > 1,

or λ > n− p(n− 2m) and α ∈ R.

References

[1] D. R. Adams, Lp Potential Techniques and Nonlinear PDE, In: Potential Theory, WaLter de
Gruyter & Co., Berlin, 1992.

[2] S. S. Antman, Nonlinear Problems of Elasticity, 2nd edition, Appl. Math. Sci 107, Springer,
2005.
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[15] H. Mâagli, S. Turki, Z. Zine El Abidine, Asymptotic behavior of positive solutions of semilinear
Dirichlet problem outside the unit ball. Electron, J. Differ. Equ., 2013(95) (2013), 1-14.

[16] S. Mayboroda, V. Mazya, Regularity of solutions to the polyharmonic equation in general
domains, Invent. Math., 196 (2014), 1-68.

[17] V. Meleshko, Selected topics in the history of the two dimensional biharmonic problem, Appl.
Mech. Rev., 56 (2003), 33-85.
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