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Abstract. This study is on an innovative technique of integral-type operators that adopt
the Baskakov basis function in recursion form and the Szász basis function, accentuating how
well they approximate integrable functions. The study addresses the challenge of achieving
more accurate function approximation, and mainly contributes to improving the theoretical
aspects of the proposed operators. We examine the convergence properties of the proposed
operators by employing Peetre’s K-functional, second-order modulus of smoothness, and
modulus of continuity. Additionally, we derive the Voronovskaja-type asymptotic formula
and establish approximation results in weighted spaces. Finally, we show that the proposed
operators significantly enhance the approximation accuracy through various examples and
graphs.

1. Introduction

In 1912, S.N. Bernstein [8] unveiled the seminal Bernstein polynomials, which provide
elegant and intuitive proof of the Weierstrass approximation theorem when applied
to the interval [0, 1]. Building on this foundation, Szász [22] later expanded these
operators to the infinite interval [0,∞). This pioneering work has inspired the devel-
opment of numerous linear positive operators over unbounded intervals, including the
Baskakov operators [7] defined on [0,∞). Subsequently, Gupta and Srivastava [14]
employed Baskakov and Szász basis functions to present a sequence of operators for
the integrable function µ on [0,∞) as follows:

Sµ,Pη,ℓ (µ;x) = η

∞∑
ℓ=0

Pη,ℓ(x)

∫ ∞

0

s∗η,ℓ(z)µ(z)dz, η ∈ N, (1)

where Pη,ℓ(x) =
(
η+ℓ−1
ℓ

)
xℓ(1 + x)−η−ℓ and s∗η,ℓ(x) = e−ηx (ηx)ℓ

ℓ! .
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2 Integral-type operators

Many researchers have recently concentrated on integral-type modifications of op-
erators to find better approximations on unbounded intervals (see [1, 5, 9, 10, 12, 20,
21, 25]). To enhance the approximation, Khosravian-Arab et al. [18] introduced new
modified Bernstein operators. If µ ∈ C[0, 1], then sequence of the operators are
given by

Bµ,J
M,1

η,ℓ (µ;x) =

η∑
ℓ=0

JM,1
η,ℓ µ

(
ℓ

η

)
, x ∈ [0, 1], (2)

JM,1
η,ℓ = ζ(x, η)Jη−1,ℓ(x) + ζ(1− x, η)Jη−1,ℓ−1(x), 1 ≤ ℓ ≤ η − 1, (3)

JM,1
η,0 = ζ(x, η)(1− x)η−1, JM,1

η,η = ζ(1− x, η)η−1, and

ζ(−x, η) = ζ1(η)(−x) + ζ0(η), and where ζ0(η), ζ1(η) are unknown sequences.

Recently, some researchers constructed integral-type operators by using a modified
Bernstein basis function (3) to find a better approximation. To see relevant work in
this area, one may refer to [2, 3, 6, 15,17,23].

In the same way, very recently, Acu et al. [4] introduced a sequence of modified
Baskakov-type operators as follows:

Qµ,P
M,1

η,ℓ (µ;x) =

∞∑
ℓ=0

PM,1
η,ℓ µ

(
ℓ

η

)
, x ∈ [0,∞). (4)

The fundamental polynomials satisfy the recursion

PM,1
η,ℓ = ζ(−x, η)Pη+1,ℓ(x) + ζ(1 + x, η)Pη+1,ℓ−1(x), ℓ ≥ 1,

PM,1
η,0 = ζ(−x, η)(1 + x)−η−1, and

ζ(−x, η) = ζ1(η)(−x) + ζ0(η), where ζ0(η), ζ1(η) are unknown sequences.

2. Construction of the operators

We construct a new class of operators for contribute to improving the theoretical
aspects of the proposed operators. If µ is a integrable function on [0,∞) such that∫∞
0
s∗η,ℓ(z)µ(z)dz <∞, then

Hµ,PM,1

η,ℓ (µ;x) = η

∞∑
ℓ=0

PM,1
η,ℓ

∫ ∞

0

s∗η,ℓ(z)µ(z)dz, η ∈ N. (5)

In particular, if ζ0(η) = −1, ζ1(η) = 1, then (5) reduces to (1). Note that throughout
the paper, we consider the relation ζ0(η) + ζ1(η) = 1− ζ0(η).

The structure of the paper is outlined as follows. We create an innovative tech-
nique of integral-type operators that adopt the Baskakov basis function in recursion
form and the Szász basis function in Section 2. We obtain some basic results for the
operators in Section 3. Section 4 explores the convergence properties of the proposed
operators by employing Peetre’s K-functional, second-order modulus of smoothness,
and modulus of continuity. Additionally, we derive the Voronovskaja-type asymp-
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totic formula. We establish approximation results in weighted spaces in Section 5.
In the final section, we show how the proposed operators significantly enhance the
approximation accuracy.

3. Basic results

We present several lemmas that will be used in the proofs of the main results.

Lemma 3.1. For er(z) = zr and r = 0, 1, 2, 3, 4, then the moments of the operators (5)
as follows:

Hµ,PM,1

η,ℓ (e0(z);x) = 1,

Hµ,PM,1

η,ℓ (e1(z);x) = x+
(2x+ 1)(1− ζ0(η)) + 1

η
,

Hµ,PM,1

η,ℓ (e2(z);x) = x2 +
x2(η + 4(η + 1)(1− ζ0(η)))

η2

+
2x(2η + (η + 5)(1− ζ0(η))) + 4(1− ζ0(η)) + 2

η2
,

Hµ,PM,1

η,ℓ (e3(z);x) = x3 +
x3(η(3η + 2) + 6(η + 1)(η + 2)(1− ζ0(η)))

η3

+
3(η + 1)x2(3η + (η + 14)(1− ζ0(η)))

η3

+
18x(η + (η + 3)(1− ζ0(η))) + 18(1− ζ0(η)) + 6

η3
,

Hµ,PM,1

η,ℓ (e4(z);x) = x4 +
x4(η(6η2 + 11η + 6) + 8(η + 1)(η + 2)(η + 3)(1− ζ0(η)))

η4

+
4(η + 1)(η + 2)x3(4η + (η + 27)(1− ζ0(η)))

η4

+
24(η + 1)x2(3η + 2(η + 8)(1− ζ0(η)))

η4

+
48x(2η + (3η + 7)(1− ζ0(η))) + 96(1− ζ0(η)) + 24

η4
.

Proof. We have

Iη,ℓ(r) =

∫ ∞

0

zrs∗η,ℓ(z)dz =
η−r−1(ℓ+ r)!

ℓ!
,

∞∑
ℓ=0

Iη,ℓ(r)ζ(−x, η)Pη+1,ℓ(x) = η−r−1r!(1 + x)−η−1(1 + x− (1 + 2x)(1− ζ0(η))

× 2F1

(
r + 1, η + 1; 1;

x

1 + x

)
,
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and
∞∑
ℓ=1

Iη,ℓ(r)ζ(1 + x, η)Pη+1,ℓ−1(x) = η−r−1(r + 1)!(1 + x)−η−1((1 + 2x)(1− ζ0(η))− x)

× 2F1

(
r + 2, η + 1; 2;

x

1 + x

)
,

where hypergeometric function 2F1(a, b; c;x) =
∞∑
i=0

(a)i(b)i
(c)ii!

xi, (a)i =
i−1∏
j=0

(a+ j).

Using the relations above, we can easily compute the moments for the proposed
operators. □

Lemma 3.2. Let αη,r(x) = Hµ,PM,1

η,ℓ ((e1(z)− xe0(z))
r;x) and r = 1, 2, 4, we calculate

easily central moments by using Lemma (3.1), we get

αη,1(x) =
(2x+ 1)(1− ζ0(η)) + 1

η
,

αη,2(x) =
x2(η + 4(1− ζ0(η))) + 2x(η + 5(1− ζ0(η))) + 4(1− ζ0(η)) + 2

η2
, (6)

αη,4(x) =
x4(3η(η + 2) + 8(5η + 6)(1− ζ0(η)))

η4

+
4x3(η(3η + 8) + (41η + 54)(1− ζ0(η)))

η4

+
12x2(η(η + 6) + 2(9η + 16)(1− ζ0(η)))

η4

+
24x(3η + (3η + 14)(1− ζ0(η))) + 96(1− ζ0(η)) + 24

η4
. (7)

In this paper, (6) and (7) are referred to as αη,2(x) and αη,4(x) in the Theorems 4.2, 4.3,
4.4, 4.5, and 5.2.

Now, we define a normed space given by SBd [0,∞) = {µ ∈ C[0,∞) : µ is bounded
over [0,∞) and

∫∞
0
s∗η,ℓ(z) µ(z)dz <∞} that has the norm

∥µ∥ = sup
x∈[0,∞)

|µ(x)|. (8)

Lemma 3.3. If ρ0(η) is a bounded sequence, and µ ∈ SBd [0,∞), then we get

|Hµ,PM,1

η,ℓ (µ;x)| ≤ ∥µ∥. (9)

4. Direct result and asymptotic formula

In this section, we explore some important results.
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Theorem 4.1. Let µ ∈ SBd [0,∞). If lim
η→∞

ζ0(η) exists, then lim
η→∞

Hµ,PM,1

η,ℓ (µ;x) =

µ(x) holds uniformly on compact subsets of [0,∞).

Proof. Lemma 3.1 allows for easy to establish that lim
η→∞

Hµ,PM,1

η,ℓ (er(z);x) = xr for

r = 0, 1, 2, 3, 4, and hence the well known Bohman-Korovkin’s theorem due to [19],

operators Hµ,PM,1

η,ℓ converge uniformly on every compact subset of [0,∞) to µ(x). □

For µ ∈ SBd [0,∞) , the Peetre’s K-functional is given by

Kf
2 (µ, δ) = inf

ψ∈W∗
C2([0,∞))

{∥µ− ψ∥+ δ∥ψ
′′
∥}, where δ > 0, and

W ∗
C2([0,∞)) = {ψ ∈ SBd [0,∞) : ψ

′
, ψ

′′
∈ SBd [0,∞)}.

Kf
2 (µ, δ) ≤ M1ω2(µ,

√
δ), (10)

where ω2(µ,
√
δ) = sup

0<ϵ∗≤
√
δ

(
sup

x,x+ϵ∗,x+2ϵ∗∈[0,∞)

|µ(x+ 2ϵ∗)− 2µ(x+ ϵ∗) + µ(x)|

)
is called the second order of modulus of continuity of µ. The expression

ω(µ, δ) = sup
|z−x|≤δ

|µ(z)− µ(x)| (11)

is commonly referred to as the modulus of continuity of µ, where x, z ∈ [0,∞).

Theorem 4.2. Let ζ0(η) be a bounded sequence. If µ ∈ SBd [0,∞), and δ = αη,2(x)+(
(2x+1)(1−ζ0(η))+1

η

)2
, then

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ M1ω2(µ,
√
δ/2) + ω

(
µ,

(2x+ 1)(1− ζ0(η)) + 1

η

)
,

where M1 > 0 is constant.

Proof. Firstly, we introduce

N µ,PM,1

η,ℓ (µ;x) = Hµ,PM,1

η,ℓ (µ;x)− µ

(
x+

(2x+ 1)(1− ζ0(η)) + 1

η

)
+ µ(x). (12)

Let ψ ∈W ∗
C2([0,∞)), then by Taylor’s theorem

ψ(z) = ψ(x) + (z − x)ψ
′
(x) +

1

2

z∫
x

(z − w)ψ
′′
(w)dw. (13)

Applying N µ,PM,1

η,ℓ on (13),

N µ,PM,1

η,ℓ (ψ;x) = ψ(x) + ψ
′
(x)N µ,PM,1

η,ℓ (z − x;x) +
1

2
N µ,PM,1

η,ℓ

 z∫
x

(z − w)ψ
′′
(w)dw;x

 .
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By Lemma 3.2 and (12), N µ,PM,1

η,ℓ (z − x;x) = 0. Therefore,

|N µ,PM,1

η,ℓ (ψ;x)− ψ(x)| ≤ N µ,PM,1

η,ℓ

 z∫
x

(z − w)|ψ
′′
(w)|dw;x


≤ ∥ψ

′′
∥

∣∣∣∣∣∣N µ,PM,1

η,ℓ

 z∫
x

(z − w)dw;x

∣∣∣∣∣∣ .
By (12),

|N µ,PM,1

η,ℓ (ψ;x)−ψ(x)| ≤ ∥ψ
′′
∥

∣∣∣∣∣∣(Hµ,PM,1

η,ℓ

 z∫
x

(z−w)dw;x

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ x+

(2x+1)(1−ζ0(η))+1
η

x

(
x+

(2x+1)(1−ζ0(η))+1

η
−w
)
dw

∣∣∣∣∣
)

≤ ∥ψ
′′
∥

(
αη,2(x)+

(
(2x+1)(1−ζ0(η))+1

η

)2
)

= δ∥ψ
′′
∥.

We have

Hµ,PM,1

η,ℓ (µ;x)− µ(x) = N µ,PM,1

η,ℓ (µ− ψ;x)− (µ− ψ)(x) +N µ,PM,1

η,ℓ (ψ;x)− ψ(x)

+ µ

(
x+

(2x+ 1)(1− ζ0(η)) + 1

η

)
− µ(x).

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ |N µ,PM,1

η,ℓ (µ− ψ;x)− (µ− ψ)(x)|+ |N µ,PM,1

η,ℓ (ψ;x)− ψ(x)|

+

∣∣∣∣µ(x+
(2x+ 1)(1− ζ0(η)) + 1

η

)
− µ(x)

∣∣∣∣
≤ 2∥µ− ψ∥+ δ∥ψ

′′
∥+ ω

(
µ,

(2x+ 1)(1− ζ0(η)) + 1

η

)
.

Taking infimum of ψ on W ∗
C2([0,∞)) of the right hand side of the inequality,

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ Kf
2

(
µ,
δ

2

)
+ ω

(
µ,

(2x+ 1)(1− ζ0(η)) + 1

η

)
.

Using (10), we get

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ M1ω2(µ,
√
δ/2) + ω

(
µ,

(2x+ 1)(1− ζ0(η)) + 1

η

)
.

Now, we address Voronovskaja-type asymptotic formula [24] for the operatorsHµ,PM,1

η,ℓ .

Theorem 4.3. If lim
η→∞

ζ0(η) = a0 ∈ R, and functions µ, µ
′
, µ

′′ ∈ SBd [0,∞), then

lim
η→∞

η[Hµ,PM,1

η,ℓ (µ;x)− µ(x)] = ((2x+ 1)(1− a0) + 1)µ
′
(x) + x(x+ 2)

µ
′′
(x)

2
.
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Proof. By the Taylor’s theorem

µ(z) = µ(x) + (z − x)µ
′
(x) +

(z − x)2

2
µ

′′
(x) + hB(x; z)(z − x)2, (14)

where hB(x; z) is the Peano form of the remainder, hB(x; z) ∈ SBd [0,∞), and
limz→x hB(x; z) = 0.

Applying Hµ,PM,1

η,ℓ on (14),

Hµ,PM,1

η,ℓ (µ;x) = µ(x) + µ
′
(x)Hµ,PM,1

η,ℓ ((z − x);x) +
µ

′′
(x)

2
Hµ,PM,1

η,ℓ ((z − x)2;x)

+Hµ,PM,1

η,ℓ (hB(x; z)(z − x)2;x).

lim
η→∞

η[Hµ,PM,1

η,ℓ (µ;x)− µ(x)] = µ
′
(x) lim

η→∞
(ηαη,1(x)) +

µ
′′
(x)

2
lim
η→∞

(ηαη,2(x))

+ lim
η→∞

(ηHµ,PM,1

η,ℓ (hB(x; z)(z − x)2;x))

= ((2x+ 1)(1− a0) + 1)µ
′
(x) + x(x+ 2)

µ
′′
(x)

2
+ Eη,

where Eη = lim
η→∞

(ηHµ,PM,1

η,ℓ (hB(x; z)(z − x)2;x)).

Using Cauchy-Bunyakovsky-Schwarz inequality, we get

ηHµ,PM,1

η,ℓ (hB(x; z)(z − x)2;x) ≤
√
η2Hµ,PM,1

η,ℓ (h2B(x; z);x)
√
αη,4(x).

We observe that if η → ∞, then z → x and lim
z→x

hB(x; z) = 0. It follows that

lim
η→∞

(η2Hµ,PM,1

η,ℓ (h2B(x; z);x)) = 0 uniformly with respect to x ∈ [0,∞).

So, Eη = lim
η→∞

(ηHµ,PM,1

η,ℓ (hB(x; z)(z − x)2;x)) = 0. This completes the proof. □

Here, we examine how to assess the degree of approximation by using the Ditzian-
Toitik moduli of smoothness. By [11], let

ω2
θλ(µ, δ) = sup

0<ϵ∗≤δ

(
sup

x,x+ϵ∗θλ,x−2ϵ∗θλ∈[0,∞)

∣∣µ(x+ ϵ∗θλ)− 2µ(x) + µ(x− ϵ∗θλ)
∣∣) ,

and the K-functional is given by

Kf
2,θλ

(µ, δ2) = inf
ψ′∈A.C.loc([0,∞))

{∥µ− ψ∥+ δ2∥θ2λψ
′′
∥},

and E2
λ = {ψ ∈ SBd [0,∞) : ψ

′ ∈ A.C.loc([0,∞)), ∥θ2λψ′′∥ < ∞}, where θ2(x) = x,
0 ≤ λ ≤ 1. We have K2,θλ(µ, δ

2) ∼ ω2
θλ(µ, δ).

Theorem 4.4. Let ζ0(η) be a bounded sequence. If µ ∈ SBd [0,∞) and x ∈ [0,∞),
then

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ 4ω2
θλ

(
µ,
δ
(1−λ)
η (x)√

2n

)
+ ω

(
µ,

(2x+ 1)(1− ζ0(η)) + 1

η

)
.
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Proof. Consider

N µ,PM,1

η,ℓ (µ;x) = Hµ,PM,1

η,ℓ (µ;x)− µ

(
x+

(2x+ 1)(1− ζ0(η)) + 1

η

)
+ µ(x). (15)

Let ψ ∈ E2
λ, by Taylor’s theorem

ψ(z) = ψ(x) + (z − x)ψ
′
(x) +

1

2

z∫
x

(z − w)ψ
′′
(w)dw. (16)

Applying N µ,PM,1

η,ℓ on (16),

N µ,PM,1

η,ℓ (ψ;x) = ψ(x) + ψ
′
(x)N µ,PM,1

η,ℓ (z − x;x) +
1

2
N µ,PM,1

η,ℓ

 z∫
x

(z − w)ψ
′′
(w)dw;x

 .

(17)

By Lemma 3.2 and (15), N µ,PM,1

η,ℓ (z − x;x) = 0. We have

|N µ,PM,1

η,ℓ (µ;x)| ≤ 3∥µ∥, (18)

and αη,2(x) ≤
1

η
δ2η(x),

where δ2η(x) =
θ2(x)(η + 4(1− ζ0(η))) + 2θ(x)(η + 5(1− ζ0(η))) + 4(1− ζ0(η)) + 2

η
.

From [11, p. 141], for z < w < x, we have

|z − w|
θ2λ(w)

≤ |z − x|
θ2λ(x)

and
|z − w|
δ2λη (w)

≤ |z − x|
δ2λη (x)

. (19)

By (15) and (17),

|N µ,PM,1

η,ℓ (ψ;x)− ψ(x)| ≤

∣∣∣∣∣∣N µ,PM,1

η,ℓ

 z∫
x

(z − w)ψ
′′
(w)dw;x

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Hµ,PM,1

η,ℓ

 z∫
x

(z − w)ψ
′′
(w)dw;x

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ x+

(2x+1)(1−ζ0(η))+1
η

x

(
x+

(2x+1)(1−ζ0(η))+1

η
−w
)
ψ

′′
(w)dw

∣∣∣∣∣ ,
using (19),

|N µ,PM,1

η,ℓ (ψ;x)−ψ(x)| ≤ ∥δ2λη ψ
′′
∥Hµ,PM,1

η,ℓ

(
(z−x)2

δ2λη (x)
;x

)
+
∥δ2λη ψ

′′∥
δ2λη (x)

(
(2x+1)(1−ζ0(η))+1

η

)2

≤ δ−2λ
η (x)∥δ2λη ψ

′′
∥ (αη,2(x))+δ−2λ

η (x)∥δ2λη ψ
′′
∥
(
Hµ,PM,1

η,ℓ ((z−x);x)
)2

≤ δ−2λ
η (x)∥δ2λη ψ

′′
∥
δ2η(x)

η
+δ−2λ

η (x)∥δ2λη ψ
′′
∥
δ2η(x)

η
.
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Hence,

|N µ,PM,1

η,ℓ (ψ;x)− ψ(x)| ≤ 2δ
2(1−λ)
η (x)

η
∥δ2λη ψ

′′
∥. (20)

Using (8), (18), and (20),

|N µ,PM,1

η,ℓ (µ;x)−µ(x)| ≤ |N µ,PM,1

η,ℓ (µ−ψ;x)|+|N µ,PM,1

η,ℓ (ψ;x)−ψ(x)|+|µ(x)−ψ(x)|

≤ 4∥µ−ψ∥+|N µ,PM,1

η,ℓ (ψ;x)−ψ(x)|

≤ 4∥µ−ψ∥+2δ
2(1−λ)
η (x)

η
∥δ2λη ψ

′′
∥.

Hence,

|Hµ,PM,1

η,ℓ (µ;x)−µ(x)| ≤ |N µ,PM,1

η,ℓ (µ;x)−µ(x)|+
∣∣∣∣µ(x+(2x+1)(1−ζ0(η))+1

η

)
−µ(x)

∣∣∣∣
≤ 4ω2

θλ

(
µ,
δ
(1−λ)
η (x)√

2η

)
+ω

(
µ,

(2x+1)(1−ζ0(η))+1

η

)
.

Theorem 4.5. For µ ∈ SBd [0,∞) and bounded sequence ζ0(η), then

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ 2ω(µ, δ), where δ =
√
αη,2(x).

Proof. We use the property of modulus of continuity,

|µ(z)− µ(x)| ≤ ω(µ, |z − x|) ≤
(
1 +

1

δ
|z − x|

)
ω(µ, δ).

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ aη,ℓ(x)

∫ ∞

0

s∗η,ℓ(z) |µ(z)− µ(x)| dz

≤
(
1 +

1

δ
∗ aη,ℓ(x)

∫ ∞

0

s∗η,ℓ(z) |z − x| dz
)
ω(µ, δ),

where aη,ℓ(x) = η
∞∑
ℓ=0

PM,1
η,ℓ (x).

By Cauchy-Bunyakovsky-Schwarz inequality,

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)|

≤

(
1+

(
1

δ

√
aη,ℓ(x)

∫ ∞

0

s∗η,ℓ(z)dz

√
aη,ℓ(x)

∫ ∞

0

s∗η,ℓ(z)(z − x)2dz

))
ω(µ, δ)

=

(
1+

1

δ

√
(Hµ,PM,1

η,ℓ ((z − x)2;x)

)
ω(µ, δ)=

(
1+

1

δ

√
αη,2(x)

)
ω(µ, δ)=2ω(µ, δ).
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5. Weighted approximation

The purpose of this section is to determine approximation properties of the operators

Hµ,PM,1

η,ℓ using weighted spaces of continuous functions.

Let SKyw([0,∞)) be a normed space specified by

SKyw([0,∞)) = {µ : |µ(x)| ≤ Kµyw(x), x ∈ [0,∞)},

endowed with the norm ∥µ∥2 = sup
x∈[0,∞)

|µ(x)|
yw(x)

,

where yw(x) = 1 + x2 and constant Kµ > 0 depends on function µ.
Moreover, we define following spaces,

(i) Ayw([0,∞)) = {µ ∈ SKyw([0,∞)) : µ is continuous function on [0,∞)},

(ii) A∗
yw([0,∞)) = {µ ∈ Ayw([0,∞)) : lim

x→∞

µ(x)

yw(x)
exists in R}.

It was shown in [16] that for any µ ∈ A∗
yw([0,∞)), the weighted modulus of

continuity is denoted by

Ω(µ; δ) = sup
0≤e∗<δ,x∈[0,∞)

|µ(x+ e∗)− µ(x)|
(1 + e∗2)yw(x)

. (21)

Lemma 5.1. If µ ∈ Ayw([0,∞)), then
(i) Ω1(µ; δ) is a monotonically increasing function of δ,

(ii) Ω1(µ;βδ) ≤ 2(1 + β)(1 + δ2)Ω1(µ; δ), β > 0,

(iii) Ω1(µ; δ) → 0 as δ → 0.
The definition of weighted modulus of continuity enables us to write

|µ(z)− µ(x)| ≤ yw(x)(1 + (z − x)2)Ω1(µ; |z − x|). (22)

Theorem 5.2. If ζ0(η) is a bounded sequence, and µ ∈ SBd [0,∞), then

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)|

≤2

(
1 +

1

η

)
yw(x)Ω1

(
µ;

1
√
η

)(
1 +

x(x+ 2)

η
(E1 +

√
E1E2x(x+ 2)) +

√
E1x(x+ 2)

)
.

Proof. For x, z ∈ [0,∞). From (22) and Lemma 5.1, we get

|µ(z)− µ(x)| ≤ (1 + (z − x)2)yw(x)Ω1

(
µ;

|z − x|δ
δ

)
≤ 2(1 + δ2)yw(x)

(
1 +

|z − x|
δ

)
(1 + (z − x)2)Ω1(µ; δ). (23)

Applying Hµ,PM,1

η,ℓ on (23),

|Hµ,PM,1

η,ℓ (µ;x)−µ(x)| ≤ 2(1+δ2)yw(x)Ω1(µ; δ)Hµ,PM,1

η,ℓ

[(
1+

|z−x|
δ

)
(1+(z−x)2);x

]
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=2(1+δ2)yw(x)Ω1(µ; δ)

[
1+αη,2(x)+

1

δ
Hµ,PM,1

η,ℓ (|z−x|;x)+1

δ
Hµ,PM,1

η,ℓ (|z−x|(z−x)2;x)
]
.

By Cauchy-Bunyakovsky-Schwarz inequality, we get

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)| ≤ 2(1 + δ2)yw(x)Ω1(µ; δ) [1 + αη,2(x)

+
1

δ
(αη,2(x))

1/2 +
1

δ
(αη,2(x))

1/2
(αη,4(x))

1/2

]
. (24)

From (6) and (7), we have αη,2(x) ≤ E1x(x+2)
η and αη,4(x) ≤ E2x

2(x+2)2

η2 , where E1 > 1
and E2 > 1 are constants.

Using the above inequalities in (24) and choosing δ = 1√
η , we get desired result. □

Theorem 5.3. If ζ0(η) is a bounded sequences, then for each µ ∈ A∗
yw([0,∞)) and

x ∈ [0,∞), we have

lim
η→∞

∥Hµ,PM,1

η,ℓ (µ; .)− µ∥2 = 0.

Proof. Using [13], it is sufficient to verify the following conditions to show this theorem

lim
η→∞

∥Hµ,PM,1

η,ℓ (er;x)− xr∥2 = 0, r = 0, 1, 2. (25)

We have Hµ,PM,1

η,ℓ (e0;x) = 1, so for r = 0 (25) holds. By Lemma 3.1,

∥Hµ,PM,1

η,ℓ (e1;x)− x∥2 = sup
x∈[0,∞)

|Hµ,PM,1

η,ℓ (e1;x)− x|
yw(x)

=
1

η
sup

x∈[0,∞)

(
(2x+ 1)(1− ζ0(η)) + 1

yw(x)

)
→ 0 as η → ∞.

For r = 1, the condition (25) is satisfied. Again by Lemma 3.1,

∥Hµ,PM,1

η,ℓ (e2;x)−x2∥2 = sup
x∈[0,∞)

|Hµ,PM,1

η,ℓ (e2;x)−x2|
yw(x)

=
1

η2
sup

x∈[0,∞)

(
x2(η+4(η+1)(1−ζ0(η)))+2x(2η+(η+5)(1−ζ0(η)))

yw(x)
+
4(1−ζ0(η))+2

yw(x)

)
.

Evidently, ∥Hµ,PM,1

η,ℓ (e2;x) − x2∥2 → 0 as η → ∞, for r = 2, the condition (25) is

satisfied. Hence, the theorem proved. □

Corollary 5.4. For bounded sequence ζ0(η), and µ ∈ Ayw([0,∞)), then

lim
η→∞

sup
x∈[0,∞)

|Hµ,PM,1

η,ℓ (µ;x)− µ(x)|
(yw(x))s+1

= 0, where s > 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|Hµ,PM,1

η,ℓ (µ;x)−µ(x)|
(yw(x))s+1

≤ sup
x≤x0

|Hµ,PM,1

η,ℓ (µ;x)−µ(x)|
(yw(x))s+1

+ sup
x>x0

|Hµ,PM,1

η,ℓ (µ;x)−µ(x)|
(yw(x))s+1



12 Integral-type operators

≤ ∥Hµ,PM,1

η,ℓ (µ;x)−µ∥C[0,x0]+∥µ∥2 sup
x>x0

|Hµ,PM,1

η,ℓ (1 + z2;x)|
(yw(x))s+1

+ sup
x>x0

|µ(x)|
(yw(x))s+1

.

According to Theorem 4.1, the second term from the leftmost in the above inequal-

ity tends to 0 as η → ∞, and for the fixed x0, terms ∥µ∥2 sup
x>x0

|Hµ,PM,1

η,ℓ (1 + z2;x)|
(yw(x))s+1

and sup
x>x0

|µ(x)|
(yw(x))s+1

can be made sufficiently small if we choose x0 large enough.

Thus, the goal of proof is proved. □

6. Graphical and numerical analysis

This section evaluates the performance of the operators through Examples 6.1 and 6.2.

The graphs in Figures 1, 2, and 3 present a comparison of the operators Hµ,PM,1

η,ℓ and

Sµ,Pη,ℓ for various choices of η and ζ0(η). These comparisons reveal that operators

Hµ,PM,1

η,ℓ performs better than Sµ,Pη,ℓ . We compute the absolute error Er
Hµ,PM,1

η,ℓ

=

|Hµ,PM,1

η,ℓ (µ;x) − µ(x)| for different values of x over the interval [0, 10]. The results
are presented in Tables 1, 2, and 3. All computations were carried out using Wolfram
Mathematica, version 12.0.

Example 6.1. Let us consider test function µ(x) = x3 − 2x2 +3, and sequence ζ0(η)
such that ζ0(η) + ζ1(η) = 1− ζ0(η).

0.0 0.5 1.0 1.5 2.0

2.0

2.5

3.0

3.5 ℋ25,ℓμ,PM,1 25,ℓμ,P

ℋ50,ℓμ,PM,1 50,ℓμ,P

x
3-2x2+3

Figure 1: Convergence behaviour of the operators Hµ,PM,1

η,ℓ and Sµ,P
η,ℓ , when ζ0(η) = 1 + 10

η
.
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x Er
Hµ,PM,1

25,ℓ

ErSµ,P
25,ℓ

Er
Hµ,PM,1

50,ℓ

ErSµ,P
50,ℓ

2 1.065600000 1.574784000 0.650624000 0.753648000
4 5.667609600 11.42438400 4.283129600 5.576048000
6 14.54256640 35.45638400 12.59293440 17.38404800
8 28.42836480 79.58438400 27.27639680 39.09604800
10 48.06289920 149.7219840 50.02987520 73.63044800

Table 1: Absolute error table, when ζ0(η) = 1 + 10
η
.

Example 6.2. Let us consider test function µ(x) = e−5xx2, and sequence ζ0(η) such
that ζ0(η) + ζ1(η) = 1− ζ0(η).

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

0.025 ℋ50,ℓμ,PM,150,ℓμ,P
ℋ100,ℓμ,PM,1100,ℓμ,P
e
-5 x
x
2

Figure 2: Convergence behaviour of the operators Hµ,PM,1

η,ℓ and Sµ,P
η,ℓ , when ζ0(η) =

η−1
η+1

.

x Er
Hµ,PM,1

50,ℓ

ErSµ,P
50,ℓ

Er
Hµ,PM,1

100,ℓ

ErSµ,P
100,ℓ

0.2 0.000125888 0.000185218 0.000066347 0.000083740
0.4 0.002201000 0.002200320 0.001191800 0.001191750
0.6 0.001329850 0.001290670 0.000679063 0.000667798
0.8 0.000006117 0.000042608 0.000049574 0.000063174
1.0 0.000738063 0.000780769 0.000432683 0.000444103

Table 2: Absolute error table, when ζ0(η) =
η−1
η+1

.
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0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

0.025

ℋ5,ℓμ,PM,1
5,ℓμ,P

ℋ15,ℓμ,PM,1
15,ℓμ,P
e
-5 x
x
2

Figure 3: Convergence behaviour of the operators Hµ,PM,1

η,ℓ and Sµ,P
η,ℓ , when ζ0(η) =

2
η2+4

.

x Er
Hµ,PM,1

5,ℓ

ErSµ,P
5,ℓ

Er
Hµ,PM,1

15,ℓ

ErSµ,P
15,ℓ

2 0.000228556 0.002865275 0.000298000 0.001111522
4 0.000118996 0.000589816 0.000000779 0.000036130
6 0.000060832 0.000165405 0.000000324 0.000001787
8 0.000027798 0.000059520 0.000000045 0.000000141
10 0.000013539 0.000025397 0.000000006 0.000000016

Table 3: Absolute error table, when ζ0(η) =
2

η2+4
.

7. Conclusion

The present study explores an innovative technique of integral-type operators that
adopt the Baskakov basis function in recursion form and the Szász basis function,
emphasizing how well they approximate integrable functions over the interval [0,∞).
A vital component of the investigation is to assess the flexibility and convergence
of the proposed operators, which count on the choice of the sequence ζ0(η) and η,
respectively. It examines how variations in these traits influence the performance of
the proposed operators. In addition, the performance of the operators under various
choices η and sequence ζ0(η) is also visualized using the graphs. The graphs offer a
simpler overview of how these traits influence the behavior of the proposed operators,
which can be especially valuable when communicating findings to others.

Acknowledgement. The authors are grateful to the referee for several valuable
comments and suggestions leading to an overall improvement of this paper.
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