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SOME d-TRANSFORM FUNCTORS BASED ON AN IDEAL

A. Makhsoos, N. Zamani and M. S. Sayedsadeghi

Abstract. Let R be a commutative Noetherian ring, b be an ideal of R, M an R-module
and let d be a non-negative integer. We introduce a general d-transform functor Td,b(M, 9)
and its right derived functors T i

d,b(M, 9), i ∈ N0, on the category of R-modules and study
their various properties. The connection of these functors with some kind of generalized local
cohomology functors Hi

d,b(M, 9) is discussed. When both M and N are finitely generated,
some finiteness results on T i

d,b(M,N) and Hi
d,b(M,N) are concluded. Then, we study how

the depth and dimension of certain subsets of Spec(R) affect the behavior and vanishing of
these modules.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with a non-zero
identity, and M and N are two R-modules. Let a and b be two ideals of R, and let
d be a non-negative integer. The basic theory of the a-transform functor Da(9) :=
lim−→n∈N HomR(an, 9) and its connections with the local cohomology functor have ap-

peared and been studied in [6] (see also [5, 10]). For an R-module X, the R-module
Da(X) is an important algebraic tool in studying ordinary local cohomology mod-
ules Hi

a(M).
In [15], the authors defined a new functor Td(9) and its right derived functors

and studied its connection with the functor Ud(9) and with the cohomology functors
Hi

d(9), i ∈ N0, defined in [3]. In this paper, we study to what extent these results are
valid for generalized local cohomology. To be precise, let I(R) be the set of all ideals
of R, and put Σd = a ∈ I(R) : dim(R/a) ≤ d.

We define the set Γd,b(X) consisting of all elements x ∈ X such that ax ⊆ bx
for some a ∈ Σd. Then Γd,b(9) is an R-linear left exact functor on the category
of R-modules C(R), and we consider its ith (i ≥ 0) right derived functor, denoted
by Hi

d,b(9).
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2 d-transform functors based on an ideal

Now, for two modules M and N , we put Hi
d,b(M,N) := Hi(Γd,b(HomR(M,EN ))),

where i ≥ 0 and EN is any injective resolution of N .
To give a more concrete description of the aim of the paper, we consider three other

sets W̃ (d, b) = {I ∈ I(R) : ∃a ∈ Σd, a ⊆ I + b}, W (d, b) := {p ∈ Spec(R)| ∃a ∈ Σd,
a ⊆ p + b} and S∗

k(M,N) := {p ∈ Supp(M)|depthRp
(Np) + dim(R/p) ≤ k}, k ∈ N0

(cf. [12, 14]). Then, with the reverse inclusion, W̃ (d, b) (and also Σd) is a system of
ideals in R in the sense of [6, p. 21]. Now we define the d-transform functor Td,b(M, 9)
supported in b by Td,b(M,N) = lim−→a∈W̃ (d,b)

Hom(aM,N), for all N ∈ C(R).

Evidently, Td,b(M, 9) is R-linear and left exact, and its right derived functors
T i
d,b(M, 9), i ∈ N0, form a strongly connected sequence in the sense of [6, Defini-

tion 1.3.1]. It is convenient to mention that, using standard arguments of homolog-
ical algebra [11, Theorem 6.68] (Axioms for covariant Ext), we have Hi

d,b(M,N) ∼=
lim−→a∈W̃ (d,b)

ExtiR(M/aM,N). From this fact and using [11, Lemma 5.30], it is easily

seen that for each i ∈ N0 we have Γd,b(H
i
d,b(M,N)) = Hi

d,b(M,N).

The aim of this paper is to study the structure of the modules T i
d,b(M,N) and their

connections with Hi
d,b(M,N), i ∈ N0. In Section 2, we present some basic auxiliary

facts concerning the modules Γd, b(M), Γd,b(M,N), Hi
d,b(M,N), and T i

d,b(M,N). It
is shown, for example, that when M is finitely generated, or when Γd,b(N) = N , these
modules exhibit interesting properties and coincide with previously known structures.
In Section 3, we assume that M is finitely generated and obtain further isomorphism
results, which are collected in Theorem 3.1. It is concluded that whenever both M
and N are finitely generated, the set of associated primes of T i

d,b(M,N) is finite. In
Section 4, we investigate how the dimensions of the sets W (d, b) and S∗d, b(M,N) af-
fect the vanishing of the modules Hid, b(M,N) and T i

d,b(M,N). For any unexplained
notation, we refer the reader to [6, 12].

2. Preliminaries

In this section we provide some elementary facts concerning the modules Γd,b(M),
Γd,b(M,N), Hi

d,b(M,N) and T i
d,b(M,N). It is seen that like Γa(9) and Γd(9), the

functor Γd,b(9) keeps the injective property. We collect the properties in the following
lemma. For an R-module X, the projective dimension of X will be denoted by pd(X).

Proposition 2.1. Let M and N be two R-modules. The following statements hold.
(i) If M is an injective R-module, then Γd,b(M) is also an injective R-module.

(ii) If M is finitely generated, then Hi
d,b(M,N) ∼= Hi(HomR(M,Γd,b(E

N )).

(iii) If M is finitely generated and Γd,b(N) = N , then Hi
d,b(M,N) ∼= ExtiR(M,N)

for all i ≥ 0. In particular Hi
d,b(M,Γd,b(N)) ∼= ExtiR(M,Γd,b(N)), for i ≥ 0.

(iv) If pd(M) = p, then Hi
d,b(M,N) ∼= Hi

d,b(M,N/Γd,b(N)), for all i > p.

(v) For each i ∈ N0, H
i
d,b(M,N) ∼= lim−→a∈W̃(d,J)

Hi
a(M,N).
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(vi) For each i ∈ N0, H
i
d,b(M,N) ∼= lim−→a∈Σd

Hi
a,b(M,N), where Hi

a,b(M,N) is the

ith generalized local cohomology relative to (a, b), studied in [9,13].

(vii) Td,b(M,N) ∼= lim−→a∈Σd
Da,b(M,N), where Da,b(M,N) = lim−→c∈W̃(a,b)

Dc(M,N).

(viii) There exists a long exact sequence of R-modules

0 → Γd,b(M,N) → HomR(M,N) → Td,b(M,N) → H1
d,b(M,N) → Ext1R(M,N)

→ T 1
d,b(M,N) → H2

d,b(M,N) → · · · .

(ix) If M is projective or N is injective, then we have the sequence

0 → Γd,b(M,N) → HomR(M,N) → Td,b(M,N) → H1
d,b(M,N) → 0.

(x) If pd(M) = p, then T i
d,b(M,N) ∼= Hi+1

d,b (M,N), for all i > p.

(xi) For each i ∈ N0, T
i
d,b(M, 9) ∼= lim−→a∈W̃ (d,b)

ExtiR(aM, 9).

Proof. (i) Note that by a similar argument as in [12, Theorem 3.2], we have Γd,b(M) ∼=
lim−→a∈W̃ (d,b)

Γa(M). As the direct limit of injective modules is injective (note that R

is Noetherian), this gives the claim.
To prove (ii), by our definition we have

H0
d,b(M,N) = Γd,b(HomR(M,N)) ∼= lim−→

a∈W̃(d,b)

Γa(HomR(M,N))

∼= lim−→
a∈W̃(d,b)

Hom(M,Γa(N)) ∼= Hom(M, lim−→
a∈W̃(d,b)

Γa(N)) ∼= Hom(M,Γd,b(N)),

which is the 0th-term of the connected sequence Hi(HomR(M,Γd,b(E
9)), i ∈ N0,

evaluated in N (to see why the second isomorphism holds true, see for example [9,
Proposition 2.2]) with b = 0, and for the third isomorphism see [1, Proposition 7.7].
Now, as both connected sequences Hi

d,b(M, 9) and Hi(HomR(M,Γd,b(E
9)) are zero

in injective modules, by the standard argument of homology theory (see [11, Theorem
6.68]) the result follows.

(iii) By a similar argument as in [14, Lemma 2.1(3)], there exists an injective
resulotion of N , say EN , such that Γd,b(E

N ) = EN . By part (ii), we see that

Hi
d,b(M,N) ∼= Hi(HomR(M,Γd,b(E

N ))) ∼= Hi(HomR(M,EN )) ∼= ExtiR(M,N).

In particular, as Γd,b(Γd,b(N)) = Γd,b(N), the desired isomorphism is clear.
(iv) From the short exact sequence 0 → Γd,b(N) → N → N/Γd,b(N) → 0, we

obtain the exact sequence

Hi
d,b(M,Γd,b(N)) → Hi

d,b(M,N) → Hi
d,b(M,N/Γd,b(N)) → Hi+1

d,b (M,Γd,b(N)),

for all i ≥ 0. Now, since Γd,b(Γd,b(N)) = Γd,b(N) and Exti(M,Γd,b(N)) = 0, for all
i > p, we get the result by part (iii).

(v) This follows from

Γd,b(M,N) = Γd,b(HomR(M,N)) ∼= lim−→
a∈W̃ (d,J)

Γa(HomR(M,N)) ∼= lim−→
a∈W̃ (d,J)

Γa(M,N)),
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and the standard homology arguments.

(vi) First, for an R-module X, we show that Γd,b(X) ∼= lim−→a∈Σd
Γa,b(X). As Σd is

a system of ideals, it is enough to show that Γd,b(X) = ∪a∈Σd
Γa,b(X). To do this, let

x ∈ Γd,b(X), Then there exists a ∈ Σd such that ax ⊆ bx. Hence x ∈ Γa,b(X) and so
x ∈ ∩a∈Σd

Γa,b(X). For the opposite inclusion, we just note that for each a ∈ Σd and
each i ∈ N0, a

i ∈ Σd. Now, since both Hi
d,b(M, 9) and lim−→a∈Σd

Hi
a,b(M, 9), i ∈ N0,

are strongly connected the result follows again by [11, Theorem 6.68].
(vii) Using the commutative diagram

0 Γd,b(M,N) HomR(M,N) Td,b(M,N) H1
d,b(M,N) Ext1R(M,N)

0 lim−→
a∈Σd

Γa,b(M,N) HomR(M,N) lim−→
a∈Σd

Da,b(M,N) lim−→
a∈Σd

H1
a,b(M,N) Ext1R(M,N)

with exact rows, this follows by (vi) and the Five Lemma.

(viii) Let a and c be two ideals in W̃(d, b) such that a ⊆ c. From the commutative
diagram of R-modules and R-homomorphisms with exact rows

0 aM M M/aM 0

0 cM M M/cM 0,

we obtain the commutative diagram

0 HomR(M/cM,N) HomR(M,N) HomR(cM,N) Ext1R(M/cM,N) · · ·

0 HomR(M/aM,N) HomR(M,N) HomR(aM,N) Ext1R(M/aM,N) · · ·

with exact rows. Now, passing to the direct limit over W̃(d, b) and using standard
homology arguments gives the desired sequence.

(ix) Since in either case Ext1R(M,N) = 0, this follows by part (viii).

(x) Apply part (viii) and use the fact that ExtiR(M,N) = 0, for all i > p.

(xi) Let T (9) = Td,b(M, 9) and T i(9) = lim−→a∈W̃(d,b)
ExtiR(aM, 9). Then, T i(9)i∈N0

is a negative strongly connected sequence of covariant functors and T ◦(9) is naturally
equivalent to T (9). Since T i(E) = 0, for all i ≥ 1 and all injective R-module E, the
result follows by [11, Theorem 6.68]. □

3. Finiteness results

In this section we generaly assume that M is finitely generated and study basic
properties of the functor Td,b(M, 9) and its right derived functors T i

d,b(M, 9). The

end of this section contains a study of the sets Ass(Td,b(M,N)) and Ass(T i
d,b(M,N)).
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Theorem 3.1. Let M be a finitely generated R-module and N be an R-module. The
following statements hold.
(i) If Γd,b(N) = N , then T i

d,b(M,N) = 0 for all i ≥ 0.

(ii) T i
d,b(M,N) ∼= T i

d,b(M,N/Γd,b(N) ∼= T i
d,b(M,Td,b(N)) for all i ≥ 0.

(iii) Td,b(Td,b(M,N)) ∼= Td,b(M,N).

(iv) Td,b(HomR(M,N)) ∼= HomR(M,Td,b(N)).

(v) Td,a(Td,b(M,N)) = Td,b(Td,a(M,N)).

(vi) Γd,b(Td,b(M,N)) = H1
d,b(Td,b(M,N)) = 0.

Proof. (i) By Proposition 2.1 (viii) we have the long exact sequence

0 → Γd,b(M,N) → HomR(M,N) → Td,b(M,N) → H1
d,b(M,N) → Ext1R(M,N).

Thus by Proposition 2.1 (iii) we conclude that Td,b(M,N) = 0. The proof will be
complete if we show T i

d,b(M,N) = 0 for all i ≥ 1. Since Γd,b(N) = N , there is an

injective resolution EN of N such that Γd,b(E
i) = Ei for all i ≥ 0. So as we did for

N , we will have Td,b(M,Ei) = 0 for all i ≥ 0. Therefore T i
d,b(M,N) = 0 for all i ≥ 0.

(ii) From the short exact sequence 0 → Γd,b(N) → N → N/Γd,b(N) → 0, we
obtain the long exact sequence

0 → Td,b(M,Γd,b(N)) → Td,b(M,N) → Td,b(M,N/Γd,b(N)) →
· · · → T i

d,b(M,N) → T i
d,b(M,N/Γd,b(N)) → T i+1

d,b (M,Td,b(N)) → · · · .
Now, using part (i), we have T i

d,b(M,Γd,b(N)) = 0, for all i ≥ 0, and thus the first
isomorphism holds true.

For the second isomorphism, using Proposition 2.1 (ix) with M = R, the short ex-
act sequence 0 → N/Γd,b(N) → Td,b(N) → H1

d,b(N) → 0, induces the exact sequence

0 → Td,b(M,N/Γd,b(N)) → Td,b(M,Td,b(N)) → Td,b(M,H1
d,b(N)) →

· · · → T i
d,b(M,N/Γd,b(N)) → T i

d,b(M,Td,b(N)) → T i
d,b(M,H1

d,b(N)) → · · · .
Since T i

d,b(M,H1
d,b(N)) = 0, for all i ≥ 0, we are done.

(iii) We have

Td,b(Td,b(M,N)) = lim−→
a∈W̃ (d,b)

HomR(a, Td,b(M,N)) ∼= lim−→
a∈W̃ (d,b)

HomR(a, lim−→
c∈W̃ (d,b)

HomR(cM,N))

∼= lim−→
a∈W̃ (d,b)

( lim−→
c∈W̃ (d,b)

HomR(a,HomR(cM,N))) ∼= lim−→
a∈W̃ (d,b)

( lim−→
c∈W̃ (d,b)

HomR(c,HomR(aM,N)))

∼= lim−→
a∈W̃ (d,b)

( lim−→
c∈W̃ (d,b)

HomR(c⊗R aM,N)) ∼= lim−→
a∈W̃ (d,b)

( lim−→
c∈W̃ (d,b)

HomR(a⊗R cM,N))

∼= lim−→
a∈W̃ (d,b)

( lim−→
c∈W̃ (d,b)

HomR(a,HomR(cM,N))) ∼= lim−→
a∈W̃ (d,b)

HomR(a, lim−→
c∈W̃ (d,b)

HomR(cM,N))

∼= lim−→
a∈W̃ (d,b)

HomR(a, Td,b(M,N)) ∼= Td,b(M,Td,b(N)) ∼= Td,b(M,N),

where in the second and seventh isomorphisms we use again [1, Proposition 7.7].
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(iv) We have

Td,b(HomR(M,N)) = lim−→
a∈W̃ (d,b)

HomR(a,HomR(M,N)) ∼= lim−→
a∈W̃ (d,b)

HomR(a⊗R M,N)

∼= lim−→
a∈W̃ (d,b)

HomR(M,HomR(a, N)) ∼= HomR(M, lim−→
a∈W̃ (d,b)

HomR(a, N)) ∼= HomR(M,Td,b(N)),

which is the desired isomorphism.
(v) We have

Td,a(Td,b(M,N)) = lim−→
c∈W̃ (d,a)

HomR(c, Td,b(M,N))

∼= lim−→
c∈W̃ (d,a)

HomR(c, lim−→
d∈W̃ (d,b)

HomR(dM,N)) ∼= lim−→
c∈W̃ (d,a)

( lim−→
d∈W̃ (d,b)

HomR(c,HomR(dM,N)))

∼= lim−→
c∈W̃ (d,a)

( lim−→
d∈W̃ (d,b)

HomR(c⊗R dM,N)) ∼= lim−→
d∈W̃ (d,b)

( lim−→
c∈W̃ (d,a)

HomR(d⊗R cM,N))

∼= lim−→
d∈W̃ (d,b)

( lim−→
c∈W̃ (d,a)

HomR(d,HomR(cM,N))) ∼= lim−→
d∈W̃ (d,b)

HomR(d, lim−→
c∈W̃ (d,a)

HomR(cM,N))

∼= lim−→
d∈W̃ (d,b)

HomR(d, Td,a(M,N)) ∼= Td,b(Td,a(M,N)),

and the claim is proved.
(vi) Replacing M with R and N with Td,b(M,N) in Proposition 2.1 (ix), we have

the exact sequence of

0 → Γd,b(Td,b(M,N)) → Td,b(M,N) → Td,b(Td,b(M,N)) → H1
d,b(Td,b(M,N)) → 0.

Now since by part (iii), Td,b(M,N) ∼= Td,b(Td,b(M,N)), we obtain the result. □

In general it is a subtle problem to calculate the modules T i
d,b(M,N) for arbitrary

R, M and N (see for example [6, 12.4.7 Example]). In the following example we
calculate these modules for the case R = M = N = Z[x], the ring of polynomials over
the integers.

Example 3.2. Let R = Z[x] = M = N . We calculate T i
d,b(R,R) for d = 1, 2

and for each ideal b of Z[x]. Note that R is Noetherian ring of Krull dimension 2.
Thus, for each d ≥ 2, we have Σd = {a ∈ I(R)|dim(R/a) ≤ d} = I(R) and so
Γd,b(R) = {f ∈ R| af ⊆ bf for some a ∈ Σd} = R. Thus, by Theorem 3.1 (i),
T i
d,b(R,R) = 0, for each ideal b and each i ≥ 0. It follows, by Proposition 2.1 (viii),

that Hi
d,b(R,R) = 0 for each for each ideal b and each i ≥ 1. For d = 1, Σ1 = {a ∈

I(R)|dim(R/a) ≤ 1} = I(R) \ {0}. Now, we consider two cases b = 0 and b ̸= 0.

The case b = 0: It is easily seen that W̃ (1, (0)) = I(R) \ {(0)} and we compute
T1,(0)(R,R). By definition, T1,(0)(R,R) = lim−→0 ̸=a∈I(R)

HomR(a, R).

We now show that HomR(a, R) ∼= a−1 for all a ̸= (0), where a−1 = {u ∈ Q(x)|ua ⊆
R}, where Q(x) = Z[x]{0} is the fractions field of Z[x]. To do this, fix a(x) ∈ a and
consider the map ϕ : HomR(a, R) → a−1 defined by

ϕ(f) =
f(a(x))

a(x)
for each f ∈ HomR(a, R).
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Then, for an arbitrary element b(x) ∈ a, we have

b(x)
f(a(x))

a(x)
=

a(x)

a(x)
f(b(x)) = f(b(x)) ∈ R,

and a(x)f(b(x)) = f(a(x)b(x)) = b(x)f(a(x))

so that f(a(x))
a(x) = f(a(x))

a(x) . These, together, give that ϕ(f) ∈ a−1 and that ϕ is well-

defined. To see that ϕ is a monomorphism, let ϕ(f) = 0 for some f ∈ HomR(a, R).
Then f(a(x)) = 0, and thus f(b(x)) = b · ϕ(f) = 0 for all b ∈ a, by what we observed
above. Hence, f = 0. For surjectivity of ϕ, let u(x) ∈ a−1. Define f : a → R by

f(b(x)) = u(x)b(x). Then, ϕ(f) = f(a(x))
a(x) = u(x)a(x)

a(x) = u and we conclude that ϕ is

an isomorphism. Therefore,

T1,(0)(R,R) ∼= lim−→
0̸=a∈I(R)

a−1 =
⋃

0̸=a∈I(R)

a−1 = Q(x),

where the first equality comes from [2, Exersise 17], and the second one is an easy
observation. In this case, as Γ1,(0)(R,R) = Γ1,(0)(HomR(R,R)) = Γ1,(0)(R) = 0, we
obtain again by Proposition 2.1 (viii) that H1

1,(0)(R,R) = Q(x)/Z[x].
The case b ̸= 0: Since b ∈ Σ1 we easily conclude that Γ1,b(R) = R. Thus by

Theorem 3.1 (i), T i
1,b(R,R) = 0 for all i ≥ 0.

Theorem 3.3. Let M be finitely generated and let f : N → N ′ be a homomor-
phism of R-modules such that Γd,b(Kerf) = Kerf and Γd,b(Cokerf) = Cokerf . Then
Td,b(M,N) ∼= Td,b(M,N ′).

Proof. From the short exact sequences

0 → Kerf → N → Imf → 0, 0 → Imf → N ′ → Cokerf → 0

we obtain the exact sequence

0 → Td,b(M,Kerf) → Td,b(M,N) → Td,b(M, Imf) → T 1
d,b(M,Kerf))

0 → Td,b(M, Imf) → Td,b(M,N ′) → Td,b(M,Cokerf) → T 1
d,b(M, Imf).

Using Theorem 3.1 (i), Td,b(M,Kerf) = Td,b(M,Cokerf) = 0, and so Td,b(M,N) ∼=
Td,b(M, Imf) and Td,b(M, Imf)∼=Td,b(M,N ′). Hence Td,b(M,N)∼=Td,b(M,N ′). □

Theorem 3.4. Let M be a finitely generated R-module and N be an R-module. Then
for each i ∈ N0 T i

d,b(M,N) ∼= T i
d,b(HomR(M,N)).

Proof. For the case i = 0, consider the exact sequence

0 −→ Γd,b(M,N)
α−−→ HomR(M,N)

f−−→ Td,b(M,N)
β−−→ H1

d,b(M,N).

We have Kerf = Imα and Cokerf = Imβ. Since Γd,b(Imα) = Imα and Γd,b(Imβ) =
Imβ, then using Theorem 3.3, Td,b(R,HomR(M,N)) ∼= Td,b(R, Td,b(M,N)). Thus
Td,b(HomR(M,N)) ∼= Td,b(Td,b(M,N)).

Now, by Theorem 3.1 (iv) we have Td,b(M,N) ∼= Td,b(HomR(M,N)), meaning
that T 0

d,b(M,N) ∼= T 0
d,b(HomR(M,N)). Now, we use the standard argument of ho-

mology and Proposition 2.1 (xi) to deduce the result. □
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Theorem 3.5. Let M and N be two finitely generated R-modules. Then

Ass(Td,b(M,N)) = Supp(M) ∩Ass(N/Γd,b(N)).

Proof. Since N is finitely generated R-module, by a modification of [15, Theorem 1],
we have Ass(Td,b(N)) = Ass(N/Γd,b(N)).

Now, by Theorem 3.4 and Theorem 3.1 (iv), we have

Ass(Td,b(M,N)) = Ass(Td,b(HomR(M,N))) = Ass(HomR(M,Td,b(N)))

= Supp(M) ∩Ass(Td,b(N)) = Supp(M) ∩Ass(N/Γd,b(N)).

In case thatM is finitely generated R-module, in Theorem 3.1 (iii), we showed that
Td,b(Td,b(M,N)) ∼= Td,b(M,N). Also, in Theorem 3.4, we proved Td,b(Td,b(M,N)) ∼=
Td,b(HomR(M,N)). In the next theorem we drop the finiteness assumption on M
and conclude these two isomorphisms with some other assumptions on M .

Theorem 3.6. Let M and N be two R-modules. The followings hold:
(i) If Ext1R(M,N) = 0, then Td,b(Td,b(M,N)) ∼= Td,b(HomR(M,N)) and

Hi
d,b(Td,b(M,N)) ∼= Hi

d,b(HomR(M,N)),

for each i ≥ 1.

(ii) If M is a flat R-module, then

Td,b(Td,b(M,N)) ∼= Td,b(M,N),

and Γd,b(Td,b(M,N)) ∼= 0 ∼= H1
d,b(Td,b(M,N)).

Proof. (i) As Ext1R(M,N) = 0, by Proposition 2.1 (viii) we have the exact sequence

0 → HomR(M,N)

Γd,b(M,N)
→ Td,b(M,N) → H1

d,b(M,N) → 0

from which the long sequence

0 → Td,b

(
HomR(M,N)

Γd,b(M,N)

)
→ Td,b(Td,b(M,N)) → Td,b(H

1
d,b(M,N))

→ T 1
d,b

(
HomR(M,N)

Γd,b(M,N)

)
→ · · ·

is obtained. But, we have Γd,b(H
1
d,b(M,N)) = H1

d,b(M,N), which in turn by Theo-

rem 3.1 (i), gives Td,b(H
1
d,b(M,N)) = 0. So

Td,b

(
HomR(M,N)

Γd,b(M,N)

)
∼= Td,b(Td,b(M,N)). (1)

Also, since Γd,b(M,N) ∼= Γd,b(HomR(M,N)) and Td,b(Γd,b(M,N)) = 0, then from
the short exact sequence

0 → Γd,b(M,N) → HomR(M,N)) → HomR(M,N)

Γd,b(M,N)
→ 0,

we have

Td,b

(
HomR(M,N)

Γd,b(M,N)

)
∼= Td,b(HomR(M,N)). (2)
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Comparing (1) and (2), we conclude that Td,b(HomR(M,N)) ∼= Td,b(Td,b(M,N)).
(ii) SinceM is a flat R-module, by [8, Theorem 7.7], for each ideal a, aM ∼= a⊗RM .

Thus, we have

Td,b(M,N) = lim−→
a∈W̃ (d,b)

HomR(aM,N) ∼= lim−→
a∈W̃ (d,b)

HomR(a⊗R M,N)

∼= lim−→
a∈W̃ (d,b)

HomR(a,HomR(M,N)) ∼= Td,b(HomR(M,N)) ∼= Td,b(Td,b(M,N)).

To prove the second part of (ii), one simply use the exact sequence

0 → Γd,b(Td,b(M,N)) → Td,b(M,N) → Td,b(Td,b(M,N)) → H1
d,b(Td,b(M,N)) → 0.

□

The next result gives a necessary condition for the functor Td,b(M, 9) to be exact.
We were not able to find a better sufficient condition for the exactness of Td,b(M, 9).

Theorem 3.7. Let M be an R-module. If Td,b(M, 9) is an exact functor, then
Hi

d,b(M,N) ∼= ExtiR(M,N), for all i ≥ 2 and all R-module N . In addition, if

Hi
d,b(M,N) ∼= ExtiR(M,N) for each i ≥ 1 and each finitely generated R-module N ,

then Td,b(M, 9) is exact.

Proof. By the exactness of Td,b(M, 9) we have T i
d,b(M, 9) = 0, for all i ≥ 1. Thus

by Proposition 2.1 (xi), lim−→a∈W̃ (d,b)
ExtiR(aM, 9) = 0, for all i ≥ 1. Now, for two

elements a and b of W̃ (d, b) with a ⊆ b, we have the commutative diagram

ExtiR(bM,N) Exti+1
R (M/bM,N) Exti+1

R (M,N) Exti+1
R (bM,N) · · ·

ExtiR(aM,N) Exti+1
R (M/aM,N) Exti+1

R (M,N) Exti+1
R (aM,N) · · ·

with exact rows for each i ≥ 1. Then passing to direct limit over W̃ (d, b) we obtain
the exact sequence

T i
d,b(M,N) −→ Hi+1

d,b (M,N) −→ Exti+1
R (M,N) −→ T i+1

d,b (M,N) (3)

As both end sides are zero for all i ≥ 1, we get Hi
d,b(M,N) ∼= ExtiR(M,N), for all

i ≥ 2.
In addition, as each R-module can be written as a direct limit of its finitely

generated submodules over a suitable directed set, we deduce that Hi
d,b(M,N) ∼=

ExtiR(M,N) for each i ≥ 1. Now, from the exact sequence (3) we get the exactness
of Td,b(M, 9). □

The following theorem and its proof is a counterpart of [10, Theorem 3.5].

Theorem 3.8. Let M be a finitely generated R-module and N be an R-module. Then,
for each t ≥ 0 we have

Ass(T t
d,b(M,N)) ⊆

t⋃
i=1

Ass(Ei,t−i
t+2 ) ∪Ass(HomR(M,T t

d,b(N))),
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and Supp(T t
d,b(M,N)) ⊆

t⋃
i=0

Supp(ExtiR(M,T t−i
d,b (N))).

Proof. We note that by [11, Theorem 10.47] there exists a Grothendieck spectral
sequence Ep,q

2 = ExtpR(M,T q
d,b(N)) −→

p
T p+q
d,b (M,N), and modifying the arguments of

the proof of [10, Theorem 3.5] gives the results. □

Corollary 3.9. Let M be a finitely generated R-module, N an R-module and t a
non-negative integer. If Supp(T i

d,b(N)) is a finite set for all i ≤ t, then Supp(T t
d,b(M,N))

is also a finite set.

Proof. We note that by Theorem 3.8

Supp(T t
d,b(M,N)) ⊆

t⋃
i=0

Supp(ExtiR(M,T t−i
d,b (N))) ⊆

t⋃
i=0

Supp(T t−i
d,b (N)),

and the result follows. □

4. Using the sets W (d, b) and S∗
k(M,N)

In this section, we study the connection of the vanishing of the modules T i
d,b(M,N),

i ∈ N0, with the dimension of the set

W (d, b) := {p ∈ Spec(R)| ∃ a ∈ Σd, a ⊆ p+ b},
and the dimension of the sets

S∗
k(M,N) := {p ∈ Supp(M) | depthRp

(Np) + dim(R/p) ≤ k},
k ∈ N0 (see [4, 14]).

For simplicity we put w = dim
(
W (d, b)

)
:= max{dim(R/p) | p ∈ W (d, b)}, and

s∗k(M,N) = dim
(
S∗
k(M,N)

)
:= max{dim(R/p) | p ∈ S∗

k(M,N)}.
The other aim of this section is to give a low vanishing theorem for the modules

Hi
d,b(M,N) in case that both M and N are finitely generated. Recall from [8, The-

orem 16.7] that for an R-module M and an ideal a of R with aM ̸= M , the length
of a maximal M -sequence contained in a, denoted by depth(a,M), is a well deter-
mined least integer n such that ExtnR(R/a,M) ̸= 0. It is known that for each ideal
depth(a,M) = Min{depth(p,M)| p ⊇ a}. For a local ring (R,m) and a nonzero finitely
generated R-module M , depth(m,M) is simply denoted by depth(M). Note that, as
usual (see [8, p. 131]), by gradeR(M), we mean inf{i ∈ N0 | ExtiR(M,R) ̸= 0}.

Theorem 4.1. Let M and N be two finitely generated R-modules, n ≥ 2 and k be two
non-negative integers such that s∗n+k(M,N) ≤ k for all k < w. Then T i

d,b(M,N) ∼=
ExtiR(M,N) for all i < n− 1.

Proof. Using the exact sequence of Proposition 2.1 (viii), it suffices to prove that
Hi

d,b(M,N) = 0 for all i < n. Let a ∈ W̃ (d, b) and p ∈ V(a + (0 :R M)). Then



A. Makhsoos, N. Zamani, M. S. Sayedsadeghi 11

p ∈ W (d, b). Put k := dim(R/p) − 1. Then k < w and so p /∈ S∗n+k(M,N). Hence,
we have

depthRp
(Np) + dim(R/p) > k + n ⇒ depthRp

(Np) + k + 1 > k + n

⇒ depthRp
(Np) + 1 > n ⇒ depthRp

(Np) ≥ n.

Then depth(a+ (0 :R M), N) ≥ n and so by [8, Theorem 16.6], ExtiR(M/aM,N) = 0
for all i < n. But, as mentioned in introduction, Hi

d,b(M,N) is the direct limit of

ExtiR(M/aM,N) over the set W̃ (d, b). Thus, it follows that Hi
d,b(M,N) = 0 for all

i < n. □

Corollary 4.2. Let M and N be two finitely generated R-modules. The following
statements hold.
(i) If pd(N) < gradeR(M) < w, s∗n+k(M,N)) ≤ k, then T i

d,b(M,N) = 0 for all
i < gradeR(M)− pd(N)− 1.

(ii) If (R,m) is local, depth(M) < w and s∗n+k(M,N)) ≤ depth(M), then T i
d,b(M,N)

= 0 for all i < depth(M)− dim(N)− 1.

Proof. (i) By [8, Theorem 16.9], we have ExtiR(M,N) = 0 for all i < gradeR(M) −
pd(N) and the result follows by Theorem 4.1.

(ii) Using [8, Theorem 17.1] and Theorem 4.1, we see that T i
d,b(M,N) = 0 for all

i < depth(M)− dim(N)− 1. □

Corollary 4.3. Let M and N be two finitely generated R-modules, and let n and k
be two non-negative integers such that s∗n+k(M,N)) ≤ k for all k < w.

(i) If Γd,b(N) = N , then ExtiR(M,N) = 0 for all i < n− 1.

(ii) If depthRp
(Np) ̸= depthRp

(Γd,b(N)p) for some p ∈ Supp(M), then ExtiR(M,N) ∼=
ExtiR(M,N/Γd,b(N)) for all i < n− 1.

Proof. (i) As Γd,b(N) = N , by Theorem 3.1 (i) we have T i
d,b(M,N) = 0 for all i ≥ 0.

On the other hand, by Theorem 4.1, Ext(M,N) ∼= T i
d,b(M,N) for all i < n−1. These

together gives the result.
(ii) Assume that p ∈ Supp(M). From the short exact sequence

0 → Γd,b(N) → N → N/Γd,b(N) → 0,

and [7, Proposition 1.29] we have

depthRp
(Np) ≥ min{depthRp

(Γd,b(N)p),depthRp
((N/Γd,b(N))p)},

depthRp
(Γd,b(N)p) ≥ min{depthRp

(Np),depthRp
((N/Γd,b(N))p) + 1},

depthRp
((N/Γd,b(N))p) ≥ min{depthRp

(Γd,b(N)p)− 1 , depthRp
(Np)}.

Now, according to the our assumption in the statement of the corollary and these
inequalities, we obtain depthRp

((N/Γd,b(N))p) ≤ depthRp
(Np). Hence, we have

depthRp
((N/Γd,b(N))p) + dim(R/p) ≤ depthRp

(Np) + dim(R/p)

⇒ s∗n+k(M,N/Γd,b(N)) ⊆ s∗n+k(M,N) ⇒ s∗n+k(M,N/Γd,b(N))) ≤ s∗n+k(M,N)) < k.
(4)
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Since N/Γd,b(N) is finitely generated R-module, then in view of (4) and using Theo-
rem 4.1, we get that T i

d,b(M,N) ∼= ExtiR(M,N/Γd,b(N)) and T i
d,b(M,N) ∼= ExtiR(M,N)

for all i < n− 1. Comparing these and using Theorem 3.1 (ii), the proof of the claim
is complete. □
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