

SOME d -TRANSFORM FUNCTORS BASED ON AN IDEAL

A. Makhsoos, N. Zamani and M. S. Sayedsadeghi

Abstract. Let R be a commutative Noetherian ring, \mathfrak{b} be an ideal of R , M an R -module and let d be a non-negative integer. We introduce a general d -transform functor $T_{d,\mathfrak{b}}(M, -)$ and its right derived functors $T_{d,\mathfrak{b}}^i(M, -)$, $i \in \mathbb{N}_0$, on the category of R -modules and study their various properties. The connection of these functors with some kind of generalized local cohomology functors $H_{d,\mathfrak{b}}^i(M, -)$ is discussed. When both M and N are finitely generated, some finiteness results on $T_{d,\mathfrak{b}}^i(M, N)$ and $H_{d,\mathfrak{b}}^i(M, N)$ are concluded. Then, we study how the depth and dimension of certain subsets of $\text{Spec}(R)$ affect the behavior and vanishing of these modules.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with a non-zero identity, and M and N are two R -modules. Let \mathfrak{a} and \mathfrak{b} be two ideals of R , and let d be a non-negative integer. The basic theory of the \mathfrak{a} -transform functor $D_{\mathfrak{a}}(-) := \varinjlim_{n \in \mathbb{N}} \text{Hom}_R(\mathfrak{a}^n, -)$ and its connections with the local cohomology functor have appeared and been studied in [6] (see also [5, 10]). For an R -module X , the R -module $D_{\mathfrak{a}}(X)$ is an important algebraic tool in studying ordinary local cohomology modules $H_{\mathfrak{a}}^i(M)$.

In [15], the authors defined a new functor $T_d(-)$ and its right derived functors and studied its connection with the functor $U_d(-)$ and with the cohomology functors $H_d^i(-)$, $i \in \mathbb{N}_0$, defined in [3]. In this paper, we study to what extent these results are valid for generalized local cohomology. To be precise, let $\mathcal{I}(R)$ be the set of all ideals of R , and put $\Sigma_d = \{\mathfrak{a} \in \mathcal{I}(R) : \dim(R/\mathfrak{a}) \leq d\}$.

We define the set $\Gamma_{d,\mathfrak{b}}(X)$ consisting of all elements $x \in X$ such that $\mathfrak{a}x \subseteq \mathfrak{b}x$ for some $\mathfrak{a} \in \Sigma_d$. Then $\Gamma_{d,\mathfrak{b}}(-)$ is an R -linear left exact functor on the category of R -modules $\mathcal{C}(R)$, and we consider its i th ($i \geq 0$) right derived functor, denoted by $H_{d,\mathfrak{b}}^i(-)$.

2020 Mathematics Subject Classification: 13C05, 13C12, 16D70

Keywords and phrases: Local cohomology; generalized local cohomology; projective dimension; d -transform; injective modules.

Now, for two modules M and N , we put $H_{d,\mathfrak{b}}^i(M, N) := H^i(\Gamma_{d,\mathfrak{b}}(\text{Hom}_R(M, \mathbf{E}^N)))$, where $i \geq 0$ and \mathbf{E}^N is any injective resolution of N .

To give a more concrete description of the aim of the paper, we consider three other sets $\tilde{W}(d, \mathfrak{b}) = \{I \in \mathcal{I}(R) : \exists \mathfrak{a} \in \Sigma_d, \mathfrak{a} \subseteq I + \mathfrak{b}\}$, $W(d, \mathfrak{b}) := \{\mathfrak{p} \in \text{Spec}(R) | \exists \mathfrak{a} \in \Sigma_d, \mathfrak{a} \subseteq \mathfrak{p} + \mathfrak{b}\}$ and $S_k^*(M, N) := \{\mathfrak{p} \in \text{Supp}(M) | \text{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + \dim(R/\mathfrak{p}) \leq k\}$, $k \in \mathbb{N}_0$ (cf. [12, 14]). Then, with the reverse inclusion, $\tilde{W}(d, \mathfrak{b})$ (and also Σ_d) is a system of ideals in R in the sense of [6, p. 21]. Now we define the d -transform functor $T_{d,\mathfrak{b}}(M, -)$ supported in \mathfrak{b} by $T_{d,\mathfrak{b}}(M, N) = \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}(\mathfrak{a}M, N)$, for all $N \in \mathcal{C}(R)$.

Evidently, $T_{d,\mathfrak{b}}(M, -)$ is R -linear and left exact, and its right derived functors $T_{d,\mathfrak{b}}^i(M, -)$, $i \in \mathbb{N}_0$, form a strongly connected sequence in the sense of [6, Definition 1.3.1]. It is convenient to mention that, using standard arguments of homological algebra [11, Theorem 6.68] (Axioms for covariant Ext), we have $H_{d,\mathfrak{b}}^i(M, N) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Ext}_R^i(M/\mathfrak{a}M, N)$. From this fact and using [11, Lemma 5.30], it is easily seen that for each $i \in \mathbb{N}_0$ we have $\Gamma_{d,\mathfrak{b}}(H_{d,\mathfrak{b}}^i(M, N)) = H_{d,\mathfrak{b}}^i(M, N)$.

The aim of this paper is to study the structure of the modules $T_{d,\mathfrak{b}}^i(M, N)$ and their connections with $H_{d,\mathfrak{b}}^i(M, N)$, $i \in \mathbb{N}_0$. In Section 2, we present some basic auxiliary facts concerning the modules $\Gamma_{d,\mathfrak{b}}(M)$, $\Gamma_{d,\mathfrak{b}}(M, N)$, $H_{d,\mathfrak{b}}^i(M, N)$, and $T_{d,\mathfrak{b}}^i(M, N)$. It is shown, for example, that when M is finitely generated, or when $\Gamma_{d,\mathfrak{b}}(N) = N$, these modules exhibit interesting properties and coincide with previously known structures. In Section 3, we assume that M is finitely generated and obtain further isomorphism results, which are collected in Theorem 3.1. It is concluded that whenever both M and N are finitely generated, the set of associated primes of $T_{d,\mathfrak{b}}^i(M, N)$ is finite. In Section 4, we investigate how the dimensions of the sets $W(d, \mathfrak{b})$ and $S^*d, \mathfrak{b}(M, N)$ affect the vanishing of the modules $H^i d, \mathfrak{b}(M, N)$ and $T_{d,\mathfrak{b}}^i(M, N)$. For any unexplained notation, we refer the reader to [6, 12].

2. Preliminaries

In this section we provide some elementary facts concerning the modules $\Gamma_{d,\mathfrak{b}}(M)$, $\Gamma_{d,\mathfrak{b}}(M, N)$, $H_{d,\mathfrak{b}}^i(M, N)$ and $T_{d,\mathfrak{b}}^i(M, N)$. It is seen that like $\Gamma_{\mathfrak{a}}(-)$ and $\Gamma_d(-)$, the functor $\Gamma_{d,\mathfrak{b}}(-)$ keeps the injective property. We collect the properties in the following lemma. For an R -module X , the projective dimension of X will be denoted by $\text{pd}(X)$.

PROPOSITION 2.1. *Let M and N be two R -modules. The following statements hold.*

- (i) *If M is an injective R -module, then $\Gamma_{d,\mathfrak{b}}(M)$ is also an injective R -module.*
- (ii) *If M is finitely generated, then $H_{d,\mathfrak{b}}^i(M, N) \cong H^i(\text{Hom}_R(M, \mathbf{E}^N))$.*
- (iii) *If M is finitely generated and $\Gamma_{d,\mathfrak{b}}(N) = N$, then $H_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$ for all $i \geq 0$. In particular $H_{d,\mathfrak{b}}^i(M, \Gamma_{d,\mathfrak{b}}(N)) \cong \text{Ext}_R^i(M, \Gamma_{d,\mathfrak{b}}(N))$, for $i \geq 0$.*
- (iv) *If $\text{pd}(M) = p$, then $H_{d,\mathfrak{b}}^i(M, N) \cong H_{d,\mathfrak{b}}^i(M, N/\Gamma_{d,\mathfrak{b}}(N))$, for all $i > p$.*
- (v) *For each $i \in \mathbb{N}_0$, $H_{d,\mathfrak{b}}^i(M, N) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} H_{\mathfrak{a}}^i(M, N)$.*

(vi) For each $i \in \mathbb{N}_0$, $H_{d,\mathfrak{b}}^i(M, N) \cong \varinjlim_{\mathfrak{a} \in \Sigma_d} H_{\mathfrak{a},\mathfrak{b}}^i(M, N)$, where $H_{\mathfrak{a},\mathfrak{b}}^i(M, N)$ is the i^{th} generalized local cohomology relative to $(\mathfrak{a}, \mathfrak{b})$, studied in [9, 13].

(vii) $T_{d,\mathfrak{b}}(M, N) \cong \varinjlim_{\mathfrak{a} \in \Sigma_d} D_{\mathfrak{a},\mathfrak{b}}(M, N)$, where $D_{\mathfrak{a},\mathfrak{b}}(M, N) = \varinjlim_{\mathfrak{c} \in \tilde{W}(\mathfrak{a},\mathfrak{b})} D_{\mathfrak{c}}(M, N)$.

(viii) There exists a long exact sequence of R -modules

$$\begin{aligned} 0 \rightarrow \Gamma_{d,\mathfrak{b}}(M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow H_{d,\mathfrak{b}}^1(M, N) \rightarrow \text{Ext}_R^1(M, N) \\ \rightarrow T_{d,\mathfrak{b}}^1(M, N) \rightarrow H_{d,\mathfrak{b}}^2(M, N) \rightarrow \dots \end{aligned}$$

(ix) If M is projective or N is injective, then we have the sequence

$$0 \rightarrow \Gamma_{d,\mathfrak{b}}(M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow H_{d,\mathfrak{b}}^1(M, N) \rightarrow 0.$$

(x) If $\text{pd}(M) = p$, then $T_{d,\mathfrak{b}}^i(M, N) \cong H_{d,\mathfrak{b}}^{i+1}(M, N)$, for all $i > p$.

(xi) For each $i \in \mathbb{N}_0$, $T_{d,\mathfrak{b}}^i(M, -) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Ext}_R^i(\mathfrak{a}M, -)$.

Proof. (i) Note that by a similar argument as in [12, Theorem 3.2], we have $\Gamma_{d,\mathfrak{b}}(M) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \Gamma_{\mathfrak{a}}(M)$. As the direct limit of injective modules is injective (note that R is Noetherian), this gives the claim.

To prove (ii), by our definition we have

$$\begin{aligned} H_{d,\mathfrak{b}}^0(M, N) &= \Gamma_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \Gamma_{\mathfrak{a}}(\text{Hom}_R(M, N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}(M, \Gamma_{\mathfrak{a}}(N)) \cong \text{Hom}(M, \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \Gamma_{\mathfrak{a}}(N)) \cong \text{Hom}(M, \Gamma_{d,\mathfrak{b}}(N)), \end{aligned}$$

which is the 0^{th} -term of the connected sequence $H^i(\text{Hom}_R(M, \Gamma_{d,\mathfrak{b}}(\mathbf{E}^-)))$, $i \in \mathbb{N}_0$, evaluated in N (to see why the second isomorphism holds true, see for example [9, Proposition 2.2]) with $\mathfrak{b} = 0$, and for the third isomorphism see [1, Proposition 7.7]. Now, as both connected sequences $H_{d,\mathfrak{b}}^i(M, -)$ and $H^i(\text{Hom}_R(M, \Gamma_{d,\mathfrak{b}}(\mathbf{E}^-)))$ are zero in injective modules, by the standard argument of homology theory (see [11, Theorem 6.68]) the result follows.

(iii) By a similar argument as in [14, Lemma 2.1(3)], there exists an injective resolution of N , say \mathbf{E}^N , such that $\Gamma_{d,\mathfrak{b}}(\mathbf{E}^N) = \mathbf{E}^N$. By part (ii), we see that

$$H_{d,\mathfrak{b}}^i(M, N) \cong H^i(\text{Hom}_R(M, \Gamma_{d,\mathfrak{b}}(\mathbf{E}^N))) \cong H^i(\text{Hom}_R(M, \mathbf{E}^N)) \cong \text{Ext}_R^i(M, N).$$

In particular, as $\Gamma_{d,\mathfrak{b}}(\Gamma_{d,\mathfrak{b}}(N)) = \Gamma_{d,\mathfrak{b}}(N)$, the desired isomorphism is clear.

(iv) From the short exact sequence $0 \rightarrow \Gamma_{d,\mathfrak{b}}(N) \rightarrow N \rightarrow N/\Gamma_{d,\mathfrak{b}}(N) \rightarrow 0$, we obtain the exact sequence

$$H_{d,\mathfrak{b}}^i(M, \Gamma_{d,\mathfrak{b}}(N)) \rightarrow H_{d,\mathfrak{b}}^i(M, N) \rightarrow H_{d,\mathfrak{b}}^i(M, N/\Gamma_{d,\mathfrak{b}}(N)) \rightarrow H_{d,\mathfrak{b}}^{i+1}(M, \Gamma_{d,\mathfrak{b}}(N)),$$

for all $i \geq 0$. Now, since $\Gamma_{d,\mathfrak{b}}(\Gamma_{d,\mathfrak{b}}(N)) = \Gamma_{d,\mathfrak{b}}(N)$ and $\text{Ext}_R^i(M, \Gamma_{d,\mathfrak{b}}(N)) = 0$, for all $i > p$, we get the result by part (iii).

(v) This follows from

$$\Gamma_{d,\mathfrak{b}}(M, N) = \Gamma_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,J)} \Gamma_{\mathfrak{a}}(\text{Hom}_R(M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,J)} \Gamma_{\mathfrak{a}}(M, N),$$

and the standard homology arguments.

(vi) First, for an R -module X , we show that $\Gamma_{d,b}(X) \cong \varinjlim_{\mathfrak{a} \in \Sigma_d} \Gamma_{\mathfrak{a},b}(X)$. As Σ_d is a system of ideals, it is enough to show that $\Gamma_{d,b}(X) = \cup_{\mathfrak{a} \in \Sigma_d} \Gamma_{\mathfrak{a},b}(X)$. To do this, let $x \in \Gamma_{d,b}(X)$, Then there exists $\mathfrak{a} \in \Sigma_d$ such that $\mathfrak{a}x \subseteq bx$. Hence $x \in \Gamma_{\mathfrak{a},b}(X)$ and so $x \in \cap_{\mathfrak{a} \in \Sigma_d} \Gamma_{\mathfrak{a},b}(X)$. For the opposite inclusion, we just note that for each $\mathfrak{a} \in \Sigma_d$ and each $i \in \mathbb{N}_0$, $\mathfrak{a}^i \in \Sigma_d$. Now, since both $H_{d,b}^i(M, -)$ and $\varinjlim_{\mathfrak{a} \in \Sigma_d} H_{\mathfrak{a},b}^i(M, -)$, $i \in \mathbb{N}_0$, are strongly connected the result follows again by [11, Theorem 6.68].

(vii) Using the commutative diagram

$$\begin{array}{ccccccc} 0 \longrightarrow \Gamma_{d,b}(M, N) \longrightarrow \text{Hom}_R(M, N) \longrightarrow T_{d,b}(M, N) \longrightarrow H_{d,b}^1(M, N) \longrightarrow \text{Ext}_R^1(M, N) \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ 0 \rightarrow \varinjlim_{\mathfrak{a} \in \Sigma_d} \Gamma_{\mathfrak{a},b}(M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow \varinjlim_{\mathfrak{a} \in \Sigma_d} D_{\mathfrak{a},b}(M, N) \rightarrow \varinjlim_{\mathfrak{a} \in \Sigma_d} H_{\mathfrak{a},b}^1(M, N) \rightarrow \text{Ext}_R^1(M, N) \end{array}$$

with exact rows, this follows by (vi) and the Five Lemma.

(viii) Let \mathfrak{a} and \mathfrak{c} be two ideals in $\tilde{W}(d, b)$ such that $\mathfrak{a} \subseteq \mathfrak{c}$. From the commutative diagram of R -modules and R -homomorphisms with exact rows

$$\begin{array}{ccccccc} 0 \longrightarrow \mathfrak{a}M \longrightarrow M \longrightarrow M/\mathfrak{a}M \longrightarrow 0 \\ \downarrow \qquad \downarrow \qquad \downarrow \\ 0 \longrightarrow \mathfrak{c}M \longrightarrow M \longrightarrow M/\mathfrak{c}M \longrightarrow 0, \end{array}$$

we obtain the commutative diagram

$$\begin{array}{ccccccc} 0 \rightarrow \text{Hom}_R(M/\mathfrak{c}M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow \text{Hom}_R(\mathfrak{c}M, N) \rightarrow \text{Ext}_R^1(M/\mathfrak{c}M, N) \rightarrow \cdots \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ 0 \rightarrow \text{Hom}_R(M/\mathfrak{a}M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow \text{Hom}_R(\mathfrak{a}M, N) \rightarrow \text{Ext}_R^1(M/\mathfrak{a}M, N) \rightarrow \cdots \end{array}$$

with exact rows. Now, passing to the direct limit over $\tilde{W}(d, b)$ and using standard homology arguments gives the desired sequence.

(ix) Since in either case $\text{Ext}_R^1(M, N) = 0$, this follows by part (viii).

(x) Apply part (viii) and use the fact that $\text{Ext}_R^i(M, N) = 0$, for all $i > p$.

(xi) Let $T(-) = T_{d,b}(M, -)$ and $T^i(-) = \varinjlim_{\mathfrak{a} \in \tilde{W}(d, b)} \text{Ext}_R^i(\mathfrak{a}M, -)$. Then, $T^i(-)_{i \in \mathbb{N}_0}$ is a negative strongly connected sequence of covariant functors and $T^\circ(-)$ is naturally equivalent to $T(-)$. Since $T^i(E) = 0$, for all $i \geq 1$ and all injective R -module E , the result follows by [11, Theorem 6.68]. \square

3. Finiteness results

In this section we generally assume that M is finitely generated and study basic properties of the functor $T_{d,b}(M, -)$ and its right derived functors $T_{d,b}^i(M, -)$. The end of this section contains a study of the sets $\text{Ass}(T_{d,b}(M, N))$ and $\text{Ass}(T_{d,b}^i(M, N))$.

THEOREM 3.1. Let M be a finitely generated R -module and N be an R -module. The following statements hold.

- (i) If $\Gamma_{d,\mathfrak{b}}(N) = N$, then $T_{d,\mathfrak{b}}^i(M, N) = 0$ for all $i \geq 0$.
- (ii) $T_{d,\mathfrak{b}}^i(M, N) \cong T_{d,\mathfrak{b}}^i(M, N/\Gamma_{d,\mathfrak{b}}(N)) \cong T_{d,\mathfrak{b}}^i(M, T_{d,\mathfrak{b}}(N))$ for all $i \geq 0$.
- (iii) $T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(M, N)$.
- (iv) $T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong \text{Hom}_R(M, T_{d,\mathfrak{b}}(N))$.
- (v) $T_{d,\mathfrak{a}}(T_{d,\mathfrak{b}}(M, N)) = T_{d,\mathfrak{b}}(T_{d,\mathfrak{a}}(M, N))$.
- (vi) $\Gamma_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) = H_{d,\mathfrak{b}}^1(T_{d,\mathfrak{b}}(M, N)) = 0$.

Proof. (i) By Proposition 2.1 (viii) we have the long exact sequence

$$0 \rightarrow \Gamma_{d,\mathfrak{b}}(M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow H_{d,\mathfrak{b}}^1(M, N) \rightarrow \text{Ext}_R^1(M, N).$$

Thus by Proposition 2.1 (iii) we conclude that $T_{d,\mathfrak{b}}(M, N) = 0$. The proof will be complete if we show $T_{d,\mathfrak{b}}^i(M, N) = 0$ for all $i \geq 1$. Since $\Gamma_{d,\mathfrak{b}}(N) = N$, there is an injective resolution \mathbf{E}^N of N such that $\Gamma_{d,\mathfrak{b}}(E^i) = E^i$ for all $i \geq 0$. So as we did for N , we will have $T_{d,\mathfrak{b}}(M, E^i) = 0$ for all $i \geq 0$. Therefore $T_{d,\mathfrak{b}}^i(M, N) = 0$ for all $i \geq 0$.

(ii) From the short exact sequence $0 \rightarrow \Gamma_{d,\mathfrak{b}}(N) \rightarrow N \rightarrow N/\Gamma_{d,\mathfrak{b}}(N) \rightarrow 0$, we obtain the long exact sequence

$$\begin{aligned} 0 \rightarrow T_{d,\mathfrak{b}}(M, \Gamma_{d,\mathfrak{b}}(N)) &\rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow T_{d,\mathfrak{b}}(M, N/\Gamma_{d,\mathfrak{b}}(N)) \rightarrow \\ &\cdots \rightarrow T_{d,\mathfrak{b}}^i(M, N) \rightarrow T_{d,\mathfrak{b}}^i(M, N/\Gamma_{d,\mathfrak{b}}(N)) \rightarrow T_{d,\mathfrak{b}}^{i+1}(M, T_{d,\mathfrak{b}}(N)) \rightarrow \cdots. \end{aligned}$$

Now, using part (i), we have $T_{d,\mathfrak{b}}^i(M, \Gamma_{d,\mathfrak{b}}(N)) = 0$, for all $i \geq 0$, and thus the first isomorphism holds true.

For the second isomorphism, using Proposition 2.1 (ix) with $M = R$, the short exact sequence $0 \rightarrow N/\Gamma_{d,\mathfrak{b}}(N) \rightarrow T_{d,\mathfrak{b}}(N) \rightarrow H_{d,\mathfrak{b}}^1(N) \rightarrow 0$, induces the exact sequence

$$\begin{aligned} 0 \rightarrow T_{d,\mathfrak{b}}(M, N/\Gamma_{d,\mathfrak{b}}(N)) &\rightarrow T_{d,\mathfrak{b}}(M, T_{d,\mathfrak{b}}(N)) \rightarrow T_{d,\mathfrak{b}}(M, H_{d,\mathfrak{b}}^1(N)) \rightarrow \\ &\cdots \rightarrow T_{d,\mathfrak{b}}^i(M, N/\Gamma_{d,\mathfrak{b}}(N)) \rightarrow T_{d,\mathfrak{b}}^i(M, T_{d,\mathfrak{b}}(N)) \rightarrow T_{d,\mathfrak{b}}^i(M, H_{d,\mathfrak{b}}^1(N)) \rightarrow \cdots. \end{aligned}$$

Since $T_{d,\mathfrak{b}}^i(M, H_{d,\mathfrak{b}}^1(N)) = 0$, for all $i \geq 0$, we are done.

(iii) We have

$$\begin{aligned} T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) &= \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, T_{d,\mathfrak{b}}(M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{c}M, N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \text{Hom}_R(\mathfrak{c}M, N))) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{c}, \text{Hom}_R(\mathfrak{a}M, N))) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{c} \otimes_R \mathfrak{a}M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a} \otimes_R \mathfrak{c}M, N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \text{Hom}_R(\mathfrak{c}M, N))) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \varinjlim_{\mathfrak{c} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{c}M, N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d,\mathfrak{b})} \text{Hom}_R(\mathfrak{a}, T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(M, T_{d,\mathfrak{b}}(N)) \cong T_{d,\mathfrak{b}}(M, N), \end{aligned}$$

where in the second and seventh isomorphisms we use again [1, Proposition 7.7].

(iv) We have

$$\begin{aligned} T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) &= \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \text{Hom}_R(M, N)) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a} \otimes_R M, N) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(M, \text{Hom}_R(\mathfrak{a}, N)) \cong \text{Hom}_R(M, \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a}, N)) \cong \text{Hom}_R(M, T_{d,\mathfrak{b}}(N)), \end{aligned}$$

which is the desired isomorphism.

(v) We have

$$\begin{aligned} T_{d,\mathfrak{a}}(T_{d,\mathfrak{b}}(M, N)) &= \varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} \text{Hom}_R(\mathfrak{c}, T_{d,\mathfrak{b}}(M, N)) \\ &\cong \varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} \text{Hom}_R(\mathfrak{c}, \varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{d} M, N)) \cong \varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} (\varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{c}, \text{Hom}_R(\mathfrak{d} M, N))) \\ &\cong \varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} (\varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{c} \otimes_R \mathfrak{d} M, N)) \cong \varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} \text{Hom}_R(\mathfrak{d} \otimes_R \mathfrak{c} M, N)) \\ &\cong \varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} (\varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} \text{Hom}_R(\mathfrak{d}, \text{Hom}_R(\mathfrak{c} M, N))) \cong \varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{d}, \varinjlim_{\mathfrak{c} \in \tilde{W}(d, \mathfrak{a})} \text{Hom}_R(\mathfrak{c} M, N)) \\ &\cong \varinjlim_{\mathfrak{d} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{d}, T_{d,\mathfrak{a}}(M, N)) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{a}}(M, N)), \end{aligned}$$

and the claim is proved.

(vi) Replacing M with R and N with $T_{d,\mathfrak{b}}(M, N)$ in Proposition 2.1 (ix), we have the exact sequence of

$$0 \rightarrow \Gamma_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \rightarrow H_{d,\mathfrak{b}}^1(T_{d,\mathfrak{b}}(M, N)) \rightarrow 0.$$

Now since by part (iii), $T_{d,\mathfrak{b}}(M, N) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N))$, we obtain the result. \square

In general it is a subtle problem to calculate the modules $T_{d,\mathfrak{b}}^i(M, N)$ for arbitrary R , M and N (see for example [6, 12.4.7 Example]). In the following example we calculate these modules for the case $R = M = N = \mathbb{Z}[x]$, the ring of polynomials over the integers.

EXAMPLE 3.2. Let $R = \mathbb{Z}[x] = M = N$. We calculate $T_{d,\mathfrak{b}}^i(R, R)$ for $d = 1, 2$ and for each ideal \mathfrak{b} of $\mathbb{Z}[x]$. Note that R is Noetherian ring of Krull dimension 2. Thus, for each $d \geq 2$, we have $\Sigma_d = \{\mathfrak{a} \in \mathcal{I}(R) \mid \dim(R/\mathfrak{a}) \leq d\} = \mathcal{I}(R)$ and so $\Gamma_{d,\mathfrak{b}}(R) = \{f \in R \mid \mathfrak{a}f \subseteq \mathfrak{b}f \text{ for some } \mathfrak{a} \in \Sigma_d\} = R$. Thus, by Theorem 3.1 (i), $T_{d,\mathfrak{b}}^i(R, R) = 0$, for each ideal \mathfrak{b} and each $i \geq 0$. It follows, by Proposition 2.1 (viii), that $H_{d,\mathfrak{b}}^i(R, R) = 0$ for each ideal \mathfrak{b} and each $i \geq 1$. For $d = 1$, $\Sigma_1 = \{\mathfrak{a} \in \mathcal{I}(R) \mid \dim(R/\mathfrak{a}) \leq 1\} = \mathcal{I}(R) \setminus \{0\}$. Now, we consider two cases $\mathfrak{b} = 0$ and $\mathfrak{b} \neq 0$.

The case $\mathfrak{b} = 0$: It is easily seen that $\widetilde{W}(1, (0)) = \mathcal{I}(R) \setminus \{(0)\}$ and we compute $T_{1,(0)}(R, R)$. By definition, $T_{1,(0)}(R, R) = \varinjlim_{0 \neq \mathfrak{a} \in \mathcal{I}(R)} \text{Hom}_R(\mathfrak{a}, R)$.

We now show that $\text{Hom}_R(\mathfrak{a}, R) \cong \mathfrak{a}^{-1}$ for all $\mathfrak{a} \neq (0)$, where $\mathfrak{a}^{-1} = \{u \in \mathbb{Q}(x) \mid u\mathfrak{a} \subseteq R\}$, where $\mathbb{Q}(x) = \mathbb{Z}[x]_{\{0\}}$ is the fractions field of $\mathbb{Z}[x]$. To do this, fix $a(x) \in \mathfrak{a}$ and consider the map $\phi : \text{Hom}_R(\mathfrak{a}, R) \rightarrow \mathfrak{a}^{-1}$ defined by

$$\phi(f) = \frac{f(a(x))}{a(x)} \quad \text{for each } f \in \text{Hom}_R(\mathfrak{a}, R).$$

Then, for an arbitrary element $b(x) \in \mathfrak{a}$, we have

$$b(x) \frac{f(a(x))}{a(x)} = \frac{a(x)}{a(x)} f(b(x)) = f(b(x)) \in R,$$

and

$$a(x)f(b(x)) = f(a(x)b(x)) = b(x)f(a(x))$$

so that $\frac{f(a(x))}{a(x)} = \frac{f(a(x))}{a(x)}$. These, together, give that $\phi(f) \in \mathfrak{a}^{-1}$ and that ϕ is well-defined. To see that ϕ is a monomorphism, let $\phi(f) = 0$ for some $f \in \text{Hom}_R(\mathfrak{a}, R)$. Then $f(a(x)) = 0$, and thus $f(b(x)) = b \cdot \phi(f) = 0$ for all $b \in \mathfrak{a}$, by what we observed above. Hence, $f = 0$. For surjectivity of ϕ , let $u(x) \in \mathfrak{a}^{-1}$. Define $f : \mathfrak{a} \rightarrow R$ by $f(b(x)) = u(x)b(x)$. Then, $\phi(f) = \frac{f(a(x))}{a(x)} = \frac{u(x)a(x)}{a(x)} = u$ and we conclude that ϕ is an isomorphism. Therefore,

$$T_{1,(0)}(R, R) \cong \varinjlim_{0 \neq \mathfrak{a} \in \mathcal{I}(R)} \mathfrak{a}^{-1} = \bigcup_{0 \neq \mathfrak{a} \in \mathcal{I}(R)} \mathfrak{a}^{-1} = \mathbb{Q}(x),$$

where the first equality comes from [2, Exersise 17], and the second one is an easy observation. In this case, as $\Gamma_{1,(0)}(R, R) = \Gamma_{1,(0)}(\text{Hom}_R(R, R)) = \Gamma_{1,(0)}(R) = 0$, we obtain again by Proposition 2.1 (viii) that $H_{1,(0)}^1(R, R) = \mathbb{Q}(x)/\mathbb{Z}[x]$.

The case $\mathfrak{b} \neq 0$: Since $\mathfrak{b} \in \Sigma_1$ we easily conclude that $\Gamma_{1,\mathfrak{b}}(R) = R$. Thus by Theorem 3.1 (i), $T_{1,\mathfrak{b}}^i(R, R) = 0$ for all $i \geq 0$.

THEOREM 3.3. *Let M be finitely generated and let $f : N \rightarrow N'$ be a homomorphism of R -modules such that $\Gamma_{d,\mathfrak{b}}(\text{Ker}f) = \text{Ker}f$ and $\Gamma_{d,\mathfrak{b}}(\text{Coker}f) = \text{Coker}f$. Then $T_{d,\mathfrak{b}}(M, N) \cong T_{d,\mathfrak{b}}(M, N')$.*

Proof. From the short exact sequences

$$0 \rightarrow \text{Ker}f \rightarrow N \rightarrow \text{Im}f \rightarrow 0, \quad 0 \rightarrow \text{Im}f \rightarrow N' \rightarrow \text{Coker}f \rightarrow 0$$

we obtain the exact sequence

$$\begin{aligned} 0 &\rightarrow T_{d,\mathfrak{b}}(M, \text{Ker}f) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow T_{d,\mathfrak{b}}(M, \text{Im}f) \rightarrow T_{d,\mathfrak{b}}^1(M, \text{Ker}f) \\ 0 &\rightarrow T_{d,\mathfrak{b}}(M, \text{Im}f) \rightarrow T_{d,\mathfrak{b}}(M, N') \rightarrow T_{d,\mathfrak{b}}(M, \text{Coker}f) \rightarrow T_{d,\mathfrak{b}}^1(M, \text{Im}f). \end{aligned}$$

Using Theorem 3.1 (i), $T_{d,\mathfrak{b}}(M, \text{Ker}f) = T_{d,\mathfrak{b}}(M, \text{Coker}f) = 0$, and so $T_{d,\mathfrak{b}}(M, N) \cong T_{d,\mathfrak{b}}(M, \text{Im}f)$ and $T_{d,\mathfrak{b}}(M, \text{Im}f) \cong T_{d,\mathfrak{b}}(M, N')$. Hence $T_{d,\mathfrak{b}}(M, N) \cong T_{d,\mathfrak{b}}(M, N')$. \square

THEOREM 3.4. *Let M be a finitely generated R -module and N be an R -module. Then for each $i \in \mathbb{N}_0$ $T_{d,\mathfrak{b}}^i(M, N) \cong T_{d,\mathfrak{b}}^i(\text{Hom}_R(M, N))$.*

Proof. For the case $i = 0$, consider the exact sequence

$$0 \longrightarrow \Gamma_{d,\mathfrak{b}}(M, N) \xrightarrow{\alpha} \text{Hom}_R(M, N) \xrightarrow{f} T_{d,\mathfrak{b}}(M, N) \xrightarrow{\beta} H_{d,\mathfrak{b}}^1(M, N).$$

We have $\text{Ker}f = \text{Im}\alpha$ and $\text{Coker}f = \text{Im}\beta$. Since $\Gamma_{d,\mathfrak{b}}(\text{Im}\alpha) = \text{Im}\alpha$ and $\Gamma_{d,\mathfrak{b}}(\text{Im}\beta) = \text{Im}\beta$, then using Theorem 3.3, $T_{d,\mathfrak{b}}(R, \text{Hom}_R(M, N)) \cong T_{d,\mathfrak{b}}(R, T_{d,\mathfrak{b}}(M, N))$. Thus $T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N))$.

Now, by Theorem 3.1 (iv) we have $T_{d,\mathfrak{b}}(M, N) \cong T_{d,\mathfrak{b}}(\text{Hom}_R(M, N))$, meaning that $T_{d,\mathfrak{b}}^0(M, N) \cong T_{d,\mathfrak{b}}^0(\text{Hom}_R(M, N))$. Now, we use the standard argument of homology and Proposition 2.1 (xi) to deduce the result. \square

THEOREM 3.5. *Let M and N be two finitely generated R -modules. Then*

$$\text{Ass}(T_{d,\mathfrak{b}}(M, N)) = \text{Supp}(M) \cap \text{Ass}(N/\Gamma_{d,\mathfrak{b}}(N)).$$

Proof. Since N is finitely generated R -module, by a modification of [15, Theorem 1], we have $\text{Ass}(T_{d,\mathfrak{b}}(N)) = \text{Ass}(N/\Gamma_{d,\mathfrak{b}}(N))$.

Now, by Theorem 3.4 and Theorem 3.1 (iv), we have

$$\begin{aligned} \text{Ass}(T_{d,\mathfrak{b}}(M, N)) &= \text{Ass}(T_{d,\mathfrak{b}}(\text{Hom}_R(M, N))) = \text{Ass}(\text{Hom}_R(M, T_{d,\mathfrak{b}}(N))) \\ &= \text{Supp}(M) \cap \text{Ass}(T_{d,\mathfrak{b}}(N)) = \text{Supp}(M) \cap \text{Ass}(N/\Gamma_{d,\mathfrak{b}}(N)). \end{aligned} \quad \square$$

In case that M is finitely generated R -module, in Theorem 3.1 (iii), we showed that $T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(M, N)$. Also, in Theorem 3.4, we proved $T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(\text{Hom}_R(M, N))$. In the next theorem we drop the finiteness assumption on M and conclude these two isomorphisms with some other assumptions on M .

THEOREM 3.6. *Let M and N be two R -modules. The followings hold:*

(i) *If $\text{Ext}_R^1(M, N) = 0$, then $T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(\text{Hom}_R(M, N))$ and*

$$H_{d,\mathfrak{b}}^i(T_{d,\mathfrak{b}}(M, N)) \cong H_{d,\mathfrak{b}}^i(\text{Hom}_R(M, N)),$$

for each $i \geq 1$.

(ii) *If M is a flat R -module, then*

$$T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong T_{d,\mathfrak{b}}(M, N),$$

and

$$\Gamma_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \cong 0 \cong H_{d,\mathfrak{b}}^1(T_{d,\mathfrak{b}}(M, N)).$$

Proof. (i) As $\text{Ext}_R^1(M, N) = 0$, by Proposition 2.1 (viii) we have the exact sequence

$$0 \rightarrow \frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)} \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow H_{d,\mathfrak{b}}^1(M, N) \rightarrow 0$$

from which the long sequence

$$\begin{aligned} 0 &\rightarrow T_{d,\mathfrak{b}}\left(\frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)}\right) \rightarrow T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \rightarrow T_{d,\mathfrak{b}}(H_{d,\mathfrak{b}}^1(M, N)) \\ &\rightarrow T_{d,\mathfrak{b}}^1\left(\frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)}\right) \rightarrow \dots \end{aligned}$$

is obtained. But, we have $\Gamma_{d,\mathfrak{b}}(H_{d,\mathfrak{b}}^1(M, N)) = H_{d,\mathfrak{b}}^1(M, N)$, which in turn by Theorem 3.1 (i), gives $T_{d,\mathfrak{b}}(H_{d,\mathfrak{b}}^1(M, N)) = 0$. So

$$T_{d,\mathfrak{b}}\left(\frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)}\right) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)). \quad (1)$$

Also, since $\Gamma_{d,\mathfrak{b}}(M, N) \cong \Gamma_{d,\mathfrak{b}}(\text{Hom}_R(M, N))$ and $T_{d,\mathfrak{b}}(\Gamma_{d,\mathfrak{b}}(M, N)) = 0$, then from the short exact sequence

$$0 \rightarrow \Gamma_{d,\mathfrak{b}}(M, N) \rightarrow \text{Hom}_R(M, N) \rightarrow \frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)} \rightarrow 0,$$

we have

$$T_{d,\mathfrak{b}}\left(\frac{\text{Hom}_R(M, N)}{\Gamma_{d,\mathfrak{b}}(M, N)}\right) \cong T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)). \quad (2)$$

Comparing (1) and (2), we conclude that $T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N))$.

(ii) Since M is a flat R -module, by [8, Theorem 7.7], for each ideal \mathfrak{a} , $\mathfrak{a}M \cong \mathfrak{a} \otimes_R M$. Thus, we have

$$\begin{aligned} T_{d,\mathfrak{b}}(M, N) &= \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a}M, N) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a} \otimes_R M, N) \\ &\cong \varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Hom}_R(\mathfrak{a}, \text{Hom}_R(M, N)) \cong T_{d,\mathfrak{b}}(\text{Hom}_R(M, N)) \cong T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)). \end{aligned}$$

To prove the second part of (ii), one simply use the exact sequence

$$0 \rightarrow \Gamma_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \rightarrow T_{d,\mathfrak{b}}(M, N) \rightarrow T_{d,\mathfrak{b}}(T_{d,\mathfrak{b}}(M, N)) \rightarrow H_{d,\mathfrak{b}}^1(T_{d,\mathfrak{b}}(M, N)) \rightarrow 0.$$

□

The next result gives a necessary condition for the functor $T_{d,\mathfrak{b}}(M, -)$ to be exact. We were not able to find a better sufficient condition for the exactness of $T_{d,\mathfrak{b}}(M, -)$.

THEOREM 3.7. *Let M be an R -module. If $T_{d,\mathfrak{b}}(M, -)$ is an exact functor, then $H_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$, for all $i \geq 2$ and all R -module N . In addition, if $H_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$ for each $i \geq 1$ and each finitely generated R -module N , then $T_{d,\mathfrak{b}}(M, -)$ is exact.*

Proof. By the exactness of $T_{d,\mathfrak{b}}(M, -)$ we have $T_{d,\mathfrak{b}}^i(M, -) = 0$, for all $i \geq 1$. Thus by Proposition 2.1 (xi), $\varinjlim_{\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})} \text{Ext}_R^i(\mathfrak{a}M, -) = 0$, for all $i \geq 1$. Now, for two elements \mathfrak{a} and \mathfrak{b} of $\tilde{W}(d, \mathfrak{b})$ with $\mathfrak{a} \subseteq \mathfrak{b}$, we have the commutative diagram

$$\begin{array}{ccccccc} \text{Ext}_R^i(\mathfrak{b}M, N) & \rightarrow & \text{Ext}_R^{i+1}(M/\mathfrak{b}M, N) & \rightarrow & \text{Ext}_R^{i+1}(M, N) & \rightarrow & \text{Ext}_R^{i+1}(\mathfrak{b}M, N) \rightarrow \cdots \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \text{Ext}_R^i(\mathfrak{a}M, N) & \rightarrow & \text{Ext}_R^{i+1}(M/\mathfrak{a}M, N) & \rightarrow & \text{Ext}_R^{i+1}(M, N) & \rightarrow & \text{Ext}_R^{i+1}(\mathfrak{a}M, N) \rightarrow \cdots \end{array}$$

with exact rows for each $i \geq 1$. Then passing to direct limit over $\tilde{W}(d, \mathfrak{b})$ we obtain the exact sequence

$$T_{d,\mathfrak{b}}^i(M, N) \longrightarrow H_{d,\mathfrak{b}}^{i+1}(M, N) \longrightarrow \text{Ext}_R^{i+1}(M, N) \longrightarrow T_{d,\mathfrak{b}}^{i+1}(M, N) \quad (3)$$

As both end sides are zero for all $i \geq 1$, we get $H_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$, for all $i \geq 2$.

In addition, as each R -module can be written as a direct limit of its finitely generated submodules over a suitable directed set, we deduce that $H_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$ for each $i \geq 1$. Now, from the exact sequence (3) we get the exactness of $T_{d,\mathfrak{b}}(M, -)$. □

The following theorem and its proof is a counterpart of [10, Theorem 3.5].

THEOREM 3.8. *Let M be a finitely generated R -module and N be an R -module. Then, for each $t \geq 0$ we have*

$$\text{Ass}(T_{d,\mathfrak{b}}^t(M, N)) \subseteq \bigcup_{i=1}^t \text{Ass}(E_{t+2}^{i, t-i}) \cup \text{Ass}(\text{Hom}_R(M, T_{d,\mathfrak{b}}^t(N))),$$

and $\text{Supp}(T_{d,\mathfrak{b}}^t(M, N)) \subseteq \bigcup_{i=0}^t \text{Supp}(\text{Ext}_R^i(M, T_{d,\mathfrak{b}}^{t-i}(N))).$

Proof. We note that by [11, Theorem 10.47] there exists a Grothendieck spectral sequence $E_2^{p,q} = \text{Ext}_R^p(M, T_{d,\mathfrak{b}}^q(N)) \xrightarrow{p} T_{d,\mathfrak{b}}^{p+q}(M, N)$, and modifying the arguments of the proof of [10, Theorem 3.5] gives the results. \square

COROLLARY 3.9. *Let M be a finitely generated R -module, N an R -module and t a non-negative integer. If $\text{Supp}(T_{d,\mathfrak{b}}^i(N))$ is a finite set for all $i \leq t$, then $\text{Supp}(T_{d,\mathfrak{b}}^t(M, N))$ is also a finite set.*

Proof. We note that by Theorem 3.8

$$\text{Supp}(T_{d,\mathfrak{b}}^t(M, N)) \subseteq \bigcup_{i=0}^t \text{Supp}(\text{Ext}_R^i(M, T_{d,\mathfrak{b}}^{t-i}(N))) \subseteq \bigcup_{i=0}^t \text{Supp}(T_{d,\mathfrak{b}}^{t-i}(N)),$$

and the result follows. \square

4. Using the sets $W(d, \mathfrak{b})$ and $S_k^*(M, N)$

In this section, we study the connection of the vanishing of the modules $T_{d,\mathfrak{b}}^i(M, N)$, $i \in \mathbb{N}_0$, with the dimension of the set

$$W(d, \mathfrak{b}) := \{\mathfrak{p} \in \text{Spec}(R) \mid \exists \mathfrak{a} \in \Sigma_d, \mathfrak{a} \subseteq \mathfrak{p} + \mathfrak{b}\},$$

and the dimension of the sets

$$S_k^*(M, N) := \{\mathfrak{p} \in \text{Supp}(M) \mid \text{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + \dim(R/\mathfrak{p}) \leq k\},$$

$k \in \mathbb{N}_0$ (see [4, 14]).

For simplicity we put $w = \dim(W(d, \mathfrak{b})) := \max\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in W(d, \mathfrak{b})\}$, and $s_k^*(M, N) = \dim(S_k^*(M, N)) := \max\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in S_k^*(M, N)\}$.

The other aim of this section is to give a low vanishing theorem for the modules $H_{d,\mathfrak{b}}^i(M, N)$ in case that both M and N are finitely generated. Recall from [8, Theorem 16.7] that for an R -module M and an ideal \mathfrak{a} of R with $\mathfrak{a}M \neq M$, the length of a maximal M -sequence contained in \mathfrak{a} , denoted by $\text{depth}(\mathfrak{a}, M)$, is a well determined least integer n such that $\text{Ext}_R^n(R/\mathfrak{a}, M) \neq 0$. It is known that for each ideal $\text{depth}(\mathfrak{a}, M) = \min\{\text{depth}(\mathfrak{p}, M) \mid \mathfrak{p} \supseteq \mathfrak{a}\}$. For a local ring (R, \mathfrak{m}) and a nonzero finitely generated R -module M , $\text{depth}(\mathfrak{m}, M)$ is simply denoted by $\text{depth}(M)$. Note that, as usual (see [8, p. 131]), by $\text{grade}_R(M)$, we mean $\inf\{i \in \mathbb{N}_0 \mid \text{Ext}_R^i(M, R) \neq 0\}$.

THEOREM 4.1. *Let M and N be two finitely generated R -modules, $n \geq 2$ and k be two non-negative integers such that $s_{n+k}^*(M, N) \leq k$ for all $k < w$. Then $T_{d,\mathfrak{b}}^i(M, N) \cong \text{Ext}_R^i(M, N)$ for all $i < n - 1$.*

Proof. Using the exact sequence of Proposition 2.1 (viii), it suffices to prove that $H_{d,\mathfrak{b}}^i(M, N) = 0$ for all $i < n$. Let $\mathfrak{a} \in \tilde{W}(d, \mathfrak{b})$ and $\mathfrak{p} \in V(\mathfrak{a} + (0 :_R M))$. Then

$\mathfrak{p} \in W(d, \mathfrak{b})$. Put $k := \dim(R/\mathfrak{p}) - 1$. Then $k < w$ and so $\mathfrak{p} \notin S_{n+k}^*(M, N)$. Hence, we have

$$\begin{aligned} \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + \dim(R/\mathfrak{p}) &> k + n \Rightarrow \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + k + 1 > k + n \\ &\Rightarrow \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + 1 > n \Rightarrow \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) \geq n. \end{aligned}$$

Then $\operatorname{depth}(\mathfrak{a} + (0 :_R M), N) \geq n$ and so by [8, Theorem 16.6], $\operatorname{Ext}_R^i(M/\mathfrak{a}M, N) = 0$ for all $i < n$. But, as mentioned in introduction, $H_{d, \mathfrak{b}}^i(M, N)$ is the direct limit of $\operatorname{Ext}_R^i(M/\mathfrak{a}M, N)$ over the set $\tilde{W}(d, \mathfrak{b})$. Thus, it follows that $H_{d, \mathfrak{b}}^i(M, N) = 0$ for all $i < n$. \square

COROLLARY 4.2. *Let M and N be two finitely generated R -modules. The following statements hold.*

- (i) *If $\operatorname{pd}(N) < \operatorname{grade}_R(M) < w$, $s_{n+k}^*(M, N) \leq k$, then $T_{d, \mathfrak{b}}^i(M, N) = 0$ for all $i < \operatorname{grade}_R(M) - \operatorname{pd}(N) - 1$.*
- (ii) *If (R, \mathfrak{m}) is local, $\operatorname{depth}(M) < w$ and $s_{n+k}^*(M, N) \leq \operatorname{depth}(M)$, then $T_{d, \mathfrak{b}}^i(M, N) = 0$ for all $i < \operatorname{depth}(M) - \dim(N) - 1$.*

Proof. (i) By [8, Theorem 16.9], we have $\operatorname{Ext}_R^i(M, N) = 0$ for all $i < \operatorname{grade}_R(M) - \operatorname{pd}(N)$ and the result follows by Theorem 4.1.

(ii) Using [8, Theorem 17.1] and Theorem 4.1, we see that $T_{d, \mathfrak{b}}^i(M, N) = 0$ for all $i < \operatorname{depth}(M) - \dim(N) - 1$. \square

COROLLARY 4.3. *Let M and N be two finitely generated R -modules, and let n and k be two non-negative integers such that $s_{n+k}^*(M, N) \leq k$ for all $k < w$.*

- (i) *If $\Gamma_{d, \mathfrak{b}}(N) = N$, then $\operatorname{Ext}_R^i(M, N) = 0$ for all $i < n - 1$.*
- (ii) *If $\operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) \neq \operatorname{depth}_{R_{\mathfrak{p}}}(\Gamma_{d, \mathfrak{b}}(N)_{\mathfrak{p}})$ for some $\mathfrak{p} \in \operatorname{Supp}(M)$, then $\operatorname{Ext}_R^i(M, N) \cong \operatorname{Ext}_R^i(M, N/\Gamma_{d, \mathfrak{b}}(N))$ for all $i < n - 1$.*

Proof. (i) As $\Gamma_{d, \mathfrak{b}}(N) = N$, by Theorem 3.1 (i) we have $T_{d, \mathfrak{b}}^i(M, N) = 0$ for all $i \geq 0$. On the other hand, by Theorem 4.1, $\operatorname{Ext}(M, N) \cong T_{d, \mathfrak{b}}^i(M, N)$ for all $i < n - 1$. These together gives the result.

(ii) Assume that $\mathfrak{p} \in \operatorname{Supp}(M)$. From the short exact sequence

$$0 \rightarrow \Gamma_{d, \mathfrak{b}}(N) \rightarrow N \rightarrow N/\Gamma_{d, \mathfrak{b}}(N) \rightarrow 0,$$

and [7, Proposition 1.29] we have

$$\begin{aligned} \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) &\geq \min\{\operatorname{depth}_{R_{\mathfrak{p}}}(\Gamma_{d, \mathfrak{b}}(N)_{\mathfrak{p}}), \operatorname{depth}_{R_{\mathfrak{p}}}((N/\Gamma_{d, \mathfrak{b}}(N))_{\mathfrak{p}})\}, \\ \operatorname{depth}_{R_{\mathfrak{p}}}(\Gamma_{d, \mathfrak{b}}(N)_{\mathfrak{p}}) &\geq \min\{\operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}), \operatorname{depth}_{R_{\mathfrak{p}}}((N/\Gamma_{d, \mathfrak{b}}(N))_{\mathfrak{p}}) + 1\}, \\ \operatorname{depth}_{R_{\mathfrak{p}}}((N/\Gamma_{d, \mathfrak{b}}(N))_{\mathfrak{p}}) &\geq \min\{\operatorname{depth}_{R_{\mathfrak{p}}}(\Gamma_{d, \mathfrak{b}}(N)_{\mathfrak{p}}) - 1, \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}})\}. \end{aligned}$$

Now, according to the our assumption in the statement of the corollary and these inequalities, we obtain $\operatorname{depth}_{R_{\mathfrak{p}}}((N/\Gamma_{d, \mathfrak{b}}(N))_{\mathfrak{p}}) \leq \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}})$. Hence, we have

$$\begin{aligned} \operatorname{depth}_{R_{\mathfrak{p}}}((N/\Gamma_{d, \mathfrak{b}}(N))_{\mathfrak{p}}) + \dim(R/\mathfrak{p}) &\leq \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) + \dim(R/\mathfrak{p}) \\ \Rightarrow s_{n+k}^*(M, N/\Gamma_{d, \mathfrak{b}}(N)) &\subseteq s_{n+k}^*(M, N) \Rightarrow s_{n+k}^*(M, N/\Gamma_{d, \mathfrak{b}}(N)) \leq s_{n+k}^*(M, N) < k. \end{aligned} \tag{4}$$

Since $N/\Gamma_{d,b}(N)$ is finitely generated R -module, then in view of (4) and using Theorem 4.1, we get that $T_{d,b}^i(M, N) \cong \text{Ext}_R^i(M, N/\Gamma_{d,b}(N))$ and $T_{d,b}^i(M, N) \cong \text{Ext}_R^i(M, N)$ for all $i < n - 1$. Comparing these and using Theorem 3.1 (ii), the proof of the claim is complete. \square

REFERENCES

- [1] A. Altman, S. Kleiman, *A term of commutative algebra*, Worldwide Center of Mathematics, 2021.
- [2] M. F. Atiyah, I.G. Macdonald. *Introduction to commutative algebra*, University of Oxford, 1969.
- [3] C. Banica, M. Soia, *Singular sets of a module on local cohomology*, Boll. Un. Mat. Ital. B, **16** (1976), 923–934.
- [4] M. H. Bijan-Zadeh, *On the singular sets of a modules*, Commun. Algebra, **21** (1993), 4629–4639.
- [5] M. P. Brodmann, *Finiteness of ideal transforms*, J. Algebra, **63(1)** (1980), 162–185.
- [6] M. P. Brodmann, R. Y. Sharp, *Local Cohomology- An Algebraic Introduction with Geometric Applications*, Cambridge University Press, 1998.
- [7] W. Bruns, J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, revised ed., 1998.
- [8] H. Matsumura, *Commutative ring theory*, Cambridge University Press, 1986.
- [9] T. T. Nam, N. Minh Tri, *Some properties of generalized local cohomology modules with respect to a pair of ideals*, Int. J. Algebra Comput., **24(7)** (2014), 1043–1054.
- [10] T. T. Nam, N. Minh Tri, *Generalized ideal transforms*, Stud. Sci. Math. Hung., **51(1)** (2014), 67–82.
- [11] J. Rotman, *Introduction to homological algebra*, 2nd edn, Springer, 2009.
- [12] R. Takahashi, Y. Yoshino, T. Yoshizawa, *Local cohomology based on a nonclosed support defined by a pair of ideals*, J. Pure Appl. Algebra, **213(4)** (2009), 582–600.
- [13] N. Zamani, *Generalized local cohomology relative to (I, J)* , Southeast Asian Bull. Math., **35** (2011), 1045–1050.
- [14] N. Zamani, M. H. Bijan-Zadeh, M. S. Sayedsadeghi, *Cohomology with supports of dimension $\leq d$* , J. Algebra Appl., **15(3)** (2016), Article ID 1650042, 10 pp.
- [15] N. Zamani, M. S. Sayedsadeghi, M. H. Bijan-Zadeh, *d -Transform Functor and Some Finiteness and Isomorphism Results*, Vietnam. J. Math., **41** (2013), 179–186.

(received 26.01.2025; in revised form 17.07.2025; available online 03.02.2026)

Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

E-mail: ahadmakhsoos@uma.ac.ir

ORCID iD: <https://orcid.org/00009-0004-0620-0334>

Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

E-mail: naserzaka@yahoo.com

ORCID iD: <https://orcid.org/0000-0002-6353-2288>

Department of Mathematics, Payame Noor University (Pnu), P.O. Box 19395-4697, Tehran, Iran

E-mail: m.sayedsadeghi@pnu.ac.ir

ORCID iD: <https://orcid.org/0000-0002-0865-037X>