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SOME d-TRANSFORM FUNCTORS BASED ON AN IDEAL

A. Makhsoos, N. Zamani and M. S. Sayedsadeghi

Abstract. Let R be a commutative Noetherian ring, b be an ideal of R, M an R-module
and let d be a non-negative integer. We introduce a general d-transform functor Ty (M, -)
and its right derived functors Tj"h(M ,-), © € Np, on the category of R-modules and study
their various properties. The connection of these functors with some kind of generalized local
cohomology functors Hciu,(M7 -) is discussed. When both M and N are finitely generated,
some finiteness results on T}j ,(M, N) and H} (M, N) are concluded. Then, we study how
the depth and dimension of certain subsets of Spec(R) affect the behavior and vanishing of
these modules.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with a non-zero
identity, and M and N are two R-modules. Let a and b be two ideals of R, and let
d be a non-negative integer. The basic theory of the a-transform functor D4(-) :=
@neN HomR(a™,-) and its connections with the local cohomology functor have ap-
peared and been studied in [6] (see also [5,10]). For an R-module X, the R-module
Da(X) is an important algebraic tool in studying ordinary local cohomology mod-
ules Hi(M).

In [15], the authors defined a new functor Ty(-) and its right derived functors
and studied its connection with the functor Uy(-) and with the cohomology functors
H!(-), i € Ny, defined in [3]. In this paper, we study to what extent these results are
valid for generalized local cohomology. To be precise, let Z(R) be the set of all ideals
of R, and put ¥4 =a € Z(R) : dim(R/a) < d.

We define the set I'qp(X) consisting of all elements = € X such that az C bx
for some a € ¥45. Then I'gp(-) is an R-linear left exact functor on the category
of R-modules C(R), and we consider its ith (¢ > 0) right derived functor, denoted

by Hj o (-).-
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2 d-transform functors based on an ideal

Now, for two modules M and N, we put Hj (M, N) := H'(T'q(Homp (M, EY))),
where i > 0 and EV is any injective resolution of N.

To give a more concrete description of the aim of the paper, we consider three other
sets W(d,b) = {I € Z(R) : Ja € ¥q,a C I + b}, W(d,b) := {p € Spec(R)|Ja € %4,
a Cp+b}tand Sp(M,N):= {p € Supp(M)|depthy (Ny) + dim(R/p) < k}, k € Ny
(cf. [12,14]). Then, with the reverse inclusion, W(d,b) (and also $4) is a system of
ideals in R in the sense of [6, p. 21]. Now we define the d-transform functor Ty (M, -)
supported in b by Ty (M, N) = hﬂaeﬁ/(d,b) Hom(aM, N), for all N € C(R).

Evidently, Ty o(M,-) is R-linear and left exact, and its right derived functors
Té)b(M ,-), © € Ny, form a strongly connected sequence in the sense of [6, Defini-
tion 1.3.1]. It is convenient to mention that, using standard arguments of homolog-
ical algebra [11, Theorem 6.68] (Axioms for covariant Ext), we have H} ,(M,N) =
hﬂaeﬁ/(d,b) Exta(M/aM, N). From this fact and using [11, Lemma 5.30], it is easily
seen that for each i € Ng we have Tg o (Hj (M, N)) = H}, ,(M, N).

The aim of this paper is to study the structure of the modules Tdi’b (M, N) and their
connections with Héyb(M ,N), i € NO. In Section 2, we present some basic auxiliary
facts concerning the modules I'd, b(M), Tap(M, N), Hj (M, N), and T} ,(M, N). Tt
is shown, for example, that when M is finitely generated, or when I'g s (V) = N, these
modules exhibit interesting properties and coincide with previously known structures.
In Section 3, we assume that M is finitely generated and obtain further isomorphism
results, which are collected in Theorem 3.1. It is concluded that whenever both M
and N are finitely generated, the set of associated primes of T(;b(M ,N) is finite. In
Section 4, we investigate how the dimensions of the sets W (d, b) and S*d, b(M, N) af-
fect the vanishing of the modules H'd, b(M, N) and ijb(M, N). For any unexplained
notation, we refer the reader to [6,12].

2. Preliminaries

In this section we provide some elementary facts concerning the modules I'y (M),
Cao(M,N), Hy ,(M,N) and Tj (M, N). Tt is scen that like T'q(-) and T4(-), the
functor I'y  (-) keeps the injective property. We collect the properties in the following
lemma. For an R-module X, the projective dimension of X will be denoted by pd(X).

ProproSITION 2.1. Let M and N be two R-modules. The following statements hold.
(i) If M is an injective R-module, then T'q s (M) is also an injective R-module.

(i) If M is finitely generated, then H} ,(M,N) = H'(Hompg(M, g, (EY)).

(i11) If M s finitely generated and I'ys(N) = N, 'then HU"“](M, N) = Ext’y (M, N)
for all i > 0. In particular Hjy (M, T 46(N)) = Exty(M,Tqs(N)), fori>0.

(iv) If pd(M) = p, then Hj ,(M,N) = H} (M, N/T4,(N)), for all i > p.

(v) For each i € Ny, Hfl’b(M, N) = h—n}aEW(d,J) Hi(M,N).
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(vi) For each i € No, Hjj ,(M,N) = lim o H o(M,N), where H. ,(M,N) is the
ith generalized local cohomology relative to (a,b), studied in [9,13].

(vii) Typ(M,N) = @aezd Dy (M, N), where Dq s(M,N) = @ce\f\/(a,b) D.(M,N).

(viii) There exists a long exact sequence of R-modules
0—Typ(M,N)— Homp(M,N) — Typ(M,N) — Hc}vb(M,N) — Exti(M, N)
= Ty y(M,N) = Hj ((M,N) — ---.

(iz) If M is projective or N is injective, then we have the sequence
0—Typ(M,N)— Homp(M,N) — Typ(M,N) — Hib(M,N) — 0.

(x) If pd(M) = p, then T} ,(M,N) = Hy*'(M, N), for all i > p.
(i) For each i € No, Tj (M, -) = hﬂueﬁ/(d,b) Ext (aM, -).

Proof. (i) Note that by a similar argument as in [12, Theorem 3.2], we have I'y s (M) =
@aeﬁ/(d,b) Ta(M). As the direct limit of injective modules is injective (note that R
is Noetherian), this gives the claim.

To prove (ii), by our definition we have
Hgy(M,N) =Lgp(Homp(M,N)) = lim [a(Homp(M,N))

aeW(d,b)
= lim Hom(M,T'4(N)) = Hom(M, lim I'o(N)) = Hom(M,T'yp(V)),
acW(d,b) acW(d,b)

which is the 0*"-term of the connected sequence H!(Hompg(M,T45(E)), i € N,
evaluated in N (to see why the second isomorphism holds true, see for example [9,
Proposition 2.2]) with b = 0, and for the third isomorphism see [1, Proposition 7.7].
Now, as both connected sequences Hy (M, -) and H'(Hompg(M,I'q(E")) are zero
in injective modules, by the standard argument of homology theory (see [11, Theorem
6.68]) the result follows.

(ili) By a similar argument as in [14, Lemma 2.1(3)], there exists an injective
resulotion of N, say EY, such that Fd’b(EN) = E". By part (ii), we see that

H} o (M,N) = H' (Homp(M,T4,(EY))) = H (Hompg(M,EY)) = Ext} (M, N).
In particular, as I'y p(Tge(N)) = T'gp(IV), the desired isomorphism is clear.

(iv) From the short exact sequence 0 — I'qp(N) - N — N/I'gs(N) — 0, we
obtain the exact sequence

Hyo(M,Tap(N)) = Hy o(M,N) = Hy o(M,N/Ta(N)) = Hit'(M,Tas(N)),
for all i > 0. Now, since g (T'4,6(N)) = T'ap(N) and Ext’(M,T4(N)) = 0, for all
1 > p, we get the result by part (iii).

(v) This follows from
Fd,b(MaN) :Fd,b(HomR(M7N)) = hﬂ Fu(HomR(M7N)) = hél’l Fu(M7N))a
acW(d,J) acW(d,J)
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and the standard homology arguments.

(vi) First, for an R-module X, we show that I'g p(X) = lim o Fap(X). AsXqis

i d

a system of ideals, it is enough to show that I'g p(X) = Ugex,I'a,6(X). To do this, let
x € T'gp(X), Then there exists a € 3y such that ax C bz. Hence z € I'y p(X) and so
T e ﬂaezdfa)b(_X). For the opposite inclusion, we just note that for each a € ¥; and
each i € No, a* € X4. Now, since both Hj (M, -) and hﬂaezd H; o (M, -), i € Ny,
are strongly connected the result follows again by [11, Theorem 6.68].

(vii) Using the commutative diagram

0 — Iqp(M,N) — Hompg(M,N) — Tau(M,N) —— Hj,(M,N) — Extip(M,N)

! | | ! |

0 lig Tao(M,N) » Homp(M,N) > lim Dap(M,N) » lim H} (M, N) » Extp(M,N)

acxy acexy acXy

with exact rows, this follows by (vi) and the Five Lemma.
(viil) Let a and ¢ be two ideals in W(d, b) such that a C ¢. From the commutative
diagram of R-modules and R-homomorphisms with exact rows

0 aM M M/aM —— 0
0 M M M/cM — 0,

we obtain the commutative diagram

0 — Hompg(M/cM,N) — Homg(M, N) — Hompg(cM, N) — Exth(M/cM,N) — -

| | | |

0 — Homg(M/aM,N) — Homg(M, N) — Hompg(aM,N) — Extp(M/aM,N) — ---

with exact rows. Now, passing to the direct limit over \X/(d7 b) and using standard
homology arguments gives the desired sequence.

(ix) Since in either case Exty, (M, N) = 0, this follows by part (viii).

(x) Apply part (viii) and use the fact that Ext’ (M, N) = 0, for all i > p.

(xi) Let T(-) = Ty, (M,-) and T"(-) = hguev"\/(d,b) Ext%y(aM, -). Then, T*(-)ien,
is a negative strongly connected sequence of covariant functors and 7°(-) is naturally
equivalent to T'(-). Since T*(E) = 0, for all i > 1 and all injective R-module E, the
result follows by [11, Theorem 6.68]. O

3. Finiteness results

In this section we generaly assume that M is finitely generated and study basic
properties of the functor Ty (M, -) and its right derived functors Té)b(M, -). The

end of this section contains a study of the sets Ass(Ty,p(M, N)) and ASS(Té7h(M7 N)).
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THEOREM 3.1. Let M be a finitely generated R-module and N be an R-module. The
following statements hold.

(i) If T s(N) = N, then Tib(M,N) =0 for alli > 0.

(i) TC}'J)(M7 N) Té,b(M, N/Tgp(N) = Té,b(M, Tap(N)) for alli > 0.

(111) Tao(Tye(M,N)) = Typ(M,N).

(i?)) Td’b(HomR(M, N)) = HOHIR(M, Td’b(N)).

(v) Taa(Tap(M,N)) = Tap(Ta,a(M,N)).

(Ui) Fd,b(Td,b(Ma N)) = Hcll,b(T(Lb(M? N)) = 0.

Proof. (i) By Proposition 2.1 (viii) we have the long exact sequence
0—Typ(M,N)— Homp(M,N) = Tgp(M,N) — H;J,(]W7 N) — Ext}%(M, N).
Thus by Proposition 2.1 (iii) we conclude that Ty s (M, N) = 0. The proof will be
complete if we show T ((M,N) = 0 for all i > 1. Since T'qp(N) = N, there is an
injective resolution EV of N such that Ty (E?) = E! for all i > 0. So as we did for
N, we will have Ty s(M, E*) = 0 for all 4 > 0. Therefore T(ib(M, N) =0 for all 4 > 0.

(ii) From the short exact sequence 0 — I'qp(N) = N — N/T'yp(N) — 0, we
obtain the long exact sequence
0= Tau(M,Tap(N)) = Tap(M,N) = Tau(M,N/Tap(N)) =
coo = T o (M,N) = Tj (M, N/Tqp(N)) = T (M, Ty s (N)) — -
Now, using part (i), we have TZL[,(M7 I'iw(N)) =0, for all ¢ > 0, and thus the first
isomorphism holds true.
For the second isomorphism, using Proposition 2.1 (ix) with M = R, the short ex-
act sequence 0 — N/T46(N) = Tup(N) = Hj ,(N) — 0, induces the exact sequence
0= Tge(M,N/Tqp(N)) = Tgo(M,Typ(N)) = Tagus(M, Hé,b(N)) —
w0 = Ty o (M, N/Tap(N)) = Tg (M, Tap(N)) = Ty o (M, Hg o (N)) = - .
Since Ty (M, Hj ,(N)) = 0, for all i > 0, we are done.
(iii) We have
Tao(Tue(M,N)) = hﬂ Hompg(a,Tys(M,N)) = hg Homg(a, hgn Hompg(cM, N))
acW(d,b) acW(d,b) c€EW (d,b)
= lim ( lim Homp(a, Hompg(cM,N))) = lim ( lim Hompg(c, Homp(aM,N)))
a€W (d,b) c€ W (d,b) a€W (d,b) c€ W (d,b)
= hg ( hg Hompg(c ® g aM, N)) = %n ( %n Hompg(a ®p ¢cM,N))
acW (d,b)ceW (d,b) aeW(d,b)ceW(d,b)
= lim ( lim Homp(a, Hompg(cM,N))) = lim Homp(a, lim Homp(cM,N))
acW (d,b)ceW (d,b) acW(d,b) ceW (d,b)
= lim Homp(a, Ta,p (M, N)) = Tae(M, Tap(N)) = Tap (M, N),
acW(d,b)
where in the second and seventh isomorphisms we use again [1, Proposition 7.7].
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(iv) We have
Ty o(Homp(M,N)) = lim Hompg(a, Homp(M, N)) = lim Homp(a ®pr M, N)

aeW(d,b) a€W (d,b)
= lim Homp(M,Hompg(a, N)) = Hompg (M, lim Homp(a, N)) = Hompg(M, Tqs(N)),
acW (d,b) aeW(d,b)
which is the desired isomorphism.
(v) We have
Taa(Tap(M,N)) = lim Hompg(c, Ta,p (M, N))
ceW (d,a)

= lim Hompg(c, lim Homp(d0M,N)) = lim ( lim Homp (¢, Homp(0M, N)))

ceW (d,a) 2eW (d,b) ceW(d,a)0eW (d,b)
= lim ( lim Homp(c ®g 0M, N)) = lim ( lim Homp(d ® ¢cM, N))
ceW(d,a)0eW (d,b) €W (d,b) ceW (d,a)

= lim ( lim Homp (0, Homp(cM, N))) & lim Hompg (0, lim Hompg(cM, N))

€W (d,b) ceW (d,a) 0eW (d,b) ceW(d,a)
= lim Hompg(0, Tya(M, N)) = Ty o(Ta.a(M, N)),
€W (d,b)

and the claim is proved.
(vi) Replacing M with R and N with T, s(M, N) in Proposition 2.1 (ix), we have
the exact sequence of

0— Fd,b(Td,b(Ma N)) — Td,b(M, N) — Td,b(Td,b(M7 N)) — H(;b(Td,b(M; N)) — 0.
Now since by part (iii), Ty,6(M, N) = Ty p(Tas (M, N)), we obtain the result. O

In general it is a subtle problem to calculate the modules T} (M, N) for arbitrary
R, M and N (see for example [6, 12.4.7 Example]). In the following example we
calculate these modules for the case R = M = N = Z[z], the ring of polynomials over
the integers.

EXAMPLE 3.2. Let R = Z[z] = M = N. We calculate T (R, R) for d = 1,2
and for each ideal b of Z[z]. Note that R is Noetherian ring of Krull dimension 2.
Thus, for each d > 2, we have ¥4 = {a € Z(R)|dim(R/a) < d} = Z(R) and so
Tye(R) = {f € Rlaf C bffor somea € ¥;} = R. Thus, by Theorem 3.1 (i),
Téyb(R,R) = 0, for each ideal b and each ¢ > 0. It follows, by Proposition 2.1 (viii),
that Hj ,(R, R) = 0 for each for each ideal b and each i > 1. Ford =1, %, = {a €
Z(R)|dim(R/a) < 1} = Z(R) \ {0}. Now, we consider two cases b = 0 and b # 0.

The case b = 0: It is easily seen that W (1, (0)) = Z(R) \ {(0)} and we compute
Tl,(O) (R, R) By deﬁnition, Tl,(O) (R, R) = hgoquZ(R) HOHlR(Cl7 R)

We now show that Hompg(a, R) = a~! for all a # (0), where a=! = {u € Q(z)| ua C
R}, where Q(x) = Z[x]{y is the fractions field of Z[z]. To do this, fix a(x) € a and
consider the map ¢ : Hompg(a, R) — a~! defined by

for each f € Hompg(a, R).
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Then, for an arbitrary element b(z) € a, we have
fla(z)) _ a(z) _
oy Lo — 28 1(b(w) = FibGo)) € R

and a(z) f(b(z)) = fa(z)b(z)) = b(z)f(a(z))

so that % = % These, together, give that ¢(f) € a~! and that ¢ is well-
defined. To see that ¢ is a monomorphism, let ¢(f) = 0 for some f € Homg(a, R).
Then f(a(z)) =0, and thus f(b(z)) =b- ¢(f) =0 for all b € a, by what we observed
above. Hence, f = 0. For surjectivity of ¢, let u(z) € a=!. Define f : a — R by
f(b(z)) = u(z)b(x). Then, ¢(f) = f(aa(g)) = ul®)e®) _ 4 and we conclude that ¢ is

a(x)

an isomorphism. Therefore,
ThoRR)= lm o'= |J «'=0Q),
0#a€Z(R) 0#a€Z(R)

where the first equality comes from [2, Exersise 17], and the second one is an easy
observation. In this case, as I'y (o) (R, R) = I'1 (o) (Homg(R, R)) = I'1 (0y(R) = 0, we
obtain again by Proposition 2.1 (viii) that H] o) (B, R) = Q(z)/Zx].

The case b # 0: Since b € X we easily conclude that T'y p(R) = R. Thus by
Theorem 3.1 (i), T} 4 (R, R) = 0 for all i > 0.

THEOREM 3.3. Let M be finitely generated and let f : N — N’ be a homomor-
phism of R-modules such that T'q s (Kerf) = Kerf and T'qp(Coker f) = Cokerf. Then
Tuo(M,N) = Tys(M,N').

Proof. From the short exact sequences
0— Kerf -+ N—=Imf -0, 0—Imf— N — Cokerf —0
we obtain the exact sequence
0— Tye(M,Kerf) = Ty o(M,N) = Typ(M,Inf) — Td{b(M, Kerf))
0 = Tyo(M,Imf) = Ty (M, N') — Ty (M, Cokerf) — Tj (M, Imf).
Using Theorem 3.1 (i), Tg,p(M,Kerf) = Tqp(M, Cokerf) = 0, and so Ty p(M,N) =
Taun(M,Imf) and Ty p(M,Imf)=T, (M, N'). Hence Ty o(M,N)=Tys(M,N’). U

THEOREM 3.4. Let M be a finitely generated R-module and N be an R-module. Then
for each i € Ng Tj (M, N) = T}  (Homg(M, N)).
Proof. For the case i = 0, consider the exact sequence

0 — Ty (M, N) = Homp(M, N) L5 Ty (M, N) 25 H} (M, N).

We have Ker f = Ima and Coker f = Imp. Since I'g p(Imcer) = Ima and T'y s (ImfB) =
Img, then using Theorem 3.3, Ty (R, Hompr(M,N)) = Ty (R, Tgs(M,N)). Thus
Tap(Homp (M, N)) = Tap(Ta(M,N)).

Now, by Theorem 3.1 (iv) we have Ty (M, N) = T, ,(Hompr(M, N)), meaning
that TC?J,(M7 N) = Tib(HomR(M, N)). Now, we use the standard argument of ho-
mology and Proposition 2.1 (xi) to deduce the result. 0
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THEOREM 3.5. Let M and N be two finitely generated R-modules. Then
Ass(Ty0(M, N)) = Supp(M) 1 Ass(N/ Ty (N)).
Proof. Since N is finitely generated R-module, by a modification of [15, Theorem 1],

we have Ass(Ty5(N)) = Ass(N/Tqp(N)).
Now, by Theorem 3.4 and Theorem 3.1 (iv), we have

Ass(Tye(M,N)) = Ass(Typ(Homp (M, N))) = Ass(Homp (M, Ty s(N)))
= Supp(M) N Ass(Typ(N)) = Supp(M) N Ass(N/Tqp(N)). O

In case that M is finitely generated R-module, in Theorem 3.1 (iii), we showed that
Tao(Tae(M,N)) = Typ(M,N). Also, in Theorem 3.4, we proved Ty p(Ty,6(M, N)) =
Taqp(Homp(M,N)). In the next theorem we drop the finiteness assumption on M
and conclude these two isomorphisms with some other assumptions on M.

THEOREM 3.6. Let M and N be two R-modules. The followings hold:
(i) If Extyp (M, N) =0, then Ty p(Ta (M, N)) = Ty (Homg(M, N)) and
Hgy(Tap(M, N)) = Hy ,(Homp(M, N)),
for each i > 1.
(i) If M is a flat R-module, then
Tap(Tap(M,N)) = Tap(M,N),

and Fd’b(Td,b(M,N))%O%’H;’b(Td,h(M,N)).
Proof. (i) As Exty (M, N) = 0, by Proposition 2.1 (viii) we have the exact sequence
Homp(M, N)
0= —-F—"—2 5 Tye(M,N) = H} (M,N)—0
].—‘d,b(M, N) d7b< ) ) d7b( ) )

from which the long sequence
Homp(M, N)
0—T, _
T ( Fao(M, N)
Homp (M N))
— T (’ -
d.b Fd,b(Mv N)
is obtained. But, we have Ty (Hj ,(M,N)) = Hj (M, N), which in turn by Theo-
rem 3.1 (i), gives Td,[,(H(}’b(M7 N))=0. So
Hompg(M, N)
T, e ) 2 Ty o(Tae(M, N)). 1
i (M D) = T (T (4. 1)
Also, since I'qp(M,N) = I'yp(Homp(M, N)) and Tgp(Tge(M,N)) = 0, then from
the short exact sequence

) = Tap(Tae(M,N)) — Tyu(Hjo(M,N))

Homp(M, N)

0—=T46(M,N H M, N —_—
— Lq,s(M,N) — Homp(M,N)) — Tuo(M,N)

— 0,

we have
Hompg (M, N)
Tap | =7

Tas(M,N) > = Ty, (Homp (M, N)). @)
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Comparing (1) and (2), we conclude that Ty (Hompg(M,N)) = Ty s (Ta,s(M,N)).
(ii) Since M is a flat R-module, by [8, Theorem 7.7], for each ideal a, aM = a®p M.
Thus, we have

Tas(M,N) = lim Homp(aM,N) = lim Homp(a®g M, N)

acW(d,b) acW(d,b)
= lim Homp(a, Homp (M, N)) = Tg,s(Homp (M, N)) = Tg,u(Ta,e (M, N)).
acW(d,b)

To prove the second part of (ii), one simply use the exact sequence
0— Fd,b(Td7b(M7 N)) — T,17k,(]\47 N) — Td7b<Td,b(Ma N)) — H;,E(Tdﬂ,(M, N)) — 0.
Il

The next result gives a necessary condition for the functor Ty (M, -) to be exact.
We were not able to find a better sufficient condition for the exactness of Ty (M, -).

THEOREM 3.7. Let M be an R-module. If Tqs(M,-) is an exact functor, then
Hj(M,N) = Extp(M,N), for all i > 2 and all R-module N. In addition, if
Hj o (M,N) = Ext% (M, N) for each i > 1 and each finitely generated R-module N,
then Ty p(M,-) is exact.

Proof. By the exactness of Ty(M,-) we have Ty ((M,-) = 0, for all i > 1. Thus
by Proposition 2.1 (xi), @aeW(d,b) Ext%(aM,-) = 0, for all i > 1. Now, for two

elements a and b of W (d, b) with a C b, we have the commutative diagram

Extly(bM,N) + Exti ' (M/6M,N) » Extt (M, N) + Ext' (6M,N) » ---

| | | |

Ext(aM, N) » Ext’y (M/aM,N) » Ext' (M, N) + Exti{!(aM,N) » -

with exact rows for each i > 1. Then passing to direct limit over W (d,b) we obtain
the exact sequence

Tio(M,N) — Hy'(M,N) — Exty™ (M, N) — T; {1 (M, N) (3)
As both end sides are zero for all i > 1, we get Hj (M, N) = Exta (M, N), for all
7> 2.

In addition, as each R-module can be written as a direct limit of its finitely
generated submodules over a suitable directed set, we deduce that Hé)b(M ,N) =
Exts (M, N) for each i > 1. Now, from the exact sequence (3) we get the exactness
of Td’b(M7—). O

The following theorem and its proof is a counterpart of [10, Theorem 3.5].

THEOREM 3.8. Let M be a finitely generated R-module and N be an R-module. Then,
for each t > 0 we have
t

Ass(Tj (M, N)) C | Ass(Ey{5") U Ass(Homp (M, T} o (N))),

=1
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¢
and Supp(T} 4 (M, N)) € | J Supp(Exti (M, T} (N))).
=0
Proof. We note that by [11, Theorem 10.47] there exists a Grothendieck spectral
sequence E5? = Exth (M, T$,(N)) — T5T9(M, N), and modifying the arguments of
: » ds

the proof of [10, Theorem 3.5] gives the results. U

COROLLARY 3.9. Let M be a finitely generated R-module, N an R-module and t a
non-negative integer. IfSupp(Té’b(N)) is a finite set for alli < t, then Supp(Té’b(M7 N))
s also a finite set.

Proof. We note that by Theorem 3.8

¢ ¢
Supp(Tj,, (M, N)) € | Supp(Ext (M, T (N))) € | Supp(T; ' (),
i=0 i=0
and the result follows. O

4. Using the sets W (d, b) and S};(M, N)

In this section, we study the connection of the vanishing of the modules Té’ o (M, N),
1 € Ny, with the dimension of the set
W(d,b) :={p € Spec(R)| Jae€ Xy, a Cp—+b},
and the dimension of the sets
Si(M,N) :={p € Supp(M) | depthp, (N,) + dim(R/p) < k},
k € Np (see [4,14]).

For simplicity we put w = dim(W(d, b)) := max{dim(R/p) | p € W(d,b)}, and
sp(M,N) = dim(S; (M, N)) := max{dim(R/p) | p € S;:(M,N)}.

The other aim of this section is to give a low vanishing theorem for the modules
H} (M, N) in case that both M and N are finitely generated. Recall from [8, The-
orem 16.7] that for an R-module M and an ideal a of R with aM # M, the length
of a maximal M-sequence contained in a, denoted by depth(a, M), is a well deter-
mined least integer n such that Extf(R/a, M) # 0. It is known that for each ideal
depth(a, M) = Min{depth(p, M)| p 2 a}. For a local ring (R, m) and a nonzero finitely
generated R-module M, depth(m, M) is simply denoted by depth(M). Note that, as
usual (see [8, p. 131]), by gradeg (M), we mean inf{i € Ng | Extiz (M, R) # 0}.

THEOREM 4.1. Let M and N be two finitely generated R-modules, n > 2 and k be two
non-negative integers such that sy (M, N) < k for all k < w. Then Tib(M7 N) =

Extio(M,N) for alli <n—1.

Proof. Using the exact sequence of Proposition 2.1 (viii), it suffices to prove that
Hjo(M,N) =0 for all i < n. Let a € W(d,b) and p € V(a+ (0 :gr M)). Then
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p € W(d,b). Put k := dim(R/p) — 1. Then k < w and so p ¢ S (M, N). Hence,
we have
depthp (Np) +dim(R/p) >k +n = depthp (Ny) +k+1>k+n
= depthp (Np) +1>n = depthy (Ny) > n.

Then depth(a+ (0 :z M), N) > n and so by [8, Theorem 16.6], Ext%(M/aM,N) =0
for all ¢ < n. But, as mentioned in introduction, Hé,b(M, N) is the direct limit of
Ext%(M/aM, N) over the set W (d,b). Thus, it follows that H} ,(M,N) = 0 for all
1< n. 0
COROLLARY 4.2. Let M and N be two finitely generated R-modules. The following
statements hold.
(i) If pd(N) < gradegp(M) < w, s;, (M,N)) < k, then Té)b(M, N) = 0 for all
i < gradep (M) — pd(N) — 1.
(ii) If (R, m) is local, depth(M) < w and s}, (M, N)) < depth(M), then Té,b(M» N)
=0 for all i < depth(M) — dim(N) — 1.
Proof. (i) By [8, Theorem 16.9], we have Ext% (M, N) = 0 for all i < gradeg(M) —
pd(N) and the result follows by Theorem 4.1.

(ii) Using [8, Theorem 17.1] and Theorem 4.1, we see that Té,b(M, N) =0 for all
i < depth(M) — dim(N) — 1. U
COROLLARY 4.3. Let M and N be two finitely generated R-modules, and let n and k
be two non-negative integers such that sy (M, N)) <k for all k < w.
(i) If Tqp(N) = N, then Ext’y(M,N) =0 for all i <n — 1.
(i) ‘Ifdeptth (Np) # depthp (La,6(N)p) for somep € Supp(M), then Ext’ (M, N) =
ExtR(M,N/Tqs(N)) for alli <n— 1.
Proof. (i) As Tq,s(N) = N, by Theorem 3.1 (i) we have T} ((M, N) = 0 for all i > 0.
On the other hand, by Theorem 4.1, Ext(M, N) = T (M, N) for all i < n—1. These

together gives the result.
(ii) Assume that p € Supp(M). From the short exact sequence

0—>T4p(N)—> N— N/Typ(N)—0,
and [7, Proposition 1.29] we have
depthp (Ny) > min{depthp (I'a,s(N)p), depthp, ((N/Tap(N))p)},
depthp (q,6(N)p) > min{depthy (Ny),depthp ((N/Tap(N))p) + 1},
depthy, ((N/Tao(N))y) > min{depthy, (Tao(N)y) — 1, depthy (Ny)).

Now, according to the our assumption in the statement of the corollary and these
inequalities, we obtain depthp ((N/I'a,s(N))p) < depthp (NV,). Hence, we have

depthp, ((N/Ta6(N))p) + dim(R/p) < depthp, (Ny) + dim(R/p)

= 8546(M, N/Tap(N)) C 554 (M, N) = 87, (M, N/Tap(N))) < s34 (M, N)) <(i€)
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Since N/I'q5(V) is finitely generated R-module, then in view of (4) and using Theo-
rem 4.1, we get that Té,b(Mv N) =2 ExtR(M,N/T4(N))and Tib(M, N) = ExtR(M,N)
for all i < n — 1. Comparing these and using Theorem 3.1 (ii), the proof of the claim

is complete. [l
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