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Mehmet Onat

Abstract. In this article, we will study the equivariant cohomology theory for actions of
compact group (not necessarily Lie group) on compact spaces. We will present a somewhat
more general and shorter proof of the localization theorem, known as the Borel-Hsiang-
Quillen localization theorem, which was generalized by Özkurt and Onat to actions of finite-
dimensional compact groups on compact connected spaces. In particular, we will apply
this to the problem of the existence of equivariant maps between topological transformation
groups.

1. Introduction

It is well known and a fundamental fact that an action of a topological group on a
topological space naturally gives rise to two spaces: the orbit space and the fixed
point space. A significant challenge in the field of cohomology theory concerning ac-
tions of topological transformation groups pertains to the relationship between the
cohomological structure of a given space and the cohomological structures of its or-
bit space and fixed point set. One of the important tools in the theory is Borel’s
equivariant cohomology theory. In this context, the research focuses on methods of
determining the equivariant cohomology algebra using the cohomological structure of
the orbit space or the fixed point set of the given action. For instance, if an action
of a group G on a space X is free, then the equivariant cohomology algebra H∗

G (X)
is isomorphic to the cohomology algebra of the orbit space X/G of the action. More
precisely, if G acts freely on X, then the first projection XG −→ X/G is a fibration
with a fiber EG, which is contractible, so H∗ (X/G) −→ H∗ (XG) is an isomorphism.
More generally, the relation between the cohomological algebra structure of the fixed
point XG of a given G-space X and the equivariant cohomology algebraic structure
H∗ (XG) is given by the following Borel-Hsiang-Quillen localization theorem. On the
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2 The Borel-Hsiang-Quillen localization theorem

other hand, a criterion for the existence of fixed points of an action can be given in
terms of the algebraic structure of the equivariant cohomology (see Corollary 3.3).
This is only one of the many important consequences of the localization theorem of
Borel-Hsiang-Quillen. The equivariant cohomology for actions of compact Lie groups
has been the subject of extensive research; however, comparatively few studies have
focused on actions of compact topological groups. Montgomery [15] has proved that
any locally compact group which acts effectively on a manifold is finite-dimensional.
However it still remains unknown whether or not such a group must be a Lie group
(known as the Hilbert-Smith conjecture). So such topological group actions are still
actively studied.

Theorem 1.1. Suppose that G is a compact Lie group, and that S is a multiplicative
closed subset of H∗(BG; k). Then the localized restriction homomorphism S91H∗

G(X; k)
→ S91H∗

G

(
XS ; k

)
is an isomorphism of H∗ (BG; k)-modules whenever X is a G-space

satisfying one of the following conditions:
a. X is a compact space [10].

b. X is a paracompact space of finite cohomological dimension, and X has finitely
many connective orbit types (briefly FMCOT) [1,10].

c. X is a finitistic (always paracompact) space which has FMCOT [9].

If X is compact, the assumption that the number of orbit types is finite is not
needed.

As can be seen from the above theorem, generalizations of the theorem are made
on the topological spaces on which the topological group acts. The generalization of
the theorem for topological groups was studied by Özkurt and Onat [18]. The proof
of this theorem is contingent on the existence of a slice in the actions of compact Lie
groups [5, Chapter II]. The existence of slice in compact group actions is not yet
established, but recently, Biller [2] offered a partial solution to the issue. One way to
overcome this difficulty is to extend the theorem to actions that are not Lie groups
by reducing compact group actions to compact Lie group actions and comparing the
cohomological structure of the given space with the cohomological structure of the
space on which the compact Lie group acts (for details see [18]). The present article
aims to furnish more direct proof of the theorem.

Another important consequence of the localization theorem is the following Borsuk-
Ulam type theorem, proved by Clapp and Puppe [7]. The problem of the existence of
an equivariant map between G-spaces is a subject that continues to be a major focus
in the field of algebraic topology. We will not discuss these theorems at length here.
We refer the interested reader to [11,16,21]. In particular, many publications related
to the Borsuk-Ulam theorem are listed in [21].

Theorem 1.2. Let X be a connected G-space. Suppose that Y is a compact space
or a paracompact space of finite cohomology dimension or a finitistic space, and Y
has no fixed-point. If one of the following conditions is satisfied, then there exists no
equivariant map X → Y .
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a) G is a p-torus (i.e. G = Zk
p) and

Hi (X;Z/p) = {0} for all 0 < i < n,

Hj (Y ;Z/p) = {0} for all j ≥ n.

b) G is a torus (i.e. G =
(
S1

)m
),

Hi (X;Q) = {0} for all 0 < i < n,

Hj (Y ;Q) = {0} for all j ≥ n,

and Y has FMCOT.

Clapp and Puppe stated this theorem only for G-CW complexes of finite dimen-
sion, but the theorem is also realized for spaces satisfying Borel’s fixed point criterion
(see [10, p.45] or [9]).

The purpose of this note is to present a simpler proof than theirs of the following
theorem proved by Özkurt and Onat [18] for a finite-dimensional compact group G
and a connected G-space X.

Theorem 1.3. Assume G is a compact group which acts on a compact space X. Let S
be a multiplicative closed subset of the center of H∗ (BG; k). Then the homomorphism
S91H∗

G (X; k) → S91H∗
G

(
XS ; k

)
is an isomorphism of H∗ (BG; k)-modules.

We also give the following results, which are some of the important consequences
of the above theorem.

Theorem 1.4. Let G be a compact connected abelian group (called pro-torus) acting
on a connected space X, and a compact space Y with no fixed points. Suppose that
for some integer n ≥ 1, Hi (X; k) = {0} for all 0 < i < n and Hj (Y ; k) = {0} for all
j ≥ n. Then there exists no equivariant map X → Y .

2. Preliminaries

By Hn (X; Λ), we mean the cohomology, in the sense of the theory of sheaves, of the
space X with coefficients in the constant sheaf associated to a given ring Λ. When
X is a paracompact space, the family of supports is taken as the family of all closed
subsets of X. For much more information on the sheaf cohomology we refer the reader
to the artifact of Bredon [6]. We also define H∗ (X; Λ) =

⊕∞
n=0 H

n (X; Λ), which is
an algebra with the cup product ∪.

In this article, the letter k will be used to denote a field of characteristic zero,
while the symbol G will be used to denote a topological group with unit element e.
Any notation and terminology not explained here can be found in [1,3,5,10]. In this
study, all topological groups and topological spaces are assumed to be Hausdorff, and
all maps between these are assumed to be continuous.

A topological transformation group is a triple ⟨G,X, θ⟩ with a topological group G,
a topological space X, and an action θ of G on X. A continuous map θ : G×X −→ X
is an action if and only if the following conditions are satisfied:
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a. θ (e, x) = x for all x ∈ X.

b. θ (g, θ (h, x)) = θ (gh, x) for all g, h ∈ G and x ∈ X.
For brevity, we will write gx for θ (g, x). A topological space X together with a

given θ action will be called G-space.
A continuous map f : X −→ Y between G-spaces with the property f (gx) =

gf (x) for all x ∈ X, g ∈ G is called an equivariant map or G-map. In this case, a G-
map f : X −→ Y induces the map f : X/G −→ Y/G defined by f (G (x)) = G (f (x)).
A G-map which is also homeomorphism is called G-homoemorphism. The isotropy
subgroup of x is the subgroup Gx = {g ∈ G : gx = x} of G. If X is a Hausdorff
space, it is a closed subgroup. The G-subspace G (x) = {gx ∈ X : g ∈ G} of X is
called the orbit of x ∈ X. Let us observe that G (x) is G-homeomorphic to the
homogenous G-space G/Gx if X is a Hausdorff space and G is a compact group. If
Gx = G (or equivalently G (x) = {x}), then the point x ∈ X is called the fixed
point of the action. The fixed point set of the action will be denoted by XG, i.e.
XG = {x ∈ X : gx = x for all g ∈ G}. The orbit space X/G = {G (x) : x ∈ X} has
the topology induced by the quotient map X → X/G, x 7→ G (x).

The use of the equivariant cohomology, introduced by Borel [3], is a very useful
method in examining the cohomological structures of the fixed point space and the
orbit space in a topological transformation group. Now let’s recall this cohomology
theory. It is well-known that there is a universal G-bundle EG → BG for every
topological group G [13], where G acts freely on EG and BG = EG/G, called the
classifying space of G. For any G-space X, there is an action of G on the product
space X × EG given by g (x, e) = (gx, ge). The orbit space (X × EG) /G will be
denoted by X ×G EG or simply by XG. Then the equivariant cohomology H∗

G (X; k)
of the G-space X is defined by the usual cohomology H∗ (XG; k).

The canonical projections X × EG → X and X × EG → EG are G-equivariant,
and thus they induce the maps π1 : XG → X/G and π2 : XG → BG. The next
commutative diagram is also obtained.

X

�� $$

X × EG
oo //

��

EG

��

X/G XGπ1

oo
π2

// BG

Note that π2 is a fibration with fiber X and structural group G, but π1 is generally
not a fibration. The fiber of XG → X/G over a point x′ = G (x) is homeomorphic to
EG/Gx.

Remark 2.1. If G is a compact group acting on any space X, then H∗ (BGx
; k) ∼=

H∗ (EG/Gx; k). In fact, sinceGx acts freely on EGx
, then the projection EG×EGx

−→
EGx

on the second factor gives rise to a map (EG × EGx
) /Gx −→ EGx

/Gx = BGx
,

which is a fibration with typical fiber EG. Since EG is a contractible space, we
conclude that H∗ (BGx ; k)

∼= H∗ ((EG × EGx) /Gx; k).
Similarly, for the projection (EG × EGx

) /Gx −→ EG/Gx on the first factor, we
have H∗ (EG/Gx; k) ∼= H∗ ((EG × EGx

) /Gx; k). Thus we obtain that H∗ (EG/Gx; k)
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∼= H∗ (BGx ; k).

Let X be any G-space and set R = H∗ (BG; k), then H∗
G (X; k) is an R-module via

the ring homomorphism π∗
2 : H∗ (BG; k) → H∗

G (X; k). For a ∈ R and x ∈ H∗
G (X; k),

the module (algebra) multiplication is given by ax := π∗
2 (a) ∪ x, where ∪ is the cup

product in H∗
G (X; k). Moreover any G-map f : X → Y induces the homomorphism

f∗ : H∗
G (Y ; k) → H∗

G (X; k), which is an R-module homomorphism [10,19].
In particular, if G is a compact group, then H∗ (BGx

; k) is an R-module via the
map i∗x : H∗ (BG; k) → H∗ (BGx

; k) induced by the map ix : EG/Gx → EG/G = BG.
For a multiplicative closed subset S of the center of R (i.e. 1 ∈ S, ab = ba for all a ∈
R, b ∈ S, and ab ∈ S for all a, b ∈ S), define XS = {x ∈ X : i∗x (s) ̸= 0 for all s ∈ S}.
Note that if X is a paracompact space, then XS is a closed invariant subset of X by
the tautness property of the sheaf cohomology (see [1]). Clearly, the restriction homo-
morphism H∗

G (X) → H∗
G

(
XS

)
, induced by the inclusion XS ⊂ X, is an R-module

homomorphism. Hence the localized restriction map S91H∗
G (X; k) → S91H∗

G

(
XS ; k

)
is an R-module homomorphism.

Let us recall some well-known facts in order to prove the localization theorem.
Every element of positive degree in the Čech cohomology ring (isomorphic to the

sheaf cohomology for any sheaf on a paracompact Huasdorff space) of a compact space
is nilpotent. More generally the following lemma has been proved by Deo et al. [9].
Recall that every compact space is finitistic.

Lemma 2.2. Assume that X is a finitistic space and F is a sheaf of k-modules on X.
Then for any α ∈ Hi (X,F) where i > 0, there exists a positive integer n0 so that
αn = 0 ∈ H∗ (X,F) for all n > n0.

Recall that to any map f : X −→ Y and sheaf F on X is associated a Leray
spectral sequence Ep,q

2 = Hp (Y ;Hq (f)) =⇒ Hp+q (X;F) where the sheaf Hq (f) is
the sheaf associated to the presheaf U 7→ Hq

(
f−1 (U) ;F

)
on Y , its stalks at y is

Hq (f)y = lim−→U∋yH
q
(
f−1 (U) ;F

)
[19].

Suppose that F is the decreasing filtration of H∗ (X; k) such that

F pH∗ (X; k) /F p+1H∗ (X; k) = Ep,q
∞ .

Now, assume that X is any space, Y is a finitistic space, and f : X → Y is a map.
We have the following lemma from [9] for any element s ∈ F 1H∗ (X; k) ⊂ H∗ (X; k).

Lemma 2.3 ([9]). There is a positive integer n0 such that sn0 = 0 ∈ H∗ (X; k).

3. Main results

Using Hsiang’s techniques [10, Theorem.III.1′], the localization theorem was gener-
alized for finitistic spaces by Deo et al. [9]. The theorem was first proved in [18] by
Özkurt and Onat for the actions of finite-dimensional compact groups on compact
spaces. Although not explicitly stated by the authors there, the compact space X
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needs to be connected because this hypothesis is necessary for comparing the cohomol-
ogy groups of the fiber, total and base spaces of two fibrations (Zeeman’s comparison
theorem [12, p.82]). There, given the action of a finite-dimensional compact connected
group G on a connected compact space X, the authors reduce this action to the ac-
tion of a compact Lie group G/N on a compact space X/N for a totally disconnected
closed normal subgroup N of G, and then they prove their main theorem [18, Theo-
rem 3.7] by showing that the cohomology of X/N is isomorphic to the cohomology of
X and that the cohomology of the classifying space of G is isomorphic to the coho-
mology of the classifying space of G/N . They then generalize the connected case to
the compact case [18, Theorem 3.8]. Here we provide a direct proof for the actions
of compact groups (not necessarily finite-dimensional) on compact spaces (not neces-
sarily connected). In this sense, our theorem is somewhat more general and its proof
is briefer than that of Özkurt and Onat.

We will now prove Theorem 1.3 using Deo et al.’s techniques.

Proof (Proof of Theorem 1.3). First we will prove the case XS = ∅. For this, it is
enough to show that there exists s ∈ S such that π∗

2 (s) = 0, where π∗
2 : H∗ (BG; k) →

H∗
G (X; k).
There exists the Leray spectral sequence associated to the map π1 : XG → X/G,

in such a way that Ep,q
2 = Hp (X/G;Hq (π2)) and there exists a decreasing filtration

F p of H∗
G (X; k) such that Ep,q

∞ = F pH∗
G (X; k) /F p+1H∗

G (X; k) for all p, q. Besides,
we obtain that the stalk at the point G (x) ∈ X/G of the Leray sheaf Hq (π1) is
isomorphic to Hq (BGx

; k) (see [19, p.553]). Since XS = ∅, then there exists an s ∈ S
such that s maps to zero under H∗ (BG; k) → H∗ (BGx

; k). Therefore, s maps to zero
in E0,∗

2 = H0 (X/G,H∗ (π1)) and in E0,∗
∞ . Since the next sequence is exact, we obtain

that π∗
2 (s) ∈ F 1H∗

G (X; k):

0 → F 1H∗
G (X; k) → F 0H∗

G (X; k) = H∗
G (X; k) → E0,∗

∞ → 0.

As X/G is compact, we can conclude from Lemma 2.3, some positive power n0 of
π∗
2 (s) vanishes in H∗

G (X; k), i.e., (π∗
2 (s))

n0 = π∗
2 (s

n0) = 0 and S91H∗
G (X; k) = 0

(sn0 ∈ S).
Now, suppose thatXS ̸= ∅. Let U be a closed invariant neighbourhood ofXS inX

and V be the complement of its interior. Then V S = (U ∩ V )
S
= ∅. Furthermore, XG

is a paracompact space ( [1, Section 3.2]). Thus we get the following Mayer-Vietoris
long exact sequence for the sheaf cohomology [6, Chapter II, Section 13.].

· · · → Hi
G (X; k) → Hi

G (U ; k)⊕Hi
G (V ; k) → Hi

G (U ∩ V ; k) → · · ·
Since the localization is exact functor S91H∗

G (X; k) → S91H∗
G (U ; k) is an isomor-

phism by the first part of the proof. By the tautness property of the sheaf cohomol-
ogy, since XS is a closed invariant subspace of X, then H∗

G

(
XS ; k

) ∼= lim−→NH∗
G (N ; k),

where, in the direct limit, N ranges over all closed invariant neighborhoods of XS

directed downwards by inclusion (see, e.g. [19]). The result is obtained from the fact
that the localization commutes with direct limits. □

Remark 3.1. Let us determine when the set XS is equal to the fixed point set XG

of the action. It is a well-established result that if a pro-torus (i.e. connected abelian
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compact group) G acts on a space X, then XS = XG for the multiplicative closed
subset S = H∗ (BG; k)− {0} ⊂ H∗ (BG; k) (see [18]).

This gives the following generalization of Borel’s fixed point theorem.

Corollary 3.2 (A. Borel). Let G be a pro-torus which acts on a compact space
X. Then the homomorphism S91H∗

G (X; k) → S91H∗
G

(
XG; k

)
is an isomorphism for

S = H∗ (BG; k)− {0} ⊂ H∗ (BG; k).

The following was proved in [10, p. 45].

Corollary 3.3 (Borel Fixed Point Criterion). Let G be a pro-torus which acts on a
compact space X. Then π∗

2 : H∗ (BG; k) → H∗
G (X; k) is monomorphism iff the fixed

point set XG ̸= ∅.

We will now show that the fixed point set of actions of finite-dimensional pro-tori
on compact acyclic spaces is also an acyclic space, which is one of the important
results of the theorem. A topological space X is called k-acyclic space (or acyclic over
k) if H∗ (X; k) = H∗ (pt; k).

Remark 3.4. Since G acts trivially on XG, then XG
G =

(
XG × EG

)
/G = XG ×BG.

To apply the Künneth theorem [6, Chapter IV, 7.6] to this product, we need to
overcome some technical problems, namely the cohomology of XG or BG must be
finitely generated free module in each dimension. Now assume that G is a finite-
dimensional compact group. Here by the term dimension, we mean the covering
dimension of the topological space. Then one can find a compact totally disconnected
normal subgroupN ofG such thatG/N is a compact Lie group, alsoH∗ (BG/N ;Q

)
−→

H∗ (BG;Q) is an isomorphism (for details, see [18]). It is well known the cohomology
of the classifying space of a compact Lie group is finite-dimensional [3, Chapter IV],
so H∗ (BG;Q) is finite-dimensional. Therefore, by Künneth theorem, we have that
H∗

G

(
XG; k

)
= H∗ (XG; k

)
⊗k H∗ (BG; k).

This gives the following.

Corollary 3.5. Let G be a finite-dimensional pro-torus which acts on a compact
space X. If X is a k-acylic space, then XG is also k-acylic space.

Proof. From the Serre spectral sequence (or Vietoris-Begle mapping theorem [20,
p.344]) of X → XG → BG, we obtain that H∗ (BG; k) ∼= H∗

G (X; k). Since

S91H∗
G (X; k) ∼= H∗

G (X; k)⊗H∗(BG;k) S
91H∗ (BG; k) ∼= S91H∗ (BG; k)

and

S91H∗ (BG; k) ∼= S91H∗
G (X; k) ∼= S91H∗

G

(
XG; k

) ∼= H∗ (XG; k
)
⊗k S91H∗ (BG; k)

we conclude that XG is a k-acyclic space. □

Using Corollary 3.3 it is not hard to obtain the following.
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Theorem 3.6. Suppose that G is a pro-torus which acts on a connected space X and
a compact space Y . Then if the following contiditions hold, there exists no equivariant
map X → Y .

a. The fixed point set Y G is empty.

b. Hi (X; k) = {0} for all 0 < i < n.

c. Hj (Y ; k) = {0} for all j ≥ n.

Proof. Clapp and Puppe’s proof [7, Theorem 6.4] is exactly valid using Corollary 3.3.
See also [16, Theorem 3.10] for proof. □

Notice that if Y has a fixed-point, then there exists always an equivariant map
f : X → Y . Moreover, if f : X → Y is an equivariant map and X has a fixed-point,
then Y has a fixed-point as well.

The following proposition will now be demonstrated: if an action of a finite-
dimensional pro-torus on a compact space satisfies the condition of being totally non-
homologous to zero, then a fixed point exists for said action. Let G be a topological
group acting on a topological space X. Then X is said to be totally non-homologous
to zero (TNHZ) in XG with respect to H∗ (−;R) if the inclusion map i : X ↪→ XG

induces a surjection in the cohomology i∗ : H∗
G (X;R) −→ H∗ (X;R).

We will need the following well-known lemma, proved in [4] and [14, p. 126].

Lemma 3.7. If a G-space X is TNHZ in XG, then the map π2 : XG −→ BG induces
a monomorphism π∗

2 : H∗ (BG; k) → H∗
G (X; k).

We obtain the following result (see [17, Corollary 3.5 ]).

Theorem 3.8. Suppose that G is a finite-dimensional pro-torus which acts on a com-
pact space X. If X is TNHZ in XG, then the fixed point set XG is non-empty.

Proof. It is clear from Corollary 3.3 and Lemma 3.7. □

Bredon [5, p.425] (see also [1, p.204]) provided an action of a torus G on a space
X such that X is not a TNHZ in XG with respect to H∗ (−;Q), but the fixed point
set XG is non-empty.

The author has not yet determined whether Theorem 1.3 is satisfied when the
compact space X is replaced by a finitistic space or a paracompact space of finite
cohomological dimension. It is important to note that for any finite-dimensional
compact group G, the orbit space X/G of a finitistic space X may not be finitistic, but
this is true for compact Lie group G [8]. For an action of a finite-dimensional compact
group G on a paracompact spaceX of finite cohomological dimension on Q, the author
does not know whether the orbit space X/G also has finite cohomological dimension
on Q. It is evident that these two research topics are of significant importance and
require further investigation.

Acknowledgement. The author thanks the anonymous referees for their valu-
able comments and suggestions, which helped improve the quality of the manuscript.
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