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A NECESSARY CONDITION FOR THE EXISTENCE OF A FIXED
POINT IN COMPACT GROUP ACTIONS ON PARACOMPACT

SPACES

Ali Arslan Özkurt

Abstract. It is well known that if the Borel fibration of a compact abelian connected
group action on a compact space is totally nonhomologous to zero, then the action must
have fixed points. But this is usually not true. In this article, we will give an example that
are both TNHZ and the action has no fixed point. Further, we will examine paracompact
spaces with TNHZ for compact abelian connected group actions without fixed points, and
provide certain necessary conditions for the existence of such actions.

1. Introduction

The continuous action of a topological group on a given topological space gives rise
to two distinct spaces, known as the orbit space and the fixed point set. Since these
spaces are generally used to determine the equivariant cohomology of the space being
acted upon, and thus sometimes the cohomology of the whole space, determining
these spaces based on cohomology becomes a central problem. While particularly
strong results exist for equivariant cohomology theory, especially concerning actions
of abelian groups, there also exist non-abelian versions of many classical results such
as the localization theorem [2,13]. Nevertheless, topological groups, without assuming
a smooth structure play a significant role in various mathematical contexts, such as
the Hilbert-Smith conjecture.

The primary challenge in extending theorems from Lie group actions to topological
group actions lies in effectively addressing these unconventional groups. Recently
Onat [18–20] and Özkurt, Onat [21, 22] have published various studies related to the
Borel-based cohomology theory of compact groups using the approximation method
through Lie groups via projective limit, mainly focusing on finite-dimensional compact
non-Lie group actions. In these studies, the non-emptiness of the fixed point set and
the cohomological algebraic structure of this set holds a significant place.
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2 A fixed point in compact group actions on paracompact spaces

Locally compact groups are well-known to admit an “approximation” by Lie
groups. Specifically, if G is a locally compact group with a finite number of compo-
nents, it can be demonstrated that there exists an arbitrarily small compact normal
subgroup N of G such that the quotient group G/N is a Lie group. This result was
originally established by Yamabe [26] and can also be found in the book of Mont-
gomery and Zippin [17]. If G is a compact (respectively abelian, connected) group of
finite dimension, then it is possible to find a totally disconnected compact subgroup
N such that G/N is a compact (respectively abelian, connected) Lie group (see for
details [23]).

For the dimension definition of a compact group we refer the reader to [22]. If G is
a compact group of n-dimension, then G = lim←−N∈NG/N (i.e. G is the projective limit

of compact Lie groups of n-dimension), where N is a filter basis of compact totally
disconnected subgroups of G such that

⋂
N = {1} and G/N is a compact Lie group

of n-dimension for each N ∈ N [12]. It is also well known fact that for a projective
system of compact topological groups its projective limit is a compact group. A
one-dimensional compact connected abelian (non-Lie) group is called solenoid.

It is a known fact that the fixed point set for TNHZ actions of connected abelian
compact Lie groups on compact or paracompact spaces of finite cohomological dimen-
sion are not empty, and the cohomological dimension over rationals is equal to the
cohomological dimension of the space. This also holds for compact connected abelian
non-Lie group action on finite-dimensional compact space (see Onat [20]). On the
other hand, in the non-abelian case, fixed point sets of TNHZ actions may be empty
sets.

Upon considering the orbit space, it is established that various local (as well as
global) topological and cohomological properties inherent to the space X is passed
down to the orbit space X/G. For instance, if X possesses compactness, local com-
pactness, paracompactness, local connectedness, or normality, then the corresponding
orbit space X/G also exhibits these properties when the acting group G is compact.

2. Preliminaries

Throughout the article, it will be assumed that all topological spaces are Hausdorff,
and all groups are compact unless explicitly stated otherwise. Additionally, the uti-
lized cohomology is the Alexander-Spanier cohomology (agree with the Sheaf cohomol-
ogy and the Čech cohomology for paracompact spaces [8]) with rational coefficients.
The present article concerns itself with the equivariant cohomology theory of A. Borel
and its application to the theory of topological transformation groups.

Borel [4] introduced a technique for examining the cohomology of G-spaces, which
has since become a fundamental tool in the field of topological transformation groups.

It was proved by Milnor [16] that there is a contractible space EG on which
each topological group G acts freely. In fact Milnor only proved that it was weakly
contractible. It was shown to be contractible by Dold [10]. The quotient space EG/G
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is denoted by BG, called the classifying space of G, and the projection EG −→ BG is
a G-principal fiber bundle.

Assume that G acts (not necessarily freely) on a topological space X. Then G acts
freely on X × EG given by g (x, e) = (gx, ge) for g ∈ G, (x, e) ∈ X × EG. The orbit
space (X × EG)/G is called the Borel construction, denoted by XG. The fibration

X
i−→ XG −→ BG is called the Borel fibration [4].

Definition 2.1. A G-space X is said to be the totally non-homologous to zero
(TNHZ) in XG −→ BG if i∗ : H∗ (XG) −→ H∗ (X) is surjective.

Remark 2.2. It is well-known as a consequence of the Localization theorem (it holds
not only to actions of compact Lie group actions but also holds for actions of finite-
dimensional compact groups; see [22]) that the action of torus groups on compact or
paracompact spaces with finite cohomological dimension being TNHZ is equivalent
to the cohomological dimension of the fixed-point set matching the cohomological
dimension of the space. This situation also pertains to the actions of a connected
abelian compact group of finite-dimension (see [20]).

If the condition of the group is abelian, as stated in Remark 2.2, is removed, then
there may not be fixed points in the actions of TNHZ. A rather well-known example
can be given as follows. Let G be a connected compact Lie group, and let T be its
maximal torus. Then there is the transitive action of G on the homogeneous space
G/T . Hence the fixed point set F (G,G/T ) is empty. On the other hand, because
Hodd (G/T ;Q) = 0, then the Leray-Serre spectral sequence of the Borel fibration
G/T −→ (G/T )G −→ BG collapses, so the induced map H∗

G (G/T ) −→ H∗ (G/T ) is
surjective.

Definition 2.3. A G-space X is said to has finitely many connective orbit types
(FMCOT) if the set

{[
G0

x

]
: x ∈ X

}
is finite, where

[
G0

x

]
stands for the conjugate

class of the identity component of the isotropy subgroup Gx in G.

If G = S1, then, clearly, any G-space has FMCOT.

Remark 2.4. Since (G/N)N(x) = NGx/N ( [12, Proposition 10.31] or [9]) and by [12,

Lemma 9.18] (G/N)
0
N(x) =

(
NG0

x

)
/N for every x ∈ X. It follows that the action of

G/N on X/N has FMCOT when an action of G on X has FMCOT.

Lemma 2.5 ([2, Lemma 4.2.1]). If G is a torus and X is any G-space has FMCOT,
then there is a subcircle S1 ⊂ G such that their fixed point sets are the same, that is
F
(
S1, X

)
= F (G,X).

Consequently, under the additional assumption of FMCOT, the demonstration of
the results concerning fixed points of torus actions is only applicable to circle actions.

Lemma 2.6 ([14, 20]). Suppose that G is a connected compact group, N is a totally
disconnected normal compact subgroup of G, and X be a G-space. Then F (G,X) ≈
F (G/N,X/N).
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Lemma 2.7 ([14,19]). If G is a compact, totally disconnected group, then H∗(BG;Q)=Q.

Theorem 2.8 ([6,15]). Let N be a compact, totally disconnected group which acts on

a compact space X. The homomorphism H∗(X/N ;Q) −→ (H∗(X;Q))
N

induced by
the orbit map X −→ X/N , is an isomorphism.

If G is a connected compact group that acts on a compact space X, the induced
action of G on H∗(X) is trivial [8, Corollary 11.11]. If G is a connected compact group
acting on a compact space X, and N is a compact totally disconnected subgroup of G,
then G/N acts on X/N , and H∗(X/N ;Q) ∼= H∗(X;Q). Consequently, numerous is-
sues pertaining to the cohomological properties of fixed point sets (or orbit spaces) for
the actions of compact connected groups of finite dimension are reduced to problems
concerning compact connected Lie group actions.

The proof of the following theorem can be found in [25, p. 344].

Theorem 2.9 (Vietoris-Begle mapping theorem). Let f : X −→ Y be a surjective
closed map between paracompact spaces and let G be an abelian group. Suppose that
there is some n ≥ 0 such that H̃q

(
f−1 (y) ;G

)
= 0 for all y ∈ Y and q < n. Then the

induced homomorphism fq : H̃q (Y ;G) −→ H̃q (X;G) is an isomorphism for q < n
and a monomorphism for q = n.

3. Main results

The theory of the actions of compact abelian Lie groups on compact or paracompact
spaces of finite cohomological dimension, and with the TNHZ property are well-
known. The fixed point set plays an important role in understanding such actions.
We want to extend this theory to non-Lie group actions. Therefore, as a motivation,
let us first provide examples of compact abelian non-Lie group actions with the TNHZ
property.

One way to define compact non-Lie group action is to consider the projective
limit of the actions of compact Lie groups. To be more specific: If {Gα, φ

β
α, I} is a

projective system of compact groups (with continuous group homomorphisms φβ
α),

and {Xα, f
β
α , I} is a projective system of compact spaces (with continuous maps fβ

α )
such that each Gα acts on Xα, and each map fβ

α is φβ
α-equivariant (i.e. f

β
α (gβxβ) =

φβ
α (gβ) f

β
α (xβ) for all gβ ∈ Gβ , xβ ∈ Xβ), then the compact group lim←−Gα acts on

the compact space lim←−Xα, where the action is given by (gα)(xα) = (gαxα) for (gα) ∈
lim←−Gα and (xα) ∈ lim←−Xα.

It is well-known that if a compact connected abelian Lie group acting on a compact
X or paracompact of finite cohomological dimensionX with FMCOT, andX is TNHZ
in XG −→ BG, then H∗ (BG;Q) −→ H∗

G (X;Q) is injective [5, Theorem 14.2], so
F (G,X) ̸= ∅ by the Borel’s fixed point criterion [13, p.45]. The same argument holds
for the actions of connected abelian compact group of finite dimension on compact
spaces [20,22].
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Remark 3.1. Quillen [24] demonstrated that if X is a paracompact space, and G
is a compact Lie group acting on X, then the cohomological dimension of the orbit
space X/G cannot exceed the cohomological dimension of X. As a result of this fact
the localization theorem and thus the Borel’s fixed point criterion remain valid in the
paracompact case.

However, it is not yet known whether Quillen’s theorem holds for non-Lie group
actions. It may, therefore, be worthwhile to initiate an investigation into the following
question: If G is a connected abelian compact non-Lie group of finite dimension, and
X be a paracompact and non-compact G-space of finite cohomological dimension,
and X is TNHZ in XG −→ BG, then is the set of fixed points non-empty?

First, let us give an example of a compact connected abelian (non-Lie) group
action on a compact space with a fixed point, which has the TNHZ property.

Example 3.2. Let p be a fixed prime number. Set Gn = S1 = {z ∈ C : |z| = 1} and
define φn+1

n : Gn+1 −→ Gn, φ
n+1
n (z) = zp. Similarly, set Xn = D = {z ∈ C : |z| ≤ 1}

and define fn+1
n : Xn+1 −→ Xn, f

n+1
n (w) = wp for all n ∈ N. We consider the

action of Gn on Xn given by multiplication. It is clear that each bonding map
fn+1
n is φn+1

n -equivariant. So the projective limit, X = lim←−Xn, of the inverse system

{Xn, f
n+1
n ,N} is a compact Tp = lim←−Gn-space with one fixed point (0, 0, . . .). The

group Tp is compact connected abelian non-Lie group is called p-adic solenoid. Clearly
the kernel of the first limit map, f1 : Tp −→ G1 = S1, which are p-adic integers is
the totally disconnected closed normal subgroup denoted by Zp. Since the limit maps
are surjective there exists an exact sequence 0 −→ Zp −→ Tp −→ G1 = S1 −→ 0.
The induced Tp/Zp = G1 action on X/Zp = X1 is TNHZ and from the following
commutative diagram,

H∗
G1

(X1;Q)

��

// H∗ (X1;Q)

∼=
��

H∗
Tp

(X;Q) // H∗ (X;Q)

we have H∗
Tp

(X;Q) −→ H∗ (X;Q) is surjective.

However, if the spaceX is a paracompact, non-compact and of infinite-cohomological
dimension with the TNHZ property may not necessarily have fixed points. Here is an
example of such a compact connected abelian Lie group action.

Example 3.3. Let T be a torus and H be a proper subtorus of T . Let ET be the
contractible space on which T acts freely. It is clear that the free space on which H
acts can be chosen as ET . Thus the torus T/H acts freely on ET /H = BH . Hence
we have that the Borel fibration BH −→ (BH)T/H −→ BT/H . In fact we may take

for BT the space
(
ET × ET/H

)
/T =

(
BH × ET/H

)
/ (T/H) = (BH)T/H . Therefore,

the Borel fibration BH −→ (BH)T/H −→ BT/H becomes BH −→ BT −→ BT/H .
Since the base, and fibre spaces have only even-dimensional cohomologies, then the
Serre spectral sequence for BH −→ BT −→ BT/H in rational cohomology collapses,
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so BH is TNHZ in BT −→ BT/H . It is well-known that the classifying space BG

of any compact Hausdorff group G is paracompact Hausdorff. Thus we obtain a
connected abelian compact Lie group action on a paracompact space such that it is
TNHZ without fixed points.

The following lemma provides a generalization of Lemma 2.5 to compact connected
abelian group actions.

Lemma 3.4. Let G be a compact connected abelian group that acts on any space X
with FMCOT. Then there exists a solenoidal subgroup H of G such that F (H,X) =
F (G,X).

Proof. Let K1,K2, . . . ,Kn be the connective isotropy subgroups other than G itself.
First we will prove that there is a solenoidal subgroup H of G such that H ∩ Ki

is totally disconnected for 1 ≤ i ≤ n. Assume on the contrary, for each solenoidal
subgroup H of G, there was a Ki such that H ∩Ki is not totally disconnected. Since
the closed subgroups of a solenoidal group are either totally disconnected or H itself
then for each H there exists a Ki such that H ⊂ Ki. Therefore, the union of all
solenoidal subgroups H of G is in the closed subgroup K1 ∪K2 ∪ · · · ∪Kn of G other
than G. This is a contradiction because the union of all solenoidal subgroups is dense
in G. (Since the union of all circle subgroups of a torus is dense in the torus and each
solenoidal subgroup of G is the inverse image of a circle under the quotient morphism
G −→ G/N , where G/N is a torus and N is a compact totally disconnected normal
subgroup of G.)

Now let’s show that F (H,X) = F (G,X) for this H. If there exists a point x ∈
F (H,X)− F (G,X), then H ⊂ G0

x ⊂ Gx ̸= G, and H is connected and H = H ∩G0
x

is totally disconnected. This is a contradiction, so we have F (H,X) = F (G,X). □

Theorem 3.5. Let G be a finite-dimensional compact connected abelian group acting
on any paracompact, non-compact and of infinite cohomological dimension space X
with FMCOT. If F (G,X) = ∅ and X is TNHZ in XG −→ BG, then there exists a
solenoidal subgroup H of G such that H∗ (X/H;Q) −→ H∗ (X;Q) is surjective.

Proof. There exists a solenoidal subgroup H of G such that F (H,X)=F (G,X)=∅
by Lemma 3.4. Note that if X is a paracompact H-space, then X×EH is a paracom-
pact space by [3, Chap. IX, §4, Ex. 20(d)], so XH = (X × EH) /H is a paracompact
space. It is clear that H = lim←−N∈NHN/N , where N is a filter basis of normal com-

pact subgroups of H such that HN/N is a circle group for every N ∈N and
⋂
N = 1.

Then, by [11, Theorem 2.2] Hx = lim←−N∈NHxN/N = lim←−N∈N (HN/N)Nx. Since

F (H,X) = ∅, all (HN/N)Nx are finite (cyclic) groups and, thereby Hx is compact
abelian totally disconnected group. By Lemma 2.7, we have that H∗ (BHx

;Q) = Q.
Then the orbit map π1 : XH −→ X/H induces the isomorphism π∗

1 : H∗ (X/H;Q) −→
H∗

H (X;Q) by the Vietoris-Begle mapping theorem. Further, it follows from the com-
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mutative diagram below that H∗
H (X;Q) −→ H∗ (X;Q) is surjective.

H∗
G (X;Q)

��

// H∗
H (X;Q)

ww

H∗ (X;Q)

Thereby, from the following commutative diagram

H∗ (X/H;Q)

��

∼=
// H∗

H (X;Q)

ww

H∗ (X;Q)

it is clear that H∗ (X/H;Q) −→ H∗ (X;Q) is surjective. □

The fact thatG is an abelian group constitutes a significant argument for Lemma 3.4.
The following remark provides a partial generalization of Lemma 3.4 for compact non-
totally disconnected groups.

Remark 3.6. LetG be a compact non-totally disconnected group acting on a compact
space X with fixed point set F = F (G,X) such that Gx is finite for x /∈ F . It is
well-known fact that if K = G0 is the identity component of G then the quotient
G/K is totally disconnected. This is true for any topological group (see [23, Section
22] for details).

Since G is a non-totally disconnected group, then K is a nontrivial connected
closed subgroup of G. The dimension of K may not be finite. In this case, we can
choose a non-trivial (arbitrarily high) finite-dimensional compact connected subgroup
of K. Therefore, it may be hypothesised that the dimension of G is finite. Let N be
a compact totally disconnected normal subgroup of K such that K/N is a Lie group.
Since Gx is finite for x /∈ F , it clear that F (K,X) = F (G,X).

Suppose now that T is any circle subgroup of K/N . If we assume x∗ = N(x) ∈
F (T,X/N) − F (K/N,X/N) then T < (K/N)x∗ = KxN/N and x /∈ F (K,X) =
F (G,X) by Lemma 2.6. Thus Kx and KxN/N are finite, this is a contradiction. So
we have F (G,X) = F (K,X) ≈ F (K/N,X/N) = F (T,X/N).

In Remark 3.6, we can replace the finiteness of the isotropy subgroups with the
triviality of the cohomology algebra of classifying spaces of isotropy subgroups.

Lemma 3.7. Let G be a non-totally disconnected compact group acting on a space X
with fixed point set F = F (G,X) such that H∗ (BGx

;Q) is trivial for x /∈ F . Then
there exists a solenoidal subgroup H of G such that F (G,X) = F (H,X).

Proof. As indicated in Remark 3.6, since G is a compact non-totally disconnected
group, we can assume G to be of finite dimension.

Let n be the dimension of G and N is a filter basis of totally disconnected, normal
compact subgroups of G such that G/N is a compact Lie group of n -dimension for
each N ∈ N and

⋂
N = {1}.
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IfK = G0 is the identity component of G then there is an N ∈ N such thatKN/N
is a compact connected Lie group of finite dimension. Thus the compact Lie group,
G/N , contains a circle subgroup T . Therefore there exists a solenoidal subgroup H
of G such that T = HN/N .

If we assume x ∈ F (H,X) − F (G,X) then we have x∗ = N(x) ∈ F (T,X/N) −
F (G/N,X/N) then T < (G/N)x∗ = GxN/N . From the Peter Weyl theorem, we
can assume T < (G/N)x∗ < Gl(k,C) for some k ∈ N. So we have the non-trivial
composition H∗ (BGl(k,C);Q

)
−→ H∗ (B(G/N)x∗ ;Q

)
−→ H∗ (BT ;Q) which implies

H∗ (B(G/N)x∗ ;Q
)
is not trivial. Furthermore, from Remark of [22], we obtain the

result that H∗ (BGx ;Q) is not trivial, which leads to a contradiction. So we have
F (G,X) = F (H,X). □

Remark 3.8. The actions of Tp mentioned in Example 3.2 can easily be verified to
be of the type indicated in Lemma 3.7.

From Lemma 3.7 (similarly from Remark 3.6), we have the following theorem,
derived from a proof analogous to that of Theorem 3.5.

Theorem 3.9. Let G be a non-totally disconnected compact group acting on a para-
compact space X such that H∗ (BGx

;Q) is trivial for all x ∈ X (similarly Gx is finite
for x /∈ X). If F (G,X) = ∅ and X is TNHZ in XG −→ BG, then there exists a
solenoidal subgroup H of G0 such that H∗ (X/H;Q) −→ H∗ (X;Q) is surjective.

Definition 3.10. A connected topological space X is called Poincaré duality space
over Q if H∗ (X;Q) is a finite-dimensional vector space over Q and if Hi (X;Q) = 0

for i > n, and the cup product Hi (X;Q) × Hn−i (X;Q)
∪−→ Hn (X;Q) = Q is a

non-degenerate bilinear form for all 0 ≤ i ≤ n. The number n is called the formal
dimension of X, denoted by fd (X).

The following corollary implies that a non-totally disconnected compact group can
not act freely on a compact Poincaré duality space in a way that satisfies the TNHZ
property.

Corollary 3.11. Let G be a non-totally disconnected compact group which acts on
a compact Poincaré duality space X with formal dimension n. If Gx is finite for all
x ∈ X, then X can not be TNHZ in XG −→ BG.

While G is also connected and abelian in the Corollary, it is clear that X cannot
be TNHZ in XG −→ BG, because the fixed point set of the action is empty.

Proof. Suppose that X is TNHZ in XG −→ BG, then there exists a solenoidal sub-
group H of G0 such that H∗(X/H;Q) → H∗(X;Q) is surjective by Theorem 3.9.
Consider the restricted action of H on X. Let M be a totally disconnected subgroup
of H such that the quotient H/M is a circle group.

Theorem 2.8 asserts that the orbit map π : X → X/M induces isomorphism
π∗ : H∗(X/M ;Q) → H∗(X;Q). Hence Hi (X/M ;Q) = 0 for all i > n. Then,
by [2, Corollary 3.10.12], we have Hi ((X/M) / (H/M) ;Q) = Hi (X/H;Q) = 0 for
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all i > n. Observe that the stabilizers of the action of circle group H/M on X/M
(H/M)M(x) = HxM/M ≃ Hx/Hx ∩M is finite (in other words, the action of H/M
on X/M is almost free). Then from the following Gysin exact sequence for the orbit
map X/M −→ (X/M)/(H/M) ≈ X/H

0→ H1 (X/H;Q)→ H1 (X/M ;Q)→ H0 (X/H;Q)→ H2 (X/H;Q)→
· · · → Hn (X/M ;Q)→ Hn−1 (X/H;Q)→ Hn+1 (X/H;Q)→ · · ·

we have Hn (X/H;Q) ̸= 0 (because H∗ (X/H;Q) −→ H∗ (X;Q) is surjective) and
Hi (X/H;Q) ∼= Hi+2 (X/H;Q) for all i ≥ n, which leads to a contradiction. □
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Sinop Üniversitesi Fen Bilimleri Dergisi, 9(2) (2024), 534–550.

[19] M. Onat, The Borsuk–Ulam type theorems for finite-dimensional compact group actions, Bull.
Iran. Math. Soc., 48 (2022) 1339–1349.

[20] M. Onat, The cohomological structure of fixed point set for pro-torus actions on compact
spaces, Turk. J. Math., 42 (2018), 3164–3172.



10 A fixed point in compact group actions on paracompact spaces
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