Abstract Let $\frak F_{\lambda}^2$ be the space of tensor
densities of degree $\lambda\in \mathbb{C}$ on the supercircle $S^{1|2}$. We
consider the space $\mathfrak{D}_{\lambda,\mu}^{2,k}$ of $k$-th
order linear differential operators from $\frak F_{\lambda}^2$ to $\frak
F_{\mu}^2$ as a module over the superalgebra $\mathcal{K}(2)$ of
contact vector fields on $S^{1|2}$ and we compute the superalgebra
$\mathcal{K}_{\lambda,\mu}^{2,k}$
of endomorphisms on $\mathfrak{D}_{\lambda,\mu}^{2,k}$ commuting with
the $\mathcal{K}(2)$-action. We prove that this
algebra is trivial except for $\lambda= 0$. 
|